1
|
Sawada M, Yoshino-Saito K, Ninomiya T, Oishi T, Yamashita T, Onoe H, Takada M, Nishimura Y, Isa T. Reorganization of Corticospinal Projections after Prominent Recovery of Finger Dexterity from Partial Spinal Cord Injury in Macaque Monkeys. eNeuro 2023; 10:ENEURO.0209-23.2023. [PMID: 37468328 PMCID: PMC10408784 DOI: 10.1523/eneuro.0209-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 07/11/2023] [Indexed: 07/21/2023] Open
Abstract
We investigated morphologic changes in the corticospinal tract (CST) to understand the mechanism underlying recovery of hand function after lesion of the CST at the C4/C5 border in seven macaque monkeys. All monkeys exhibited prominent recovery of precision grip success ratio within a few months. The trajectories and terminals of CST from the contralesional (n = 4) and ipsilesional (n = 3) hand area of primary motor cortex (M1) were investigated at 5-29 months after the injury using an anterograde neural tracer, biotinylated dextran amine (BDA). Reorganization of the CST was assessed by counting the number of BDA-labeled axons and bouton-like swellings in the gray and white matters. Rostral to the lesion (at C3), the number of axon collaterals of the descending axons from both contralesional and ipsilesional M1 entering the ipsilesional and contralesional gray matter, respectively, were increased. Caudal to the lesion (at C8), axons originating from the contralesional M1, descending in the preserved gray matter around the lesion, and terminating in ipsilesional Laminae VI/VII and IX were observed. In addition, axons and terminals from the ipsilesional M1 increased in the ipsilesional Lamina IX after recrossing the midline, which were not observed in intact monkeys. Conversely, axons originating from the ipsilesional M1 and directed toward the contralesional Lamina VII decreased. These results suggest that multiple reorganizations of the corticospinal projections to spinal segments both rostral and caudal to the lesion originating from bilateral M1 underlie a prominent recovery in long-term after spinal cord injury.
Collapse
Affiliation(s)
- Masahiro Sawada
- Department of Developmental Physiology, National Institute for Physiological Sciences, Okazaki 444-8585, Japan
- Department of Neurosurgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Kimika Yoshino-Saito
- Department of Developmental Physiology, National Institute for Physiological Sciences, Okazaki 444-8585, Japan
| | - Taihei Ninomiya
- Systems Neuroscience, Primate Research Institute, Kyoto University, Inuyama 484-8506, Japan
| | - Takao Oishi
- Systems Neuroscience, Primate Research Institute, Kyoto University, Inuyama 484-8506, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Saitama 332-0012, Japan
| | - Toshihide Yamashita
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Saitama 332-0012, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Saitama 332-0012, Japan
| | - Hirotaka Onoe
- Human Brain Research Center, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Masahiko Takada
- Systems Neuroscience, Primate Research Institute, Kyoto University, Inuyama 484-8506, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Saitama 332-0012, Japan
| | - Yukio Nishimura
- Department of Developmental Physiology, National Institute for Physiological Sciences, Okazaki 444-8585, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Saitama 332-0012, Japan
- Neural Prosthetics Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
- The graduate University for Advanced Studies (SOKENDAI), Hayama 240-0193, Japan
- Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Saitama 332-0012, Japan
| | - Tadashi Isa
- Department of Developmental Physiology, National Institute for Physiological Sciences, Okazaki 444-8585, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Saitama 332-0012, Japan
- Human Brain Research Center, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
- The graduate University for Advanced Studies (SOKENDAI), Hayama 240-0193, Japan
- Department of Neuroscience, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|
2
|
Hsu LJ, Bertho M, Kiehn O. Deconstructing the modular organization and real-time dynamics of mammalian spinal locomotor networks. Nat Commun 2023; 14:873. [PMID: 36797254 PMCID: PMC9935527 DOI: 10.1038/s41467-023-36587-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 02/07/2023] [Indexed: 02/18/2023] Open
Abstract
Locomotion empowers animals to move. Locomotor-initiating signals from the brain are funneled through descending neurons in the brainstem that act directly on spinal locomotor circuits. Little is known in mammals about which spinal circuits are targeted by the command and how this command is transformed into rhythmicity in the cord. Here we address these questions leveraging a mouse brainstem-spinal cord preparation from either sex that allows locating the locomotor command neurons with simultaneous Ca2+ imaging of spinal neurons. We show that a restricted brainstem area - encompassing the lateral paragigantocellular nucleus (LPGi) and caudal ventrolateral reticular nucleus (CVL) - contains glutamatergic neurons which directly initiate locomotion. Ca2+ imaging captures the direct LPGi/CVL locomotor initiating command in the spinal cord and visualizes spinal glutamatergic modules that execute the descending command and its transformation into rhythmic locomotor activity. Inhibitory spinal networks are recruited in a distinctly different pattern. Our study uncovers the principal logic of how spinal circuits implement the locomotor command using a distinct modular organization.
Collapse
Affiliation(s)
- Li-Ju Hsu
- Department of Neuroscience, University of Copenhagen, 2200, Copenhagen, Denmark.,Department of Neuroscience, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Maëlle Bertho
- Department of Neuroscience, University of Copenhagen, 2200, Copenhagen, Denmark.,Department of Neuroscience, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Ole Kiehn
- Department of Neuroscience, University of Copenhagen, 2200, Copenhagen, Denmark. .,Department of Neuroscience, Karolinska Institutet, 171 77, Stockholm, Sweden.
| |
Collapse
|
3
|
Abstract
The spinal cord receives, relays and processes sensory information from the periphery and integrates this information with descending inputs from supraspinal centres to elicit precise and appropriate behavioural responses and orchestrate body movements. Understanding how the spinal cord circuits that achieve this integration are wired during development is the focus of much research interest. Several families of proteins have well-established roles in guiding developing spinal cord axons, and recent findings have identified new axon guidance molecules. Nevertheless, an integrated view of spinal cord network development is lacking, and many current models have neglected the cellular and functional diversity of spinal cord circuits. Recent advances challenge the existing spinal cord axon guidance dogmas and have provided a more complex, but more faithful, picture of the ontogenesis of vertebrate spinal cord circuits.
Collapse
|
4
|
Tulloch AJ, Teo S, Carvajal BV, Tessier-Lavigne M, Jaworski A. Diverse spinal commissural neuron populations revealed by fate mapping and molecular profiling using a novel Robo3 Cre mouse. J Comp Neurol 2019; 527:2948-2972. [PMID: 31152445 DOI: 10.1002/cne.24720] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 04/22/2019] [Accepted: 05/21/2019] [Indexed: 12/19/2022]
Abstract
The two sides of the nervous system coordinate and integrate information via commissural neurons, which project axons across the midline. Commissural neurons in the spinal cord are a highly heterogeneous population of cells with respect to their birthplace, final cell body position, axonal trajectory, and neurotransmitter phenotype. Although commissural axon guidance during development has been studied in great detail, neither the developmental origins nor the mature phenotypes of commissural neurons have been characterized comprehensively, largely due to lack of selective genetic access to these neurons. Here, we generated mice expressing Cre recombinase from the Robo3 locus specifically in commissural neurons. We used Robo3 Cre mice to characterize the transcriptome and various origins of developing commissural neurons, revealing new details about their extensive heterogeneity in molecular makeup and developmental lineage. Further, we followed the fate of commissural neurons into adulthood, thereby elucidating their settling positions and molecular diversity and providing evidence for possible functions in various spinal cord circuits. Our studies establish an important genetic entry point for further analyses of commissural neuron development, connectivity, and function.
Collapse
Affiliation(s)
- Alastair J Tulloch
- Department of Neuroscience, Brown University, Providence, Rhode Island.,Robert J. and Nancy D. Carney Institute for Brain Science, Providence, Rhode Island
| | - Shaun Teo
- Laboratory of Brain Development and Repair, The Rockefeller University, New York, New York
| | | | - Marc Tessier-Lavigne
- Laboratory of Brain Development and Repair, The Rockefeller University, New York, New York.,Department of Biology, Stanford University, Stanford, California
| | - Alexander Jaworski
- Department of Neuroscience, Brown University, Providence, Rhode Island.,Robert J. and Nancy D. Carney Institute for Brain Science, Providence, Rhode Island
| |
Collapse
|
5
|
Côté MP, Murray LM, Knikou M. Spinal Control of Locomotion: Individual Neurons, Their Circuits and Functions. Front Physiol 2018; 9:784. [PMID: 29988534 PMCID: PMC6026662 DOI: 10.3389/fphys.2018.00784] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 06/05/2018] [Indexed: 12/31/2022] Open
Abstract
Systematic research on the physiological and anatomical characteristics of spinal cord interneurons along with their functional output has evolved for more than one century. Despite significant progress in our understanding of these networks and their role in generating and modulating movement, it has remained a challenge to elucidate the properties of the locomotor rhythm across species. Neurophysiological experimental evidence indicates similarities in the function of interneurons mediating afferent information regarding muscle stretch and loading, being affected by motor axon collaterals and those mediating presynaptic inhibition in animals and humans when their function is assessed at rest. However, significantly different muscle activation profiles are observed during locomotion across species. This difference may potentially be driven by a modified distribution of muscle afferents at multiple segmental levels in humans, resulting in an altered interaction between different classes of spinal interneurons. Further, different classes of spinal interneurons are likely activated or silent to some extent simultaneously in all species. Regardless of these limitations, continuous efforts on the function of spinal interneuronal circuits during mammalian locomotion will assist in delineating the neural mechanisms underlying locomotor control, and help develop novel targeted rehabilitation strategies in cases of impaired bipedal gait in humans. These rehabilitation strategies will include activity-based therapies and targeted neuromodulation of spinal interneuronal circuits via repetitive stimulation delivered to the brain and/or spinal cord.
Collapse
Affiliation(s)
- Marie-Pascale Côté
- CÔTÉ Lab, Spinal Cord Research Center, Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Lynda M. Murray
- Motor Control and NeuroRecovery Research Laboratory (Klab4Recovery), Department of Physical Therapy, College of Staten Island, City University of New York, New York, NY, United States
- Graduate Center, Ph.D. Program in Biology, City University of New York, New York, NY, United States
| | - Maria Knikou
- Motor Control and NeuroRecovery Research Laboratory (Klab4Recovery), Department of Physical Therapy, College of Staten Island, City University of New York, New York, NY, United States
- Graduate Center, Ph.D. Program in Biology, City University of New York, New York, NY, United States
| |
Collapse
|
6
|
Reversible silencing of lumbar spinal interneurons unmasks a task-specific network for securing hindlimb alternation. Nat Commun 2017; 8:1963. [PMID: 29213073 PMCID: PMC5719045 DOI: 10.1038/s41467-017-02033-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 11/02/2017] [Indexed: 12/05/2022] Open
Abstract
Neural circuitry in the lumbar spinal cord governs two principal features of locomotion, rhythm and pattern, which reflect intra- and interlimb movement. These features are functionally organized into a hierarchy that precisely controls stepping in a stereotypic, speed-dependent fashion. Here, we show that a specific component of the locomotor pattern can be independently manipulated. Silencing spinal L2 interneurons that project to L5 selectively disrupts hindlimb alternation allowing a continuum of walking to hopping to emerge from the otherwise intact network. This perturbation, which is independent of speed and occurs spontaneously with each step, does not disrupt multi-joint movements or forelimb alternation, nor does it translate to a non-weight-bearing locomotor activity. Both the underlying rhythm and the usual relationship between speed and spatiotemporal characteristics of stepping persist. These data illustrate that hindlimb alternation can be manipulated independently from other core features of stepping, revealing a striking freedom in an otherwise precisely controlled system. Intra- and interlimb coordination during locomotion is governed by hierarchically organized lumbar spinal networks. Here, the authors show that reversible silencing of spinal L2–L5 interneurons specifically disrupts hindlimb alternation leading to a continuum of walking to hopping.
Collapse
|
7
|
Griener A, Zhang W, Kao H, Haque F, Gosgnach S. Anatomical and electrophysiological characterization of a population of dI6 interneurons in the neonatal mouse spinal cord. Neuroscience 2017; 362:47-59. [PMID: 28844009 DOI: 10.1016/j.neuroscience.2017.08.031] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 08/14/2017] [Accepted: 08/15/2017] [Indexed: 12/13/2022]
Abstract
The locomotor central pattern generator is a neural network located in the ventral aspect of the caudal spinal cord that underlies stepping in mammals. While many genetically defined interneurons that are thought to comprise this neural network have been identified and characterized, the dI6 cells- which express the transcription factors WT1 and/or DMRT3- are one population that settle in this region, are active during locomotion, whose function is poorly understood. These cells were originally hypothesized to be commissural premotor interneurons, however evidence in support of this is sparse. Here we characterize this population of cells using the TgDbx1Cre;R26EFP;Dbx1LacZ transgenic mouse line, which has been shown to be an effective marker of dI6 interneurons. We show dI6 cells to be abundant in laminae VII and VIII along the entire spinal cord and provide evidence that subtypes outside the WT1/DMRT3 expressing dI6 cells may exist. Retrograde tracing experiments indicate that the majority of dI6 cells project descending axons, and some make monosynaptic or disynaptic contacts onto motoneurons on either side of the spinal cord. Analysis of their activity during non-resetting deletions, which occur during bouts of fictive locomotion, suggests that these cells are involved in both locomotor rhythm generation and pattern formation. This study provides a thorough characterization of the dI6 cells labeled in the TgDbx1Cre;R26EFP;Dbx1LacZ transgenic mouse, and supports previous work suggesting that these cells play multiple roles during locomotor activity.
Collapse
Affiliation(s)
- Anna Griener
- Neuroscience and Mental Health Institute, University of Alberta, 3-020D Katz Building, Edmonton, Alberta T6G 2E1, Canada
| | - Wei Zhang
- Department of Physiology, University of Alberta, 3-020D Katz Building, Edmonton, Alberta T6G 2E1, Canada
| | - Henry Kao
- Department of Engineering Physics, University of British Columbia, Hennings Building, Room 333A, 6224 Agricultural Road, Vancouver, BC V6T 1Z1 Canada
| | - Farhia Haque
- Neuroscience and Mental Health Institute, University of Alberta, 3-020D Katz Building, Edmonton, Alberta T6G 2E1, Canada
| | - Simon Gosgnach
- Neuroscience and Mental Health Institute, University of Alberta, 3-020D Katz Building, Edmonton, Alberta T6G 2E1, Canada; Department of Physiology, University of Alberta, 3-020D Katz Building, Edmonton, Alberta T6G 2E1, Canada.
| |
Collapse
|
8
|
Blacklaws J, Deska-Gauthier D, Jones CT, Petracca YL, Liu M, Zhang H, Fawcett JP, Glover JC, Lanuza GM, Zhang Y. Sim1 is required for the migration and axonal projections of V3 interneurons in the developing mouse spinal cord. Dev Neurobiol 2015; 75:1003-17. [PMID: 25652362 DOI: 10.1002/dneu.22266] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 01/15/2015] [Accepted: 01/16/2015] [Indexed: 11/09/2022]
Abstract
V3 spinal interneurons (INs) are a group of excitatory INs that play a crucial role in producing balanced and stable gaits in vertebrate animals. In the developing mouse spinal cord, V3 INs arise from the most ventral progenitor domain and form anatomically distinctive subpopulations in adult spinal cords. They are marked by the expression of transcription factor Sim1 postmitotically, but the function of Sim1 in V3 development remains unknown. Here, we used Sim1(Cre) ;tdTomato mice to trace the fate of V3 INs in a Sim1 mutant versus control genetic background during development. In Sim1 mutants, V3 INs are produced normally and maintain a similar position and organization as in wild types before E12.5. Further temporal analysis revealed that the V3 INs in the mutants failed to migrate properly to form V3 subgroups along the dorsoventral axis of the spinal cord. At birth, in the Sim1 mutant the number of V3 INs in the ventral subgroup was normal, but they were significantly reduced in the dorsal subgroup with a concomitant increase in the intermediate subgroup. Retrograde labeling at lumbar level revealed that loss of Sim1 led to a reduction in extension of contralateral axon projections both at E14.5 and P0 without affecting ipsilateral axon projections. These results demonstrate that Sim1 is essential for proper migration and the guidance of commissural axons of the spinal V3 INs.
Collapse
Affiliation(s)
- Jake Blacklaws
- Department of Medical Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada, B3H 4R2
| | - Dylan Deska-Gauthier
- Department of Medical Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada, B3H 4R2
| | - Christopher T Jones
- Department of Mathematics & Statistics, Dalhousie University, Halifax, Nova Scotia, Canada, B3H 4R2
| | - Yanina L Petracca
- Developmental Neurobiology Lab, Instituto Leloir and Consejo Nacional de Investigaciones Científicas y Técnicas (IIBBA-CONICET). Av Patricias Argentinas 435, Buenos Aires, 1405, Argentina
| | - Mingwei Liu
- Department of Medical Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada, B3H 4R2
| | - Han Zhang
- Department of Medical Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada, B3H 4R2
| | - James P Fawcett
- Departments of Pharmacology and Surgery, Dalhousie University, Halifax, Nova Scotia, Canada, B3H 4R2
| | - Joel C Glover
- Department of Physiology, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Guillermo M Lanuza
- Developmental Neurobiology Lab, Instituto Leloir and Consejo Nacional de Investigaciones Científicas y Técnicas (IIBBA-CONICET). Av Patricias Argentinas 435, Buenos Aires, 1405, Argentina
| | - Ying Zhang
- Department of Medical Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada, B3H 4R2
| |
Collapse
|
9
|
Abstract
Spontaneous activity is known to be essential for the proper formation of sensory networks in the developing CNS. This activity can be produced by a variety of mechanisms including the presence of "pacemaker" neurons, which can be defined by their intrinsic ability to generate rhythmic bursts of action potential discharge. Recent work has identified pacemaker activity within lamina I of the neonatal rodent spinal cord that emerges from a complex interaction between voltage-dependent and voltage-independent ("leak") ionic conductances, including an important modulatory role for the inward-rectifying K(+) (Kir) channels. The available evidence suggests that lamina I pacemakers are glutamatergic and project extensively throughout the dorsal-ventral axis of the spinal cord, although the identity of their postsynaptic targets has yet to be elucidated. A better understanding of this connectivity could yield valuable insight into the role of the lamina I pacemaker population in the maturation of spinal circuitry underlying nociceptive processing and/or sensorimotor integration.
Collapse
Affiliation(s)
- Mark L Baccei
- Pain Research Center, Department of Anesthesiology, University of Cincinnati Medical Center, Cincinnati, OH, USA
| |
Collapse
|
10
|
Velandia-Romero ML, Castellanos JE, Martínez-Gutiérrez M. In vivo differential susceptibility of sensory neurons to rabies virus infection. J Neurovirol 2013; 19:367-375. [PMID: 23959650 DOI: 10.1007/s13365-013-0179-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 05/17/2013] [Accepted: 06/05/2013] [Indexed: 12/19/2022]
Abstract
There is controversy with regard to the entry pathway of the rabies virus (RABV) into the central nervous system (CNS). Some authors have suggested that the virus inoculated at the periphery is captured and transported to CNS only by motor neurons; however, it has been reported that dorsal root ganglia (DRG) sensory neurons capture and transport the virus to the spinal cord (SC) and then to the brain. It is probable that preferences for one pathway or another depend on the site of inoculation and the post-infection time. Therefore, in the present study, we evaluated different vertebral segments and post-infection times, along with the location, number, and subpopulation of sensory neurons susceptible to infection after inoculating RABV in the footpads of adult mice. It was noted that the virus inoculated in the footpad preferentially entered the CNS through the large-sized DRG sensory neurons, while infection of the motor neurons occurred later. Further, it was found that the virus was dispersed in spinal cord trans-synaptically through the interneurons, arriving at both sensory neurons and contralateral motor neurons. In conclusion, we observed that RABV inoculated in the plantar footpad is captured preferentially by large sensory neurons and is transported to the DRG, where it replicates and is spread to the SC using transynaptic jumps, infecting sensory and motor neurons at the same level before ascending to the brain.
Collapse
Affiliation(s)
- Myriam L Velandia-Romero
- Grupo de Virología, Universidad El Bosque, Carrera 9 No. 131 A 02 Edif. de Biblioteca, Lab. 205, Bogotá, Colombia
| | | | | |
Collapse
|
11
|
Coulon P, Bras H, Vinay L. Characterization of last-order premotor interneurons by transneuronal tracing with rabies virus in the neonatal mouse spinal cord. J Comp Neurol 2012; 519:3470-87. [PMID: 21800300 DOI: 10.1002/cne.22717] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We characterized the interneurons involved in the control of ankle extensor (triceps surae [TS] muscles) motoneurons (MNs) in the lumbar enlargement of mouse neonates by retrograde transneuronal tracing using rabies virus (RV). Examination of the kinetics of retrograde transneuronal transfer at sequential intervals post inoculation enabled us to determine the time window during which only the first-order interneurons, i.e., interneurons likely monosynaptically connected to MNs (last-order interneurons [loINs]) were RV-infected. The infection of the network resulted exclusively from a retrograde transport of RV along the motor pathway. About 80% of the loINs were observed ipsilaterally to the injection. They were distributed all along the lumbar enlargement, but the majority was observed in L4 and L5 segments where TS MNs were localized. Most loINs were distributed in laminae V-VII, whereas the most superficial laminae were devoid of RV infection. Contralaterally, commissural loINs were found essentially in lamina VIII of all lumbar segments. Groups of loINs were characterized by their chemical phenotypes using dual immunolabeling. Glycinergic neurons connected to TS MNs represented 50% of loINs ipsilaterally and 10% contralaterally. As expected, the ipsilateral glycinergic loINs included Renshaw cells, the most ventral neurons expressing calbindin. We also demonstrated a direct connection between a group of cholinergic interneurons observed ipsilaterally in L3 and the rostral part of L4, and TS MNs. To conclude, transneuronal tracing with RV, combined with an immunohistochemical detection of neuronal determinants, allows a very specific mapping of motor networks involved in the control of single muscles.
Collapse
Affiliation(s)
- Patrice Coulon
- Laboratoire Plasticité et Physio-Pathologie de la Motricité, Unité Mixte de Recherche 6196, Centre National de la Recherche Scientifique (CNRS) and Aix-Marseille Université, Marseille, France.
| | | | | |
Collapse
|
12
|
Abbinanti MD, Harris-Warrick RM. Serotonin modulates multiple calcium current subtypes in commissural interneurons of the neonatal mouse. J Neurophysiol 2012; 107:2212-9. [PMID: 22279189 DOI: 10.1152/jn.00768.2011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Calcium currents are critical to the intrinsic properties of neurons and the networks that contain them. These currents make attractive targets for neuromodulation. Here, we examine the serotonergic modulation of specific calcium current subtypes in neonatal (P0-5) intersegmental commissural interneurons (CINs), members of the hindlimb locomotor central pattern generator in the mouse spinal cord. Previous work in our lab showed that serotonin (5-HT) excited CINs in part by reducing a calcium current and thus indirectly reducing the calcium-activated potassium current (Diaz-Rios et al. 2007). We have determined which calcium currents are targets of serotonin modulation. Utilizing whole cell voltage clamp and toxins to specific calcium current subtypes, we found that N- and P/Q-type currents comprise over 60% of the overall calcium current. Blockade of each of these subtypes alone with either ω-conotoxin GVIA or ω-agatoxin TK was unable to occlude 5-HT's reduction of the calcium current. However, coapplication of both blockers together fully occluded 5-HT's reduction of the calcium current. Thus, 5-HT decreases both N- and P/Q-type calcium current to excite neonatal CINs.
Collapse
Affiliation(s)
- Matthew D Abbinanti
- Dept. of Neurobiology and Behavior, Mudd Hall, Cornell Univ., Ithaca, NY 14853, USA
| | | |
Collapse
|
13
|
Restrepo CE, Margaryan G, Borgius L, Lundfald L, Sargsyan D, Kiehn O. Change in the balance of excitatory and inhibitory midline fiber crossing as an explanation for the hopping phenotype in EphA4 knockout mice. Eur J Neurosci 2011; 34:1102-12. [PMID: 21899605 DOI: 10.1111/j.1460-9568.2011.07838.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Neuronal networks in the spinal cord termed central pattern generators (CPGs) are responsible for the generation of rhythmic movements, such as walking. The axon guidance molecule EphA4 has been suggested to play a role in the configuration of spinal CPG networks in mammals. In EphA4 knockout (EphA4-KO) mice, the normal alternating walking pattern is replaced by a rabbit-like hopping gait, which can be reproduced when locomotor-like activity is induced in the isolated spinal cord. This hopping phenotype has been explained by an abnormal midline crossing of ipsilateral axons. Here, we investigated the nature of this overcrossing in heterozygous EphA4 (EphA4(lacZ/+) ) mice that showed normal alternating gait and homozygous EphA4 (EphA4(lacZ/lacZ) ) mice with hopping gait. Localized lesions showed that the hopping phenotype is maintained by fibers crossing in the ventral commissure. Using transgenic mouse lines in which glutamatergic, GABAergic and glycinergic neurons are intrinsically labeled, we showed a significant increase in the number of crossing excitatory β-galactosidase-positive neurons and a decrease in the number of inhibitory neurons crossing the midline in EphA4(lacZ/lacZ) mice compared with EphA4(lacZ/+) mice. These results show that the hopping phenotype is the result of a change in the balance between excitatory and inhibitory signals across the midline and that EphA4-positive neurons play an essential role in the mammalian CPG.
Collapse
Affiliation(s)
- Carlos E Restrepo
- Mammalian Locomotor Laboratory, Department of Neuroscience, Karolinska Institutet, Retzius väg 8, Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
14
|
Sherwood WE, Harris-Warrick R, Guckenheimer J. Synaptic patterning of left-right alternation in a computational model of the rodent hindlimb central pattern generator. J Comput Neurosci 2010; 30:323-60. [PMID: 20644988 DOI: 10.1007/s10827-010-0259-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2009] [Revised: 05/17/2010] [Accepted: 06/25/2010] [Indexed: 12/20/2022]
Abstract
Establishing, maintaining, and modifying the phase relationships between extensor and flexor muscle groups is essential for central pattern generators in the spinal cord to coordinate the hindlimbs well enough to produce the basic walking rhythm. This paper investigates a simplified computational model for the spinal hindlimb central pattern generator (CPG) that is abstracted from experimental data from the rodent spinal cord. This model produces locomotor-like activity with appropriate phase relationships in which right and left muscle groups alternate while extensor and flexor muscle groups alternate. Convergence to this locomotor pattern is slow, however, and the range of parameter values for which the model produces appropriate output is relatively narrow. We examine these aspects of the model's coordination of left-right activity through investigation of successively more complicated subnetworks, focusing on the role of the synaptic architecture in shaping motoneuron phasing. We find unexpected sensitivity in the phase response properties of individual neurons in response to stimulation and a need for high levels of both inhibition and excitation to achieve the walking rhythm. In the absence of cross-cord excitation, equal levels of ipsilateral and contralateral inhibition result in a strong preference for hopping over walking. Inhibition alone can produce the walking rhythm, but contralateral inhibition must be much stronger than ipsilateral inhibition. Cross-cord excitatory connections significantly enhance convergence to the walking rhythm, which is achieved most rapidly with strong crossed excitation and greater contralateral than ipsilateral inhibition. We discuss the implications of these results for CPG architectures based on unit burst generators.
Collapse
Affiliation(s)
- William Erik Sherwood
- Center for BioDynamics, Boston University, 111 Cummington Street, Boston, MA 02215, USA.
| | | | | |
Collapse
|
15
|
Restrepo CE, Lundfald L, Szabó G, Erdélyi F, Zeilhofer HU, Glover JC, Kiehn O. Transmitter-phenotypes of commissural interneurons in the lumbar spinal cord of newborn mice. J Comp Neurol 2009; 517:177-92. [PMID: 19731323 DOI: 10.1002/cne.22144] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Commissural interneurons (CINs) are a necessary component of central pattern generators (CPGs) for locomotion because they mediate the coordination of left and right muscle activity. The projection patterns and relative locations of different classes of CINs in the ventromedial part of the rodent lumbar cord have been described (Eide et al. [1999] J Comp Neurol 403:332-345; Stokke et al. [2002] J Comp Neurol 446:349-359; Nissen et al. [2005] J Comp Neurol 483:30-47). However, the distribution and relative prevalence of different CIN neurotransmitter phenotypes in the ventral region of the mammalian spinal cord where the locomotor CPG is localized is unknown. In this study we describe the relative proportions and anatomical locations of putative inhibitory and excitatory CINs in the lumbar spinal cord of newborn mice. To directly visualize potential neurotransmitter phenotypes we combined retrograde labeling of CINs with in situ hybridization against the glycine transporter, GlyT2, or the vesicular glutamate transporter, vGluT2, in wildtype mice and in transgenic mice expressing eGFP driven by the promoters of glutamic acid decarboxylase (GAD) 65, GAD67, or GlyT2. Our study shows that putative glycinergic, GABAergic, and glutamatergic CINs are expressed in almost equal numbers, with a small proportion of CINs coexpressing GlyT2 and GAD67::eGFP, indicating a putative combined glycinergic/GABAergic phenotype. These different CIN phenotypes were intermingled in laminas VII and VIII. Our results suggest that glycinergic, GABAergic, and glutamatergic CINs are the principal CIN phenotypes in the CPG region of the lumbar spinal cord in the newborn mouse. We compare these results to descriptions of CIN neurotransmitter phenotypes in other vertebrate species.
Collapse
Affiliation(s)
- Carlos Ernesto Restrepo
- Mammalian Locomotor Laboratory, Department of Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden
| | | | | | | | | | | | | |
Collapse
|
16
|
Dai Y, Carlin KP, Li Z, McMahon DG, Brownstone RM, Jordan LM. Electrophysiological and pharmacological properties of locomotor activity-related neurons in cfos-EGFP mice. J Neurophysiol 2009; 102:3365-83. [PMID: 19793882 PMCID: PMC2804412 DOI: 10.1152/jn.00265.2009] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2009] [Accepted: 09/25/2009] [Indexed: 02/05/2023] Open
Abstract
Although locomotion is known to be generated by networks of spinal neurons, knowledge of the properties of these neurons is limited. Using neonatal transgenic mice that express enhanced green fluorescent protein (EGFP) driven by the c-fos promoter, we visualized EGFP-positive neurons in spinal cord slices from animals that were subjected to a locomotor task or drug cocktail [N-methyl-D-aspartate, serotonin (5-HT), dopamine, and acetylcholine (ACh)]. The activity-dependent expression of EGFP was also induced in dorsal root ganglion neurons with electrical stimulation of the neurons. Following 60-90 min of swimming, whole cell patch-clamp recordings were made from EGFP+ neurons in laminae VII, VIII, and X from slices of segments T(12) to L(4). The EGFP+ neurons (n = 55) could be classified into three types based on their responses to depolarizing step currents: single spike, phasic firing, and tonic firing. Membrane properties observed in these neurons include hyperpolarization-activated inward currents (29/55), postinhibitory rebound (11/55), and persistent-inward currents (31/55). Bath application of 10-40 microM 5-HT and/or ACh increased neuronal excitability or output with hyperpolarization of voltage threshold and changes in membrane potential. 5-HT also increased input resistance, reduced the afterhyperpolarization (AHP), and induced membrane oscillations, whereas ACh reduced the input resistance and increased the AHP. In this study, we demonstrate a new way of identifying neurons active in locomotion. Our results suggest that the EGFP+ neurons are a heterogeneous population of interneurons. The actions of 5-HT and ACh on these neurons provide insights into the neuronal properties modulated by these transmitters for generation of locomotion.
Collapse
Affiliation(s)
- Yue Dai
- Department of Physiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | | | | | | | | |
Collapse
|
17
|
Nishimaru H, Kakizaki M. The role of inhibitory neurotransmission in locomotor circuits of the developing mammalian spinal cord. Acta Physiol (Oxf) 2009; 197:83-97. [PMID: 19673737 DOI: 10.1111/j.1748-1716.2009.02020.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Neuronal circuits generating the basic coordinated limb movements during walking of terrestrial mammals are localized in the spinal cord. In these neuronal circuits, called central pattern generators (CPGs), inhibitory synaptic transmission plays a crucial part. Inhibitory synaptic transmission mediated by glycine and GABA is thought to be essential in coordinated activation of muscles during locomotion, in particular, controlling temporal and spatial activation patterns of muscles of each joint of each limb on the left and right side of the body. Inhibition is involved in other aspects of locomotion such as control of speed and stability of the rhythm. However, the precise roles of neurotransmitters and their receptors mediating inhibitory synaptic transmission in mammalian spinal CPGs remain unclear. Moreover, many of the inhibitory interneurones essential for output pattern of the CPG are yet to be identified. In this review, recent advances on these issues, mainly from studies in the developing rodent spinal cord utilizing electrophysiology, molecular and genetic approaches are discussed.
Collapse
Affiliation(s)
- H Nishimaru
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan.
| | | |
Collapse
|
18
|
Cowley KC, Zaporozhets E, Joundi RA, Schmidt BJ. Contribution of Commissural Projections to Bulbospinal Activation of Locomotion in the In Vitro Neonatal Rat Spinal Cord. J Neurophysiol 2009; 101:1171-8. [DOI: 10.1152/jn.91212.2008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Commissural projections are required for left-right coordination during locomotion. However, their role, if any, in rhythm production is unknown. This study uses the neonatal rat in vitro brain stem–spinal cord model to examine the rostrocaudal distribution of locomotor-related commissural projections and study whether commissural connections are needed for the generation of hindlimb rhythmic activity in response to electrical stimulation of the brain stem. Midsagittal lesions were made at a wide range of rostrocaudal levels. Locomotor-like activity persisted in some preparations despite midsagittal lesions extending from C1 to the mid-L1 level or from the conus medullaris to the T12/13 junction. In some preparations, midsagittal lesions throughout the entire spinal cord had no effect on locomotor-like activity if two or three contiguous segments remained intact. Those bridging segments had to include the T13 and/or L1 levels. These observations suggested that commissural projections in the thoracolumbar junction region were critical. However, locomotor-like activity was also elicited in preparations with limited midsagittal lesions focused on the thoracolumbar junction (T12 through L1 or L2 inclusive). In other experiments, locomotor-like activity was evoked by bath-applied 5-hydroxytryptamine (5-HT) and N-methyl-d-aspartate (NMDA). Appropriate side-to-side coordination was observed, even when only one segment remained bilaterally intact. Commissural projections traversing the thoracolumbar junction region were most effective. In combination, these results suggest that locomotor-related commissural projections are redundantly distributed along a bi-directional gradient that centers on the thoracolumbar junction. This commissural system not only provides a robust left-right coordinating mechanism but also supports locomotor rhythm generation in response to brain stem stimulation.
Collapse
|
19
|
Cowley KC, Zaporozhets E, Schmidt BJ. Propriospinal neurons are sufficient for bulbospinal transmission of the locomotor command signal in the neonatal rat spinal cord. J Physiol 2008; 586:1623-35. [PMID: 18238807 DOI: 10.1113/jphysiol.2007.148361] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
We recently showed that propriospinal neurons contribute to bulbospinal activation of locomotor networks in the in vitro neonatal rat brainstem-spinal cord preparation. In the present study, we examined whether propriospinal neurons alone, in the absence of long direct bulbospinal transmission to the lumbar cord, can successfully mediate brainstem activation of the locomotor network. In the presence of staggered bilateral spinal cord hemisections, the brainstem was stimulated electrically while recording from lumbar ventral roots. The rostral hemisection was located between C1 and T3 and the contralateral caudal hemisection was located between T5 and mid-L1. Locomotor-like activity was evoked in 27% of the preparations, which included experiments with staggered hemisections placed only two segments apart. There was no relation between the likelihood of developing locomotor-like activity and the distance separating the two hemisections or specific level of the hemisections. In some experiments, where brainstem stimulation alone was ineffective, neurochemical excitation of propriospinal neurons (using 5-HT and NMDA) at concentrations subthreshold for producing locomotor-like activity, promoted locomotor-like activity in conjunction with brainstem stimulation. In other experiments, involving neither brainstem stimulation nor cord hemisections, the excitability of propriospinal neurons in the cervical and/or thoracic region was selectively enhanced by bath application of 5-HT and NMDA or elevation of bath K(+) concentration. These manipulations produced locomotor-like activity in the lumbar region. In total, the results suggest that propriospinal neurons are sufficient for transmission of descending locomotor command signals. This observation has implications for regeneration strategies aimed at restoration of locomotor function after spinal cord injury.
Collapse
Affiliation(s)
- Kristine C Cowley
- Department of Physiology, Room 406, Basic Medical Sciences Bldg, University of Manitoba, 730 William Avenue, Winnipeg, Manitoba, Canada
| | | | | |
Collapse
|
20
|
Kelly S, Dunham JP, Donaldson LF. Sensory nerves have altered function contralateral to a monoarthritis and may contribute to the symmetrical spread of inflammation. Eur J Neurosci 2007; 26:935-42. [PMID: 17714187 PMCID: PMC2121144 DOI: 10.1111/j.1460-9568.2007.05737.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Rheumatoid arthritis (RA) and rat models of RA exhibit symmetrical mirror-image spread. Many studies have sought to understand the underlying mechanisms and have reported contralateral effects that are manifested in many different forms. It is now well accepted that neurogenic mechanisms contribute to the symmetrical spread of inflammation. However, very few investigators have directly assessed changes in contralateral nerve function and there is a paucity of data. In the present study our aim was to investigate whether there are changes, in particular in the nervous system but also in the vascular system contralateral to an inflamed rat knee joint, that might precede overt inflammation and symmetrical spread. Three to five days following Complete Freund's Adjuvant (CFA) injection we found spontaneous antidromic (away from the CNS) activity in the homologous sensory nerve contralateral to the inflamed joint. Antidromic activity of this nature is known to result in the peripheral release of pro-inflammatory and vasoactive neuropeptides. Importantly, this activity was modulated by systemic analgesic treatment. Furthermore, levels of Evans blue dye extravasation were significantly increased in the joint contralateral to inflammation, indicating altered vascular function. These data suggest that contralateral increases in sensory neural activity and vascular function may account for the symmetrical spread of RA, and that early analgesic treatment may prevent or delay the spread of this debilitating disease.
Collapse
Affiliation(s)
- Sara Kelly
- Department of Physiology and Pharmacology, School of Medical Sciences, University of Bristol, Bristol, UK
| | | | | |
Collapse
|
21
|
Díaz-Ríos M, Dombeck DA, Webb WW, Harris-Warrick RM. Serotonin Modulates Dendritic Calcium Influx in Commissural Interneurons in the Mouse Spinal Locomotor Network. J Neurophysiol 2007; 98:2157-67. [PMID: 17581844 DOI: 10.1152/jn.00430.2007] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Commissural interneurons (CINs) help to coordinate left–right alternating bursting activity during fictive locomotion in the neonatal mouse spinal cord. Serotonin (5-HT) plays an active role in the induction of fictive locomotion in the isolated spinal cord, but the cellular targets and mechanisms of its actions are relatively unknown. We investigated the possible role of serotonin in modifying dendritic calcium currents, using a combination of two-photon microscopy and patch-clamp recordings, in identified CINs in the upper lumbar region. Dendritic calcium responses to applied somatic voltage-clamp steps were measured using fluorescent calcium indicator imaging. Serotonin evoked significant reductions in voltage-dependent dendritic calcium influx in about 40% of the dendritic sites studied, with no detectable effect in the remaining sites. We also detected differential effects of serotonin in different dendritic sites of the same neuron; serotonin could decrease voltage-sensitive calcium influx at one site, with no effect at a nearby site. Voltage-clamp studies confirmed that serotonin reduces the voltage-dependent calcium current in CINs. Current-clamp experiments showed that the serotonin-evoked decreases in dendritic calcium influx were coupled with increases in neuronal excitability; we discuss possible mechanisms by which these two seemingly opposing results can be reconciled. This research demonstrates that dendritic calcium currents are targets of serotonin modulation in a group of spinal interneurons that are components of the mouse locomotor network.
Collapse
Affiliation(s)
- Manuel Díaz-Ríos
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| | | | | | | |
Collapse
|
22
|
Wéber I, Veress G, Szucs P, Antal M, Birinyi A. Neurotransmitter systems of commissural interneurons in the lumbar spinal cord of neonatal rats. Brain Res 2007; 1178:65-72. [PMID: 17920568 DOI: 10.1016/j.brainres.2007.06.109] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2007] [Revised: 06/25/2007] [Accepted: 06/26/2007] [Indexed: 01/14/2023]
Abstract
The circuits that generate rhythmic locomotor activities are located in the ventromedial area of the lumbar spinal cord and comprise commissural interneurons necessary for left-right alternation during walking movements. In this study we injected biotinylated dextran amine (BDA) into the ventromedial gray matter of the lumbar spinal cord of neonatal rats to label commissural interneurons. Anterogradely labeled axons arose from the site of injection, crossed the midline in the anterior commissure and arborized extensively in the contralateral ventral horn of the spinal cord. The presence of neurotransmitter systems in labeled axon terminals of commissural interneurons was investigated by using antibodies raised against specific transmitter-related proteins. Boutons potentially containing inhibitory amino acids were identified by applying glutamic acid decarboxylase (GAD65/67) and glycine transporter 2 antibodies. Out of 1146 BDA-labeled axon terminals, 663 boutons were assumed on this basis to be inhibitory; 76% of these terminals were immunoreactive for glycine transporter, 53% were immunoreactive for GAD and about 30% of inhibitory boutons might contain both inhibitory amino acids. Boutons potentially containing putative excitatory neurotransmitter were revealed with antibodies raised against vesicular glutamate transporters 1 and 2. Out of 590 BDA-labeled boutons about one fourth (158) were immunoreactive for glutamate transporters. These mammalian commissural interneurons are compared to the glycinergic commissural interneurons in the swimming CPGs of lamprey and the Xenopus tadpole. Our results show that commissural interneurons in the mammalian spinal cord form a heterogeneous group including glutamatergic excitatory and GABAergic and glycinergic inhibitory neurons.
Collapse
Affiliation(s)
- Ildikó Wéber
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, Medical and Health Science Center, University of Debrecen, Debrecen, H-4012, Hungary
| | | | | | | | | |
Collapse
|
23
|
Dutton RC, Carstens MI, Antognini JF, Carstens E. Long ascending propriospinal projections from lumbosacral to upper cervical spinal cord in the rat. Brain Res 2006; 1119:76-85. [PMID: 16996042 DOI: 10.1016/j.brainres.2006.08.063] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2006] [Revised: 08/11/2006] [Accepted: 08/11/2006] [Indexed: 10/24/2022]
Abstract
The retrograde tracer cholera toxin beta-subunit (CTB) was used to trace long ascending propriospinal projections from neurons in the lumbosacral spinal cord to the upper cervical (C3) gray matter in adult male Sprague-Dawley rats. Following large 0.5 microl CTB injections restricted mainly to the upper cervical ventral horn (n=5), there were many lumbosacral CTB-positive neurons (14-17/section) in the intermediate gray and ventral horn (dorsal lamina VIII, medial VII extending into X) contralaterally, with fewer at corresponding ipsilateral locations. Labeled cells (4-8/section) were also observed in contralateral laminae IV-VI and the lateral spinal nucleus, with fewer ipsilaterally. Few labeled cells (<2/section) were observed in superficial laminae I-II. Smaller (0.15 microl) microinjections of CTB restricted to the upper cervical ventral gray matter labeled cells in contralateral laminae VII-VIII (approximately 6-9/section) with fewer ipsilaterally. There were relatively fewer (<2/section) in the intermediate dorsal horn and very few (<1/section) in lamina I. Larger (0.5 microl) CTB injections encompassing the C3 dorsal and ventral gray matter on one side labeled significantly more CTB-positive neurons (>6/section) in contralateral lamina I compared to ventral horn injections. These results suggest direct projections from ventromedially located neurons of lumbar and sacral segments to the contralateral ventral gray matter of upper cervical segments, as well as from neurons in the intermediate but not superficial dorsal horn. They further suggest that some lumbosacral superficial dorsal horn neurons project to the upper cervical dorsal horn. These propriospinal projections may be involved in coordinating head and neck movements during locomotion or stimulus-evoked motor responses.
Collapse
Affiliation(s)
- Robert C Dutton
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA 94143, USA
| | | | | | | |
Collapse
|
24
|
Abstract
Intrinsic spinal networks, known as central pattern generators (CPGs), control the timing and pattern of the muscle activity underlying locomotion in mammals. This review discusses new advances in understanding the mammalian CPGs with a focus on experiments that address the overall network structure as well as the identification of CPG neurons. I address the identification of excitatory CPG neurons and their role in rhythm generation, the organization of flexor-extensor networks, and the diverse role of commissural interneurons in coordinating left-right movements. Molecular and genetic approaches that have the potential to elucidate the function of populations of CPG interneurons are also discussed.
Collapse
Affiliation(s)
- Ole Kiehn
- Mammalian Locomotor Laboratory, Department of Neuroscience, Karolinska Institutet, Stockholm S17177, Sweden.
| |
Collapse
|
25
|
Wang Y, Pillai S, Wolpaw JR, Chen XY. Motor learning changes GABAergic terminals on spinal motoneurons in normal rats. Eur J Neurosci 2006; 23:141-50. [PMID: 16420424 DOI: 10.1111/j.1460-9568.2005.04547.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The role of spinal cord plasticity in motor learning is largely unknown. This study explored the effects of H-reflex operant conditioning, a simple model of motor learning, on GABAergic input to spinal motoneurons in rats. Soleus motoneurons were labeled by retrograde transport of a fluorescent tracer and GABAergic terminals on them were identified by glutamic acid decarboxylase (GAD)67 immunoreactivity. Three groups were studied: (i) rats in which down-conditioning had reduced the H-reflex (successful HRdown rats); (ii) rats in which down-conditioning had not reduced the H-reflex (unsuccessful HRdown rats) and (iii) unconditioned (naive) rats. The number, size and GAD density of GABAergic terminals, and their coverage of the motoneuron, were significantly greater in successful HRdown rats than in unsuccessful HRdown or naive rats. It is likely that these differences are due to modifications in terminals from spinal interneurons in lamina VI-VII and that the increased terminal number, size, GAD density and coverage in successful HRdown rats reflect and convey a corticospinal tract influence that changes motoneuron firing threshold and thereby decreases the H-reflex. GABAergic terminals in spinal cord change after spinal cord transection. The present results demonstrate that such spinal cord plasticity also occurs in intact rats in the course of motor learning and suggest that this plasticity contributes to skill acquisition.
Collapse
Affiliation(s)
- Yu Wang
- Laboratory of Nervous System Disorders, Wadsworth Center, New York State Department of Health and State University of New York, PO Box 509, Albany, NY 12201, USA.
| | | | | | | |
Collapse
|
26
|
Matsuyama K, Kobayashi S, Aoki M. Projection patterns of lamina VIII commissural neurons in the lumbar spinal cord of the adult cat: an anterograde neural tracing study. Neuroscience 2006; 140:203-18. [PMID: 16530974 DOI: 10.1016/j.neuroscience.2006.02.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2005] [Revised: 02/01/2006] [Accepted: 02/02/2006] [Indexed: 11/18/2022]
Abstract
This study was designed to characterize the morphology of commissural axons, with the goal of revealing some of the organizing principles of their projections in the lumbosacral cord. Axons were labeled anterogradely with biotinylated-dextran amine which was injected in the left lamina VIII and the adjoining parts of lamina VII in the lumbar segments L5-L6 in seven cats. After 3-4 weeks, commissural axons were well labeled throughout lumbosacral segments L1-S2. After crossing the midline at the injection level, labeled axons traveled rostrally and/or caudally in the contralateral ventral and lateral funiculi giving off multiple axon collaterals. The trajectories of 34 single axons were traced in their entirety from their points of origin to their distal ends. Most of these axons were thin (proximal diameter <3.5 microm) and short (<30 mm), and gave off 6 to 32 axon collaterals at short intercollateral distances (mean <2 mm) in the lumbosacral enlargement. Some thicker axons (diameter >3.5 microm) ascended as far as the thoracic level; these supplied only four to six collaterals at long intercollateral intervals ( approximately 6.5 mm). All of the axons except one projected unilaterally. The axons as a whole terminated throughout the contralateral ventral horn. However, axons that traveled in different parts of the white matter had different characteristic terminal arborizations. The collaterals of axons that traveled in the ventral funiculus terminated preferentially in laminae VII-VIII, while those in the lateral funiculus terminated in lamina IX. Although the collateral branching patterns differed from one axon to another, collaterals arising from a particular axon usually exhibited similar patterns at different rostrocaudal levels. These uniform collateral termination patterns indicate that the morphology of each neuron might be specifically related to its function. This may allow future studies to identify different functional types of commissural neurons on the basis of much less extensive reconstructions.
Collapse
Affiliation(s)
- K Matsuyama
- Department of Physiology, Sapporo Medical University School of Medicine, South-1, West-17, Chuo-ku, Sapporo 060-8556, Japan.
| | | | | |
Collapse
|
27
|
Boothe DL, Cohen AH, Troyer TW. Temporal correlations in stochastic models of double bursting during simulated locomotion. J Neurophysiol 2005; 95:1556-70. [PMID: 16354728 DOI: 10.1152/jn.01157.2005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The output of the spinal central pattern generator for locomotion falls into two broad categories: alternation between antagonistic muscles and double bursting within muscles acting on multiple joints. We first model an alternating half-center and then present two different models of double bursting. The first double-bursting model consists of a central clock with an explicit one-to-one mapping between interneuron activity and model output. The second double-bursting model consists of a half-center with an added feedback neuron. Models are built using rate-coded leaky integrator neurons with slow self-inhibition. Structure-function relationships are explored by the addition of noise. The interaction of noise with the dynamics of each network creates a unique pattern of correlation between phases of the simulated cycle. The effects of noise can be explained by perturbation of deterministic versions of the networks. Three basic results were obtained: slow self-inhibitory currents lead to correlations between parts of the step cycle that are separated in time and network relative; model outputs are most sensitive to perturbations presented just before competitive switches in network activity, and clock-like models possess substantial symmetries within the correlation structure of burst durations, whereas the correlation structure of feedback models are asymmetric. Our models suggest that variability in burst length durations can be analyzed to make inferences about the structure of the spinal networks for locomotion. In particular, correlation patterns within double-bursting outputs may yield important clues regarding the interaction between more central, clock-like networks and feedback from more peripheral interneurons.
Collapse
Affiliation(s)
- David L Boothe
- Neurosciences and Cognitive Sciences Program, University of Maryland, College Park, MD 20742, USA.
| | | | | |
Collapse
|
28
|
Zhong G, Díaz-Ríos M, Harris-Warrick RM. Serotonin modulates the properties of ascending commissural interneurons in the neonatal mouse spinal cord. J Neurophysiol 2005; 95:1545-55. [PMID: 16338993 DOI: 10.1152/jn.01103.2005] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The interneuron populations that constitute the central pattern generator (CPG) for locomotion in the mammalian spinal cord are not well understood. We studied the properties of a set of commissural interneurons whose axons cross and ascend in the contralateral cord (aCINs) in the neonatal mouse. During N-methyl-D-aspartate (NMDA) and 5-HT-induced fictive locomotion, a majority of lumbar (L2) aCINs examined were rhythmically active; most of them fired in phase with the ipsilateral motoneuron pool, but some fired in phase with contralateral motoneurons. 5-HT plays a critical role in enabling the locomotor CPG to function. We found that 5-HT increased the excitability of aCINs by depolarizing the membrane potential, reducing the postspike afterhyperpolarization amplitude, broadening the action potential, and decreasing the action potential threshold. Serotonin had no significant effect on the input resistance and sag amplitude of aCINs. These results support the hypothesis that aCINs play important roles in coordinating left-right movements during fictive locomotion and thus may be component neurons in the locomotor CPG in neonatal mice.
Collapse
Affiliation(s)
- Guisheng Zhong
- Dept. of Neurobiology and Behavior, Cornell Univ., W 159 Seeley G. Mudd Hall, Ithaca, NY 14853, USA
| | | | | |
Collapse
|
29
|
Carlin KP, Dai Y, Jordan LM. Cholinergic and serotonergic excitation of ascending commissural neurons in the thoraco-lumbar spinal cord of the neonatal mouse. J Neurophysiol 2005; 95:1278-84. [PMID: 16221745 DOI: 10.1152/jn.00963.2005] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Locomotion requires the coordination of the two sides of the spinal cord-a function fulfilled by commissural neurons. Ascending commissural neurons (aCNs) are known to be rhythmically active during locomotion, and mice lacking a population of aCNs display uncoupling between the left and right hemicords during locomotion. Acetylcholine (ACh) applied to the isolated spinal cord commonly produces left-right alternation, with co-contraction of ipsilateral flexor and extensor motoneuron groups. In this study, aCNs were examined in the neonatal mouse spinal cord after retrograde labeling with a fluorescent dextran. The axons of these cells crossed in the ventral commissure with many crossing in the same transverse plane as the cell body. For cells located in lamina VII and VIII, ACh (10-50 microM) depolarized 92% (13/14) of the cells tested. ACh depolarized and increased the excitability of aCNs in the presence of a decrease in input resistance. ACh was without significant effect on afterhyperpolarization amplitude or voltage threshold of action potential initiation. In those cells sensitive to application of ACh, 90% (9/10 cells) were also depolarized by 5HT (10-50 microM). Application of 5HT significantly increased the input resistance of these cells, and this effect was likely responsible for the observed increase in excitability, because significant effects on the afterhyperpolarization and voltage threshold were again not detected. The high proportion of aCNs excited by both ACh and 5HT suggests that direct activation of aCNs by these two neurotransmitters contributes to the production of a bilaterally coordinated locomotor-like rhythm in the isolated spinal cord.
Collapse
Affiliation(s)
- K P Carlin
- Department of Physiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | | |
Collapse
|
30
|
Nissen UV, Mochida H, Glover JC. Development of projection-specific interneurons and projection neurons in the embryonic mouse and rat spinal cord. J Comp Neurol 2005; 483:30-47. [PMID: 15672401 DOI: 10.1002/cne.20435] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Interneurons and projection neurons in the lumbar spinal cord of mouse and rat embryos were labeled retrogradely with fluorescent dextran amines from a distance of one segment from the segment of origin [lumbar segment (L) 2]. Six classes with specific axonal projections (ipsilateral ascending, descending, and bifurcating, and commissural ascending, descending, and bifurcating) were identified by differential labeling in both species and followed from embryonic day (E)12 to birth in the mouse. Neurons with shorter projections (intrasegmental interneurons) were not studied. We show that the four nonbifurcating neuron classes occupy characteristic, partially overlapping domains in the transverse plane, indicating a systematic pattern of migration and settlement related to axon trajectories. The number of neurons in each of the nonbifurcating classes increased steadily during development. Bifurcating neurons represented a minor fraction of the total throughout development and had relatively scattered positions within the ipsilateral and commissural neuron domains. Combination of retrograde tracing and immunohistochemistry for the inhibitory neurotransmitter gamma-aminobutyric acid (GABA) showed that none of the spinal neurons in the six projection-specific classes was GABA positive, suggesting that all GABA-positive spinal neurons, including previously described GABA-positive commissural neurons, are unlikely to have projections exceeding one or two segments in either direction.
Collapse
Affiliation(s)
- Ulla Vig Nissen
- Department of Physiology, Institute of Basic Medical Science, University of Oslo, 0317 Oslo, Norway
| | | | | |
Collapse
|
31
|
Jankowska E, Edgley SA, Krutki P, Hammar I. Functional differentiation and organization of feline midlumbar commissural interneurones. J Physiol 2005; 565:645-58. [PMID: 15817636 PMCID: PMC1464510 DOI: 10.1113/jphysiol.2005.083014] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Interneurones interconnecting the two sides of the spinal cord (commissural interneurones) are critically important for interlimb coordination, but little is known about their organization. We have examined the inputs to commissural interneurones located in the midlumbar segments with projections to contralateral motor nuclei, aiming to determine whether they form distinct subpopulations. Based on intracellular records from 78 interneurones, two major non-overlapping subpopulations were identified: one monosynaptically excited by group II muscle afferents (n=10), the other monosynaptically excited by reticulospinal neurones (n=52). Monosynaptic input from group I muscle afferents and/or from vestibulospinal tract neurones was found in those with monosynaptic reticulospinal, but not group II input, and in a few other neurones (n=6). Only disynaptic input from these sources was found in the remaining 10 interneurones. Disynaptic excitatory input from ipsilateral and contralateral muscle afferents and from descending tracts was distributed less selectively and might mediate coexcitation of interneurones with monosynaptic afferent or descending input. The dominant disynaptic and polysynaptic input was, however, inhibitory. IPSPs were evoked from the descending tracts in a high proportion of the commissural interneurones that were monosynaptically excited by group II afferents (55%) and from group II afferents in a high proportion of the commissural interneurones that were monosynaptically excited by reticulospinal fibres (78%). This distribution suggests that the two subpopulations are activated differentially, rather than being coactivated, in either centrally initiated movements or reflex adjustments. This would be consistent with the previous demonstration that noradrenaline differentially affects commissural neurones of the two subpopulations.
Collapse
Affiliation(s)
- E Jankowska
- Dept of Physiology, Medicinaregatan 11, Box 432, 405 30 Göteborg, Sweden.
| | | | | | | |
Collapse
|
32
|
Sigurjonsson OE, Perreault MC, Egeland T, Glover JC. Adult human hematopoietic stem cells produce neurons efficiently in the regenerating chicken embryo spinal cord. Proc Natl Acad Sci U S A 2005; 102:5227-32. [PMID: 15790679 PMCID: PMC556004 DOI: 10.1073/pnas.0501029102] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Hematopoietic stem cells (HSCs) have been proposed as a potential source of neural cells for use in repairing brain lesions, but previous studies indicate a low rate of neuronal differentiation and have not provided definite evidence of neuronal phenotype. To test the neurogenic potential of human HSCs, we implanted CD34+ HSCs from adult human bone marrow into lesions of the developing spinal cord in the chicken embryo and followed their differentiation by using immunohistochemistry, retrograde labeling, and electrophysiology. We find that human cells derived from the implanted population express the neuronal markers NeuN and MAP2 at substantially higher rates than previously reported. We also find that these cells exhibit neuronal cytoarchitecture, extend axons into the ventral roots or several segments in length within the spinal white matter, are decorated with synaptotagmin+ and GABA+ synaptic terminals, and exhibit active membrane properties and spontaneous synaptic potentials characteristic of functionally integrated neurons. Neuronal differentiation is accompanied by loss of CD34 expression. Careful examination with confocal microscopy reveals no signs of heterokaryons, and human cells never express a chicken-specific antigen, suggesting that fusion with host chicken cells is unlikely. We conclude that the microenvironment in the regenerating spinal cord of the chicken embryo stimulates substantial proportions of adult human HSCs to differentiate into full-fledged neurons. This may open new possibilities for a high-yield production of neurons from a patient's own bone marrow.
Collapse
Affiliation(s)
- Olafur E Sigurjonsson
- Institute of Immunology, Rikshospitalet University Hospital and University of Oslo Rikshospitalet, 0027 Oslo, Norway
| | | | | | | |
Collapse
|
33
|
Gabbay H, Lev-Tov A. Alpha-1 Adrenoceptor Agonists Generate a “Fast” NMDA Receptor-Independent Motor Rhythm in the Neonatal Rat Spinal Cord. J Neurophysiol 2004; 92:997-1010. [PMID: 15084642 DOI: 10.1152/jn.00205.2004] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Noradrenaline, a potent activator of rhythmogenic networks in adult mammals has not been reported to produce functional rhythmic patterns in isolated spinal cords of newborn rats. We now show that a “fast” (cycle time: 1–4 s) transient rhythm was induced in sacrococcygeal (SC) and rostral-lumbar spinal segments of the neonatal rat by bath-applied noradrenaline. The fast rhythm was blocked by 1 μM of the α1-adrenoceptor antagonist prazosin but not by 1–20 μM of the α2-adrenoceptor blocker yohimbine, it could be initiated and maintained by α1-adrenoceptor agonists, and it was accompanied by a slow nonlocomotor rhythm. Transection at the lumbosacral junction abolished the fast-thoracolumbar (TL) rhythm while the fast-SC and slow-TL rhythms were unaffected. The N-methyl-d-aspartate (NMDA) receptor antagonist 2-amino-5-phosphonopentanoic acid (AP5) abolished the slow- and did not interrupt the fast rhythm. Thus α1-adrenoceptor agonists induce an NMDA receptor-independent rhythm in the SC cord and modulate NMDA receptor-dependent rhythmicity in TL segments. Injection of current steps into S2 and flexor-dominated L2 motoneurons during the fast rhythm revealed a 20–30% decrease in input-resistance ( RN), coinciding with contralateral bursting. The RN of extensor-dominated L5 motoneurons did not vary with the fast rhythm. The rhythmic fluctuations of RN in L2 motoneurons were abolished, but the alternating left-right pattern of the fast rhythm was unchanged in midsagittally split TL cords. We suggest that the locomotor generators were not activated during the fast rhythm, that crossed-inhibitory pathways activated by SC projections controlled the rhythmic decrease in RN in L2 motoneurons, and that the alternating pattern of the split TL cord was maintained by excitatory SC projections.
Collapse
Affiliation(s)
- H Gabbay
- Dept. of Anatomy and Cell Biology, The Hebrew University Medical School, P.O. Box 12272, Jerusalem 91120, Israel
| | | |
Collapse
|
34
|
Kadison SR, Kaprielian Z. Diversity of contralateral commissural projections in the embryonic rodent spinal cord. J Comp Neurol 2004; 472:411-22. [PMID: 15065116 DOI: 10.1002/cne.20086] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In vertebrate embryos, the axons of spinal commissural neurons grow toward and across the floor plate, a specialized structure located at the ventral midline. Although the initial segment of this trajectory has been intensively studied, relatively little is known about commissural axon pathfinding on the contralateral side of the floor plate in higher vertebrates. We recently demonstrated that many embryonic mouse and chick spinal commissural axons follow a complex trajectory once they cross the ventral midline. Here we use focal applications of 1,1'-dioctadecyl-3,3,3',3' tetramethylindocarbocyanine perchlorate (DiI) to identify four different contralateral commissural trajectories, two of which have not previously been described in the embryonic rodent spinal cord. Intermediate longitudinal commissural (ILC) axons travel away from the floor plate along an arcuate trajectory into intermediate regions of the spinal cord. In contrast, medial longitudinal commissural (MLC) axons grow alongside the floor plate, projecting primarily in the rostral direction. Bifurcating longitudinal commissural (BLC) axons branch into rostrally and caudally directed projections. Forked transverse commissural (FTC) axons either execute two orthogonal turns before crossing the floor plate or extend directly across the floor plate. We also show a variation in the relative frequencies of individual contralateral commissural projections along the dorsoventral and anteroposterior axes of the spinal cord. In addition, using a novel culture system, we demonstrate that commissural axons elaborate ILC-, MLC-, BLC-, and FTC-like trajectories in vitro. These results provide a basis for examining the mechanisms that regulate commissural axon pathfinding on the contralateral side of the floor plate in the embryonic rodent spinal cord.
Collapse
|
35
|
Matsuyama K, Nakajima K, Mori F, Aoki M, Mori S. Lumbar commissural interneurons with reticulospinal inputs in the cat: Morphology and discharge patterns during fictive locomotion. J Comp Neurol 2004; 474:546-61. [PMID: 15174072 DOI: 10.1002/cne.20131] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The purpose of this study was 1). to characterize the morphology of lumbar commissural neurons (CNs) with reticulospinal inputs and 2). to quantitate their activity during locomotor rhythm generation. Intraaxonal recordings at the L4-7 level of the spinal cord were obtained in 67 neurons in the decerebrate, paralyzed cat. Fourteen of them were subsequently nearly fully visualized following their intraaxonal injection with the tracer neurobiotin. All 14 were CNs with axons projecting across the midline of the spinal cord. Their somata were located mainly in lamina VIII and additionally in laminae VII-VI. Most of the lamina VIII CNs were excited monosynaptically from reticulospinal pathways. They were judged to be interneuronal CNs if they had no, or a short, rostral projection. These CNs commonly gave off multiple axon collaterals in and around their somata's segmental level. They projected mainly to laminae VIII-VII and some additionally to lamina IX. Some laminae VIII and the laminae VII-VI CNs were excited polysynaptically from reticulospinal pathways or were not excited. They were judged to be long propriospinal or ascending tract CNs because they had only an ascending axon. Most lamina VIII CNs discharged rhythmically during fictive locomotion evoked by stimulation of the mesencephalic locomotor region, exhibiting one peak per locomotor cycle. The peak was in phase with neurographic activity of either a left or a right hindlimb extensor nerve. These results suggested that lamina VIII CNs are reciprocally connected bilaterally at each segmental level. Such an arrangement suggests their participation in the generation and coordination of reciprocal and bilateral locomotor activity.
Collapse
Affiliation(s)
- Kiyoji Matsuyama
- Department of Biological Control System, National Institute for Physiological Sciences, Okazaki 444-8585, Japan.
| | | | | | | | | |
Collapse
|
36
|
Edgley SA, Jankowska E, Krutki P, Hammar I. Both dorsal horn and lamina VIII interneurones contribute to crossed reflexes from feline group II muscle afferents. J Physiol 2003; 552:961-74. [PMID: 12963796 PMCID: PMC2343445 DOI: 10.1113/jphysiol.2003.048009] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2003] [Accepted: 08/20/2003] [Indexed: 01/25/2023] Open
Abstract
Previous studies have demonstrated that group II muscle afferents exert powerful actions on contralateral motoneurones and that these actions are mediated primarily via lamina VIII commissural interneurones. We examined whether dorsal horn interneurones also contribute to these actions, as they have been shown to contribute to the actions of group II afferents on ipsilateral motoneurones. We tested the susceptibility of IPSPs and EPSPs evoked from group II afferents in contralateral motoneurones to presynaptic inhibition as an indicator of the relative contribution of dorsal horn interneurones to these PSPs, since the monosynaptic activation of dorsal horn interneurones is more weakly and more briefly depressed by presynaptic inhibition than is the monosynaptic activation of lamina VIII and other intermediate zone and ventral horn interneurones. While the earliest components of IPSPs and EPSPs evoked by group II afferents were abolished by conditioning stimulation of group II afferents, consistent with them being evoked disynaptically by commissural interneurones, trisynaptic components of these PSPs were only partly reduced and are therefore attributed to dorsal horn interneurones. The same conditioning stimuli depressed the disynaptic excitation of lamina VIII commissural interneurones by group II afferents much less effectively than they depressed monosynaptic excitation, indicating that dorsal horn interneurones contribute to this disynaptic excitation. On the basis of these observations we conclude that that dorsal horn interneurones contribute to the late actions of group II muscle afferents on contralateral motoneurones through their disynaptic actions on commissural interneurones.
Collapse
Affiliation(s)
- S A Edgley
- Department of Anatomy, University of Cambridge, Cambridge CB2 3DY, UK.
| | | | | | | |
Collapse
|
37
|
Whelan PJ. Developmental aspects of spinal locomotor function: insights from using the in vitro mouse spinal cord preparation. J Physiol 2003; 553:695-706. [PMID: 14528025 PMCID: PMC2343637 DOI: 10.1113/jphysiol.2003.046219] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Over the last five years, rapid advances have been made in our understanding of the location, function, and recently, organization of the central pattern generator (CPG) for locomotion. In the mammal, the use of the neonatal rat has largely contributed to these advances. Additionally, the use of the in vitro mouse spinal cord preparation is becoming more common, catalysed in part by the potential for the use of genetic approaches to study locomotor function. Although tempting, it is necessary to resist the a priori assumption that the organization of the spinal CPG is identical in the rat and mouse. This review will describe the development of locomotor-like behaviour in the mouse from embryonic day 12 to postnatal day 14. While there are still many gaps in our knowledge, compared with the rat, the in vitro mouse appears to follow a qualitatively similar course of locomotor development. The emphasis in this review is the use or potential use of the mouse as a complement to existing data using the neonatal rat preparation.
Collapse
Affiliation(s)
- Patrick J Whelan
- Neuroscience Research Group and Department of Physiology and Biophysics, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
38
|
Birinyi A, Viszokay K, Wéber I, Kiehn O, Antal M. Synaptic targets of commissural interneurons in the lumbar spinal cord of neonatal rats. J Comp Neurol 2003; 461:429-40. [PMID: 12746860 DOI: 10.1002/cne.10696] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
There is strong evidence that commissural interneurons, neurons with axons that extend to the contralateral side of the spinal cord, play an important role in the coordination of left/right alternation during locomotion. In this study we investigated the projections of commissural interneurons to motor neurons and other commissural interneurons on the other side of the spinal cord in neonatal rats. To establish whether there are direct contacts between axons of commissural interneurons and motor neurons, we carried out two series of experiments. In the first experiment we injected biotinylated dextran amine (BDA) into the lateral motor column to retrogradely label commissural interneurons that may have direct projections to motor neurons. Stained neurons were recovered in the ventromedial areas of the contralateral gray matter in substantial numbers. In the second experiment BDA was injected into the ventromedial gray matter on one side of the lumbar spinal cord, whereas motor neurons were simultaneously labeled on the opposite side by applying biocytin onto the ventral roots. BDA injections into the ventromedial gray matter labeled a strong axon bundle that arose from the site of injection, crossed the midline in the ventral commissure, and extensively arborized in the contralateral ventral gray matter. Many of these axons made close appositions with dendrites and somata of motor neurons and also with commissural interneurons retrogradely labeled with BDA. The results suggest that commissural interneurons may establish monosynaptic contacts with motor neurons on the opposite side of the spinal cord. Our findings also indicate that direct reciprocal connections between commissural interneurons on the two sides of the spinal cord may also exist.
Collapse
Affiliation(s)
- András Birinyi
- Department of Anatomy, Faculty of Medicine, Medical and Health Science Center, University of Debrecen, Debrecen, H-4012 Hungary
| | | | | | | | | |
Collapse
|
39
|
Kiehn O, Butt SJB. Physiological, anatomical and genetic identification of CPG neurons in the developing mammalian spinal cord. Prog Neurobiol 2003; 70:347-61. [PMID: 12963092 DOI: 10.1016/s0301-0082(03)00091-1] [Citation(s) in RCA: 156] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The basic motor patterns underlying rhythmic limb movements during locomotion are generated by neuronal networks located within the spinal cord. These networks are called Central Pattern Generators (CPGs). Isolated spinal cord preparations from newborn rats and mice have become increasingly important for understanding the organization of the CPG in the mammalian spinal cord. Early studies using these preparations have focused on the overall network structure and the localization of the CPG. In this review we concentrate on recent experiments aimed at identifying and characterizing CPG-interneurons in the rodent. These experiments include the organization and function of descending commissural interneurons (dCINs) in the hindlimb CPG of the neonatal rat, as well as the role of Ephrin receptor A4 (EphA4) and its Ephrin ligand B3 (EphrinB3), in the construction of the mammalian locomotor network. These latter experiments have defined EphA4 as a molecular marker for mammalian excitatory hindlimb CPG neurons. We also review genetic approaches that can be applied to the mouse spinal cord. These include methods for identifying sub-populations of neurons by genetically encoded reporters, techniques to trace network connectivity with cell-specific genetically encoded tracers, and ways to selectively ablate or eliminate neuron populations from the CPG. We propose that by applying a multidisciplinary approach it will be possible to understand the network structure of the mammalian locomotor CPG. Such an understanding will be instrumental in devising new therapeutic strategies for patients with spinal cord injury.
Collapse
Affiliation(s)
- Ole Kiehn
- Department of Neuroscience, Karolinska Institutet, Retzius väg 8, 171 77 Stockholm, Sweden.
| | | |
Collapse
|
40
|
Butt SJB, Kiehn O. Functional identification of interneurons responsible for left-right coordination of hindlimbs in mammals. Neuron 2003; 38:953-63. [PMID: 12818180 DOI: 10.1016/s0896-6273(03)00353-2] [Citation(s) in RCA: 170] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Local neuronal networks that are responsible for walking are poorly characterized in mammals. Using an innovative approach to identify interneuron inputs onto motorneuron populations in a neonatal rodent spinal cord preparation, we have investigated the network responsible for left-right coordination of the hindlimbs. We demonstrate how commissural interneurons (CINs), whose axons traverse the midline to innervate contralateral neurons, are organized such that distinct flexor and extensor centers in the rostral lumbar spinal cord define activity in both flexor and extensor caudal motor pools. In addition, the nature of some connections are reconfigured on switching from rest to locomotion via a mechanism that might be associated with synaptic plasticity in the spinal cord. These results from identified pattern-generating interneurons demonstrate how interneuron populations create an effective network to underlie behavior in mammals.
Collapse
Affiliation(s)
- Simon J B Butt
- Mammalian Locomotor Laboratory, Department of Neuroscience, Karolinska Institutet, Retzius väg 8, 171 77, Stockholm, Sweden
| | | |
Collapse
|
41
|
Megías M, Alvarez-Otero R, Pombal MA. Calbindin and calretinin immunoreactivities identify different types of neurons in the adult lamprey spinal cord. J Comp Neurol 2003; 455:72-85. [PMID: 12454997 DOI: 10.1002/cne.10473] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The central pattern generator for locomotion in vertebrates is composed of different spinal neuronal populations that generate locomotor movement. In the lamprey spinal cord, several classes of interneurons have been identified based on morphologic and physiological criteria and integrated in the spinal cord circuits implicated in the generation of locomotion. However, the lack of histochemical markers for most of the interneurons makes it difficult to study whole populations along the spinal cord. We have investigated the immunoreactivity with antibodies raised against calbindin and calretinin. Several types of neurons could be classified: (1). strongly immunoreactive neurons located dorsomedially, (2). moderately immunoreactive neurons located laterally, (3). small weakly immunoreactive neurons, d). ventromedial neurons, (4). liquor contacting cells, and (5). motoneurons. The ventromedial group of calbindin-immunoreactive neurons also is immunoreactive for serotonin and, therefore, represents the ventromedial group of dopamine/serotonin spinal neurons. Some of the lateral calbindin-immunoreactive neurons may be CC-type cells (cells with caudal-crossed axons), because they are retrogradely labeled by tracer injections into the contralateral spinal cord. Other well-characterized cell types, such as sensory dorsal cells, lateral interneurons, descending propriospinal edge cells, and spinobulbar giant interneurons are negative for both calbindin and calretinin. Therefore, calbindin and calretinin are useful markers for the study of cell populations that may be integrated in locomotor circuits.
Collapse
Affiliation(s)
- Manuel Megías
- Departamento de Biología Funcional y Ciencias de la Salud, Facultad de Ciencias, Universidad de Vigo, 36200 Vigo, Spain
| | | | | |
Collapse
|
42
|
Butt SJB, Lebret JM, Kiehn O. Organization of left-right coordination in the mammalian locomotor network. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 2002; 40:107-17. [PMID: 12589910 DOI: 10.1016/s0165-0173(02)00194-7] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Neuronal circuits involved in left-right coordination are a fundamental feature of rhythmic locomotor movements. These circuits necessarily include commissural interneurons (CINs) that have axons crossing the midline of the spinal cord. The properties of CINs have been described in some detail in the spinal cords of a number of aquatic vertebrates including the Xenopus tadpole and the lamprey. However, their function in left-right coordination of limb movements in mammals is poorly understood. In this review we describe the present understanding of commissural pathways in the functioning of spinal cord central pattern generators (CPGs). The means by which reciprocal inhibition and integration of sensory information are maintained in swimming vertebrates is described, with similarities between the three basic populations of commissural interneurons highlighted. The subsequent section concentrates on recent evidence from mammalian limbed preparations and specifically the isolated spinal cord of the neonatal rat. Studies into the role of CPG elements during drug-induced locomotor-like activity have afforded a better understanding of the location of commissural pathways, such that it is now possible, using whole cell patch clamp, to record from anatomically defined CINs located in the rhythm-generating region of the lumbar segments. Initial results would suggest that the firing pattern of these neurons shows a greater diversity than that previously described in swimming central pattern generators. Spinal CINs play an important role in the generation of locomotor output. Increased knowledge as to their function in producing locomotion is likely to provide valuable insights into the spinal networks required for postural control and walking.
Collapse
Affiliation(s)
- Simon J B Butt
- Department of Neuroscience, Karolinska Institutet, Retzius Vag 8, S-171 77, Stockholm, Sweden
| | | | | |
Collapse
|
43
|
de Louw AJA, de Vente J, Steinbusch HPJ, Gavilanes AWD, Steinbusch HWM, Blanco CE, Troost J, Vles JSH. Apoptosis in the rat spinal cord during postnatal development; the effect of perinatal asphyxia on programmed cell death. Neuroscience 2002; 112:751-8. [PMID: 12088735 DOI: 10.1016/s0306-4522(02)00134-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The aim of our study was to investigate the effect of perinatal asphyxia on developmental apoptosis in the cervical and lumbar spinal cord in the neonatal rat. Perinatal asphyxia was induced by keeping pups at term in utero in a water bath at 37 degrees C for 20 min, followed by resuscitation. Effects of this treatment on developmental apoptosis were studied on postnatal days 2, 5 and 8 using terminal deoxynucleotidyl transferase (TdT)-dUTP-biotin nick end labelling (TUNEL) and caspase-3 staining. TUNEL positive cells were identified using double immunostaining. On postnatal day 2 an increase of 215% in TUNEL positive cells was detected (P=0.005) in laminae IV-VII of the lumbar spinal cord of rats which underwent perinatal asphyxia compared to controls. An increase of 55% compared to controls (P=0.03) was seen in laminae I-III of the lumbar spinal cord at postnatal day 8. TUNEL positive cells could be partly identified as microglia cells (ED1 positive) and oligodendrocytes (O4 positive). The effect of perinatal asphyxia on programmed cell death in the neonatal rat spinal cord was mainly observed in the intermediate zone and dorsal horn of the lumbar spinal cord. We conclude that perinatal asphyxia has a pronounced effect on the survival of cells in a specific region of the spinal cord and thus may have a profound effect on the development of motor networks.
Collapse
Affiliation(s)
- A J A de Louw
- Department of Neurology, Academic Hospital Maastricht, P.O. Box 5800, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Stokke MF, Nissen UV, Glover JC, Kiehn O. Projection patterns of commissural interneurons in the lumbar spinal cord of the neonatal rat. J Comp Neurol 2002; 446:349-59. [PMID: 11954034 DOI: 10.1002/cne.10211] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We have studied the axonal projection patterns of commissural interneurons (CINs) in the neonatal rat spinal cord. Some CINs are integral components of the neuronal networks in the vertebrate spinal cord that generate locomotor activity. By using differential retrograde labeling protocols with fluorescent dextran amines, we show that CINs with ascending axons (ascending CINs, or aCINs) and CINs with descending axons (descending CINs, or dCINs) constitute largely different populations. We show that aCINs and dCINs occupy partially overlapping domains in the transverse plane. The aCINs are located at the dorsal margin, within the dorsal horn, centrally within the intermediate zone, and in the medial region of the ventral horn, whereas the dCINs are located predominantly among the ventral and central aCINs and in smaller numbers within the dorsal horn. The labeled aCINs and dCINs project for at least one and a half segment rostrally or caudally and are present in roughly equal numbers. We also demonstrate the presence of a third, smaller population of CINs whose axons bifurcate to project for at least one and a half segment both rostrally and caudally (adCINs). The adCINs are located predominantly among the central and ventral groups of aCINs and dCINs. Finally, we demonstrate the presence of CINs with axons projecting for fewer than one and a half segment in either direction. These "short-range CINs" are intermingled with the aCINs, dCINs, and adCINs. Our results provide an anatomical framework for further electrophysiological studies aimed at identifying the CINs that participate in the mammalian locomotor central pattern generator.
Collapse
|
45
|
Antonino-Green DM, Cheng J, Magnuson DSK. Neurons labeled from locomotor-related ventrolateral funiculus stimulus sites in the neonatal rat spinal cord. J Comp Neurol 2002; 442:226-38. [PMID: 11774338 DOI: 10.1002/cne.10081] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Spinal cord/brainstem preparations from 5- to 8-day-old rats, maintained in vitro, were used to determine the cells of origin and regions of termination of fibers in the superficial ventrolateral funiculus (VLF) at a site from which rhythmic locomotor-like activity can be induced. Rhythmic locomotor-like activity was recorded from lumbar ventral roots after short trains of stimuli (50 Hz for 0.5-2 seconds) delivered to the VLF. Field potential mapping revealed that single VLF stimuli elicited responses in the ipsilateral ventrolateral medulla. Tract-tracing experiments by using biocytin, pressure-injected into the VLF, showed that only a small number of brainstem neurons were labeled and these were scattered bilaterally in the ventrolateral and lateral medulla. Dense concentrations of nerve terminals were found in the lateral reticular nucleus ipsilateral to the stimulation site. Labeled spinal cord neurons included a primary population of large cells distributed bilaterally in lamina VII from T13 to L4, with peak numbers in L2 ipsilaterally and in L3 contralaterally. Intracellular recordings revealed that some L2 and L3 neurons with rhythmic responses to VLF stimulation could be activated antidromically from the VLF, with latencies of less than 1.0 msec. These observations led us to speculate that the superficial VLF carries a locomotor-related tract originating bilaterally in lumbar lamina VII and terminating in the ipsilateral medulla, including the lateral reticular nucleus. This pathway may be part of the spinoreticular or spinoreticulotectal pathway that has been described in many species, the function of which has only loosely been ascribed.
Collapse
Affiliation(s)
- Deborah M Antonino-Green
- Department of Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky 40202, USA
| | | | | |
Collapse
|
46
|
Tsai EC, van Bendegem RL, Hwang SW, Tator CH. A novel method for simultaneous anterograde and retrograde labeling of spinal cord motor tracts in the same animal. J Histochem Cytochem 2001; 49:1111-22. [PMID: 11511680 DOI: 10.1177/002215540104900905] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Examination of repaired spinal cord tracts has usually required separate groups of animals for anterograde and retrograde tracing owing to the incompatibility of techniques such as tissue fixation. However, anterograde and retrograde labeling of different animals subjected to the same repair may not allow accurate examination of that repair strategy because widely variable results can occur in animals subjected to the same strategy. We have developed a reliable method of labeling spinal cord motor tracts bidirectionally in the same animal using DiI, a lipophilic dye, to anterogradely label the corticospinal tract and Fluoro-Gold (FG) to retrogradely label cortical and brainstem neurons of several spinal cord motor tracts in normal and injured adult rats. Other tracer combinations (lipophilic dyes or fluorescent dextrans) were also investigated but were less effective. We also developed methods to minimize autofluorescence with the DiI/FG technique, and found that the DiI/FG technique is compatible with decalcification and immunohistochemistry for several markers relevant for studies of spinal cord regeneration. Thus, the use of anterograde DiI and retrograde FG is a novel technique for bidirectional labeling of the motor tracts of the adult spinal cord with fluorescent tracers and should be useful for demonstrating neurite regeneration in studies of spinal cord repair.(J Histochem Cytochem 49:1111-1122, 2001)
Collapse
Affiliation(s)
- E C Tsai
- Toronto Western Hospital Research Institute and University of Toronto, 399 Bathurst Street, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
47
|
Moran-Rivard L, Kagawa T, Saueressig H, Gross MK, Burrill J, Goulding M. Evx1 is a postmitotic determinant of v0 interneuron identity in the spinal cord. Neuron 2001; 29:385-99. [PMID: 11239430 DOI: 10.1016/s0896-6273(01)00213-6] [Citation(s) in RCA: 194] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Interneurons in the ventral spinal cord are essential for coordinated locomotion in vertebrates. During embryogenesis, the V0 and V1 classes of ventral interneurons are defined by expression of the homeodomain transcription factors Evx1/2 and En1, respectively. In this study, we show that Evx1 V0 interneurons are locally projecting intersegmental commissural neurons. In Evx1 mutant embryos, the majority of V0 interneurons fail to extend commissural axons. Instead, they adopt an En1-like ipsilateral axonal projection and ectopically express En1, indicating that V0 interneurons are transfated to a V1 identity. Conversely, misexpression of Evx1 represses En1, suggesting that Evx1 may suppress the V1 interneuron differentiation program. Our findings demonstrate that Evx1 is a postmitotic determinant of V0 interneuron identity and reveal a critical postmitotic phase for neuronal determination in the developing spinal cord.
Collapse
Affiliation(s)
- L Moran-Rivard
- Biology Graduate Program University of California, San Diego 9500 Gilman Drive, La Jolla, CA 92093, USA
| | | | | | | | | | | |
Collapse
|
48
|
Abstract
The field of motor control has broadened considerably over the past decade. Increasingly detailed information has accrued about the cellular and molecular processes involved in motor pattern generation and motor learning while, at the other extreme, the comparison of studies in humans and monkeys has begun to bridge the gap between cognitive and motor functions. The most striking feature of recent research has been the intense use of electrophysiological procedures in behaving monkeys and non-invasive imaging procedures in humans to elucidate details of sensory-motor transformations and the functional roles of different brain regions in the learning, planning and execution of movements.
Collapse
Affiliation(s)
- K Pearson
- Department of Physiology, University of Alberta, T6G 2H7, Edmonton, Canada.
| |
Collapse
|
49
|
Glover JC. Development of specific connectivity between premotor neurons and motoneurons in the brain stem and spinal cord. Physiol Rev 2000; 80:615-47. [PMID: 10747203 DOI: 10.1152/physrev.2000.80.2.615] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Astounding progress has been made during the past decade in understanding the general principles governing the development of the nervous system. An area of prime physiological interest that is being elucidated is how the neural circuitry that governs movement is established. The concerted application of molecular biological, anatomical, and electrophysiological techniques to this problem is yielding gratifying insight into how motoneuron, interneuron, and sensory neuron identities are determined, how these different neuron types establish specific axonal projections, and how they recognize and synapse upon each other in patterns that enable the nervous system to exercise precise control over skeletal musculature. This review is an attempt to convey to the physiologist some of the exciting discoveries that have been made, within a context that is intended to link molecular mechanism to behavioral realization. The focus is restricted to the development of monosynaptic connections onto skeletal motoneurons. Principal topics include the inductive mechanisms that pattern the placement and differentiation of motoneurons, Ia sensory afferents, and premotor interneurons; the molecular guidance mechanisms that pattern the projection of premotor axons in the brain stem and spinal cord; and the precision with which initial synaptic connections onto motoneurons are established, with emphasis on the relative roles played by cellular recognition versus electrical activity. It is hoped that this review will provide a guide to understanding both the existing literature and the advances that await this rapidly developing topic.
Collapse
Affiliation(s)
- J C Glover
- Department of Anatomy, University of Oslo, Oslo, Norway.
| |
Collapse
|
50
|
Tresch MC, Kiehn O. Coding of locomotor phase in populations of neurons in rostral and caudal segments of the neonatal rat lumbar spinal cord. J Neurophysiol 1999; 82:3563-74. [PMID: 10601482 DOI: 10.1152/jn.1999.82.6.3563] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Several experiments have demonstrated that rostral segments of the vertebrate lumbar spinal cord produce a rhythmic motor output more readily and of better quality than caudal segments. Here we examine how this rostrocaudal gradient of rhythmogenic capability is reflected in the spike activity of neurons in the rostral (L(2)) and caudal (L(5)) lumbar spinal cord of the neonatal rat. The spike activity of interneurons in the ventromedial cord, a region necessary for the production of locomotion, was recorded intracellularly with patch electrodes and extracellularly with tetrodes during pharmacologically induced locomotion. Both L(2) and L(5) neurons tended to be active in phase with their homologous ventral root. L(5) neurons, however, had a wider distribution of their preferred phases of activity throughout the locomotor cycle than L(2) neurons. The strength of modulation of the activity of individual L(2) neurons was also larger than that of L(5) neurons. These differences resulted in a stronger rhythmic signal from the L(2) neuronal population than from the L(5) population. These results demonstrate that the rhythmogenic capability of each spinal segment was reflected in the activity of interneurons located in the same segment. In addition to paralleling the rostrocaudal gradient of rhythmogenic capability, these results further suggest a colocalization of motoneurons and their associated interneurons involved in the production of locomotion.
Collapse
Affiliation(s)
- M C Tresch
- Section of Neurophysiology, Department of Physiology, The Panum Institute, 2200 Copenhagen N, Denmark
| | | |
Collapse
|