1
|
Base-By-Base Version 3: New Comparative Tools for Large Virus Genomes. Viruses 2018; 10:v10110637. [PMID: 30445717 PMCID: PMC6265842 DOI: 10.3390/v10110637] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 11/10/2018] [Accepted: 11/13/2018] [Indexed: 11/24/2022] Open
Abstract
Base-By-Base is a comprehensive tool for the creation and editing of multiple sequence alignments that is coded in Java and runs on multiple platforms. It can be used with gene and protein sequences as well as with large viral genomes, which themselves can contain gene annotations. This report describes new features added to Base-By-Base over the last 7 years. The two most significant additions are: (1) The recoding and inclusion of “consensus-degenerate hybrid oligonucleotide primers” (CODEHOP), a popular tool for the design of degenerate primers from a multiple sequence alignment of proteins; and (2) the ability to perform fuzzy searches within the columns of sequence data in multiple sequence alignments to determine the distribution of sequence variants among the sequences. The intuitive interface focuses on the presentation of results in easily understood visualizations and providing the ability to annotate the sequences in a multiple alignment with analytic and user data.
Collapse
|
2
|
Davis D, Kannan M, Wattenberg B. Orm/ORMDL proteins: Gate guardians and master regulators. Adv Biol Regul 2018; 70:3-18. [PMID: 30193828 DOI: 10.1016/j.jbior.2018.08.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 08/26/2018] [Accepted: 08/28/2018] [Indexed: 12/22/2022]
Abstract
Sphingolipids comprise a diverse family of lipids that perform multiple functions in both structure of cellular membranes and intra- and inter-cellular signaling. The diversity of this family is generated by an array of enzymes that produce individual classes and molecular species of family members and enzymes which catabolize those lipids for recycling pathways. However, all of these lipids begin their lives with a single step, the condensation of an amino acid, almost always serine, and a fatty acyl-CoA, almost always the 16-carbon, saturated fatty acid, palmitate. The enzyme complex that accomplishes this condensation is serine palmitoyltransferase (SPT), a membrane-bound component of the endoplasmic reticulum. This places SPT in the unique position of regulating the production of the entire sphingolipid pool. Understanding how SPT activity is regulated is currently a central focus in the field of sphingolipid biology. In this review we examine the regulation of SPT activity by a set of small, membrane-bound proteins of the endoplasmic reticulum, the Orms (in yeast) and ORMDLs (in vertebrates). We discuss what is known about how these proteins act as homeostatic regulators by monitoring cellular levels of sphingolipid, but also how the Orms/ORMDLs regulate SPT in response to other stimuli. Finally, we discuss the intriguing connection between one of the mammalian ORMDL isoforms, ORMDL3, and the pervasive pulmonary disease, asthma, in humans.
Collapse
Affiliation(s)
- Deanna Davis
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Muthukumar Kannan
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Binks Wattenberg
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298, USA.
| |
Collapse
|
3
|
Karabín M, Jelínek L, Kotrba P, Cejnar R, Dostálek P. Enhancing the performance of brewing yeasts. Biotechnol Adv 2017; 36:691-706. [PMID: 29277309 DOI: 10.1016/j.biotechadv.2017.12.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 11/23/2017] [Accepted: 12/20/2017] [Indexed: 12/26/2022]
Abstract
Beer production is one of the oldest known traditional biotechnological processes, but is nowadays facing increasing demands not only for enhanced product quality, but also for improved production economics. Targeted genetic modification of a yeast strain is one way to increase beer quality and to improve the economics of beer production. In this review we will present current knowledge on traditional approaches for improving brewing strains and for rational metabolic engineering. These research efforts will, in the near future, lead to the development of a wider range of industrial strains that should increase the diversity of commercial beers.
Collapse
Affiliation(s)
- Marcel Karabín
- Department of Biotechnology, University of Chemistry and Technology, Prague, Technická 5, 16628 Prague 6, Czech Republic
| | - Lukáš Jelínek
- Department of Biotechnology, University of Chemistry and Technology, Prague, Technická 5, 16628 Prague 6, Czech Republic
| | - Pavel Kotrba
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Technická 5, 16628 Prague 6, Czech Republic
| | - Rudolf Cejnar
- Department of Biotechnology, University of Chemistry and Technology, Prague, Technická 5, 16628 Prague 6, Czech Republic
| | - Pavel Dostálek
- Department of Biotechnology, University of Chemistry and Technology, Prague, Technická 5, 16628 Prague 6, Czech Republic.
| |
Collapse
|
4
|
Wrent P, Rivas EM, Peinado JM, de Silóniz MI. Zygosaccharomyces rouxii strains CECT 11923 and Z. rouxii CECT 10425: Two new putative hybrids? Int J Food Microbiol 2016; 241:7-14. [PMID: 27736687 DOI: 10.1016/j.ijfoodmicro.2016.09.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 09/20/2016] [Accepted: 09/23/2016] [Indexed: 10/20/2022]
Abstract
Based on IGS-PCR RFLP polymorphism, we previously detected two Z. rouxii strains (CECT 11923 and CECT 10425) that clustered with hybrid strains (NCYC 1682, NCYC 3060 and NCYC 3061). Given the recently recognized important industrial role of hybrids, their detection is very useful. Based on the IGS1 rDNA region alignment of hybrid strains and the Z. rouxii CECT 11923 and CECT 10425, in this work, we developed a pair of Zygosaccharomyces hybrid-specific primers, HibZF/HibZR. Positive amplicons were only obtained in the Zygosaccharomyces spp. hybrids included in this study and the CECT 11923 and CECT 10425 strains analyzed here. In the present study, we applied molecular tools to highlight the nature of these strains; they are quite different from each other as well as from Z. rouxii type strain. Based on the presence of two heterologous copies of nuclear-encoded genes (SOD2 and HIS3), the sequences of divergent 5.8S-ITS rDNA, D1/D2 26S rDNA copies and, the amplification with species-specific primer for Z. rouxii and Z. pseudorouxii, we hypothesize that the CECT 11923 strain might be a hybrid strain. Whereas, CECT 10425, the sequence analysis of 5.8S-ITS rDNA and D1/D2 26S rDNA copies presented 99-100% sequence identity with Zygosaccharomyces sp. NBRC 10669 (LN849119.1) and Z. sapae ABT 301T. Nevertheless, we discard that it could be a Z. sapae strain based on the results obtained in this study. Namely, the amplification with hybrid-specific primer designed in this study, the number of divergent copies of HIS3 (2), the fact that it only possesses one SOD2 gene and the amplification with species-specific primer for Z. pseudorouxii, therefore it could be a new species or a hybrid strain.
Collapse
Affiliation(s)
- Petra Wrent
- Departamento de Microbiología III, Facultad de Biología, Universidad Complutense de Madrid, C/José Antonio Nováis, 12, 28040 Madrid, Spain; CEI Campus Moncloa, UCM-UPM, Madrid, Spain
| | - Eva-María Rivas
- Departamento de Microbiología III, Facultad de Biología, Universidad Complutense de Madrid, C/José Antonio Nováis, 12, 28040 Madrid, Spain; CEI Campus Moncloa, UCM-UPM, Madrid, Spain
| | - José M Peinado
- Departamento de Microbiología III, Facultad de Biología, Universidad Complutense de Madrid, C/José Antonio Nováis, 12, 28040 Madrid, Spain; CEI Campus Moncloa, UCM-UPM, Madrid, Spain
| | - María-Isabel de Silóniz
- Departamento de Microbiología III, Facultad de Biología, Universidad Complutense de Madrid, C/José Antonio Nováis, 12, 28040 Madrid, Spain; CEI Campus Moncloa, UCM-UPM, Madrid, Spain.
| |
Collapse
|
5
|
Paulenda T, Draber P. The role of ORMDL proteins, guardians of cellular sphingolipids, in asthma. Allergy 2016; 71:918-30. [PMID: 26969910 DOI: 10.1111/all.12877] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/06/2016] [Indexed: 12/29/2022]
Abstract
A family of widely expressed ORM-like (ORMDL) proteins has been recently linked to asthma in genomewide association studies in humans and extensively explored in in vivo studies in mice. ORMDL proteins are key regulators of serine palmitoyltransferase, an enzyme catalyzing the initial step of sphingolipid biosynthesis. Sphingolipids play prominent roles in cell signaling and response to stress, and they affect the mechanistic properties of cellular membranes. Deregulation of sphingolipid biosynthesis and their recycling has been proven to support and even cause several diseases including allergy, inflammation, and asthma. ORMDL3, the most extensively studied member of the ORMDL family, has been shown to be important for endoplasmic reticulum homeostasis by regulating the unfolded protein response and calcium response. In immune cells, ORMDL3 is involved in migration and in the production of proinflammatory cytokines. Furthermore, changes in the expression level of ORMDL3 are important in allergen-induced asthma pathologies. This review focuses on functional aspects of the ORMDL family proteins, which may serve as new therapeutic targets for the treatment of asthma and some other life-threatening diseases.
Collapse
Affiliation(s)
- T. Paulenda
- Laboratory of Signal Transduction; Institute of Molecular Genetics; Academy of Sciences of the Czech Republic; Prague Czech Republic
| | - P. Draber
- Laboratory of Signal Transduction; Institute of Molecular Genetics; Academy of Sciences of the Czech Republic; Prague Czech Republic
| |
Collapse
|
6
|
Genome sequence of Saccharomyces carlsbergensis, the world's first pure culture lager yeast. G3-GENES GENOMES GENETICS 2014; 4:783-93. [PMID: 24578374 PMCID: PMC4025477 DOI: 10.1534/g3.113.010090] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Lager yeast beer production was revolutionized by the introduction of pure culture strains. The first established lager yeast strain is known as the bottom fermenting Saccharomyces carlsbergensis, which was originally termed Unterhefe No. 1 by Emil Chr. Hansen and has been used in production in since 1883. S. carlsbergensis belongs to group I/Saaz-type lager yeast strains and is better adapted to cold growth conditions than group II/Frohberg-type lager yeasts, e.g., the Weihenstephan strain WS34/70. Here, we sequenced S. carlsbergensis using next generation sequencing technologies. Lager yeasts are descendants from hybrids formed between a S. cerevisiae parent and a parent similar to S. eubayanus. Accordingly, the S. carlsbergensis 19.5-Mb genome is substantially larger than the 12-Mb S. cerevisiae genome. Based on the sequence scaffolds, synteny to the S. cerevisae genome, and by using directed polymerase chain reaction for gap closure, we generated a chromosomal map of S. carlsbergensis consisting of 29 unique chromosomes. We present evidence for genome and chromosome evolution within S. carlsbergensis via chromosome loss and loss of heterozygosity specifically of parts derived from the S. cerevisiae parent. Based on our sequence data and via fluorescence-activated cell-sorting analysis, we determined the ploidy of S. carlsbergensis. This inferred that this strain is basically triploid with a diploid S. eubayanus and haploid S. cerevisiae genome content. In contrast the Weihenstephan strain, which we resequenced, is essentially tetraploid composed of two diploid S. cerevisiae and S. eubayanus genomes. Based on conserved translocations between the parental genomes in S. carlsbergensis and the Weihenstephan strain we propose a joint evolutionary ancestry for lager yeast strains.
Collapse
|
7
|
Tadami H, Shikata-Miyoshi M, Ogata T. Aneuploidy, copy number variation and unique chromosomal structures in bottom-fermenting yeast revealed by array-CGH. JOURNAL OF THE INSTITUTE OF BREWING 2014. [DOI: 10.1002/jib.108] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Hideyo Tadami
- Research Laboratories for Brewing; Asahi Breweries Ltd; Ibaraki Japan
| | | | - Tomoo Ogata
- Research Laboratories for Brewing; Asahi Breweries Ltd; Ibaraki Japan
| |
Collapse
|
8
|
Morales L, Dujon B. Evolutionary role of interspecies hybridization and genetic exchanges in yeasts. Microbiol Mol Biol Rev 2012; 76:721-39. [PMID: 23204364 PMCID: PMC3510521 DOI: 10.1128/mmbr.00022-12] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Forced interspecific hybridization has been used in yeasts for many years to study speciation or to construct artificial strains with novel fermentative and metabolic properties. Recent genome analyses indicate that natural hybrids are also generated spontaneously between yeasts belonging to distinct species, creating lineages with novel phenotypes, varied genetic stability, or altered virulence in the case of pathogens. Large segmental introgressions from evolutionarily distant species are also visible in some yeast genomes, suggesting that interspecific genetic exchanges occur during evolution. The origin of this phenomenon remains unclear, but it is likely based on weak prezygotic barriers, limited Dobzhansky-Muller (DM) incompatibilities, and rapid clonal expansions. Newly formed interspecies hybrids suffer rapid changes in the genetic contribution of each parent, including chromosome loss or aneuploidy, translocations, and loss of heterozygosity, that, except in a few recently studied cases, remain to be characterized more precisely at the genomic level by use of modern technologies. We review here known cases of natural or artificially formed interspecies hybrids between yeasts and discuss their potential importance in terms of genome evolution. Problems of meiotic fertility, ploidy constraint, gene and gene product compatibility, and nucleomitochondrial interactions are discussed and placed in the context of other known mechanisms of yeast genome evolution as a model for eukaryotes.
Collapse
Affiliation(s)
- Lucia Morales
- Institut Pasteur, Unité de Génétique Moléculaire des Levures CNRS UMR3525, University Pierre and Marie Curie UFR927, Paris, France.
| | | |
Collapse
|
9
|
Gurgu L, Lafraya Á, Polaina J, Marín-Navarro J. Fermentation of cellobiose to ethanol by industrial Saccharomyces strains carrying the β-glucosidase gene (BGL1) from Saccharomycopsis fibuligera. BIORESOURCE TECHNOLOGY 2011; 102:5229-36. [PMID: 21324680 DOI: 10.1016/j.biortech.2011.01.062] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Revised: 01/18/2011] [Accepted: 01/19/2011] [Indexed: 05/23/2023]
Abstract
Constructs carrying the Saccharomycopsis fibuligera β-glucosidase gene (BGL1) under the control of a constitutive actin or a galactose-inducible promoter were introduced into eleven Saccharomyces strains. In ten of these recombinant strains, BGL1 expression driven by the actin promoter was between 1.6- and 18-fold higher than that obtained with the galactose-inducible promoter. Strains carrying the actin promoter yielded ethanol concentrations from cellobiose of between 0.5% and 14%, depending on their ability to accumulate Bgl1 (between 30 and 250 mU/mL) but also on their genetic background. Comparative analysis of a S. cerevisiae strain and its corresponding petite version showed similar ethanol yields, despite a 3-fold lower β-glucosidase production of the latter, suggesting that respiratory activity could be one of the factors influencing ethanol production when using carbon sources other than glucose. This study provides a selection of strains that may be good candidates as hosts for ethanol biosynthesis from cellulosic substrates.
Collapse
Affiliation(s)
- Leontina Gurgu
- Department of Biotechnology, Instituto de Agroquímica y Tecnología de los Alimentos, CSIC, Paterna, Valencia, Spain
| | | | | | | |
Collapse
|
10
|
Saerens SMG, Duong CT, Nevoigt E. Genetic improvement of brewer’s yeast: current state, perspectives and limits. Appl Microbiol Biotechnol 2010; 86:1195-212. [DOI: 10.1007/s00253-010-2486-6] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Revised: 01/29/2010] [Accepted: 01/29/2010] [Indexed: 10/19/2022]
|
11
|
Ogata T, Izumikawa M, Tadami H. Chimeric types of chromosome X in bottom-fermenting yeasts. J Appl Microbiol 2009; 107:1098-107. [DOI: 10.1111/j.1365-2672.2009.04289.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
12
|
Pal S, Park DH, Plapp BV. Activity of yeast alcohol dehydrogenases on benzyl alcohols and benzaldehydes: characterization of ADH1 from Saccharomyces carlsbergensis and transition state analysis. Chem Biol Interact 2009; 178:16-23. [PMID: 19022233 PMCID: PMC2712655 DOI: 10.1016/j.cbi.2008.10.037] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2008] [Revised: 10/19/2008] [Accepted: 10/20/2008] [Indexed: 11/16/2022]
Abstract
The substrate specificities of yeast alcohol dehydrogenases I and II from Saccharomyces cerevisiae (SceADH1 and SceADH2) and Saccharomyces carlsbergensis (ScbADH1) were studied. For this work, the gene for the S. carlsbergensis ADH1 was cloned, sequenced and expressed. The amino acid sequence of ScbADH1 differs at four positions as compared to SceADH1, including substitutions of two glutamine residues with glutamic acid residues, and has the same sequence as the commercial yeast enzyme, which apparently is prepared from S. carlsbergensis. The electrophoretic mobilities of ScbADH1, SceADH2 and commercial ADH are similar. The kinetics and specificities of ScbADH1 and SceADH1 acting on branched, long-chain and benzyl alcohols are very similar, but the catalytic efficiency of SceADH2 is about 10-100-fold higher on these substrates. A three-dimensional structure of SceADH1 shows that the substrate binding pocket has Met-270, whereas SceADH2 has Leu-270, which allows larger substrates to bind. The reduction of a series of p-substituted benzaldehydes catalyzed by SceADH2 is significantly enhanced by electron-withdrawing groups, whereas the oxidation of p-substituted aromatic alcohols may be only slightly affected by the substituents. The substituent effects on catalysis generally reflect the effects on the equilibrium constant for the reaction, where electron-withdrawing substituents favor alcohol. The results are consistent with a transition state that is electronically similar to the alcohol, supporting previous results obtained with commercial yeast ADH.
Collapse
Affiliation(s)
- Suresh Pal
- Department of Biochemistry, The University of Iowa, Iowa City, Iowa 52242-1109 USA
| | - Doo-Hong Park
- Department of Biochemistry, The University of Iowa, Iowa City, Iowa 52242-1109 USA
| | - Bryce V. Plapp
- Department of Biochemistry, The University of Iowa, Iowa City, Iowa 52242-1109 USA
| |
Collapse
|
13
|
The β-tubulin gene as a molecular phylogenetic marker for classification and discrimination of the Saccharomyces sensu stricto complex. Antonie van Leeuwenhoek 2008; 95:135-42. [DOI: 10.1007/s10482-008-9296-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2008] [Accepted: 12/02/2008] [Indexed: 11/26/2022]
|
14
|
Wu Q, James SA, Roberts IN, Moulton V, Huber KT. Exploring contradictory phylogenetic relationships in yeasts. FEMS Yeast Res 2008; 8:641-50. [DOI: 10.1111/j.1567-1364.2008.00362.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
15
|
Smart KA. Brewing yeast genomes and genome-wide expression and proteome profiling during fermentation. Yeast 2007; 24:993-1013. [PMID: 17879324 DOI: 10.1002/yea.1553] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The genome structure, ancestry and instability of the brewing yeast strains have received considerable attention. The hybrid nature of brewing lager yeast strains provides adaptive potential but yields genome instability which can adversely affect fermentation performance. The requirement to differentiate between production strains and assess master cultures for genomic instability has led to significant adoption of specialized molecular tool kits by the industry. Furthermore, the development of genome-wide transcriptional and protein expression technologies has generated significant interest from brewers. The opportunity presented to explore, and the concurrent requirement to understand both, the constraints and potential of their strains to generate existing and new products during fermentation is discussed.
Collapse
Affiliation(s)
- Katherine A Smart
- Division of Food Sciences, School of Biosciences, Sutton Bonington Campus, University of Nottingham, Loughborough LE12 5RD, UK.
| |
Collapse
|
16
|
Rainieri S, Kodama Y, Kaneko Y, Mikata K, Nakao Y, Ashikari T. Pure and mixed genetic lines of Saccharomyces bayanus and Saccharomyces pastorianus and their contribution to the lager brewing strain genome. Appl Environ Microbiol 2006; 72:3968-74. [PMID: 16751504 PMCID: PMC1489639 DOI: 10.1128/aem.02769-05] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The yeast species Saccharomyces bayanus and Saccharomyces pastorianus are of industrial importance since they are involved in the production process of common beverages such as wine and lager beer; however, they contain strains whose variability has been neither fully investigated nor exploited in genetic improvement programs. We evaluated this variability by using PCR-restriction fragment length polymorphism analysis of 48 genes and partial sequences of 16. Within these two species, we identified "pure" strains containing a single type of genome and "hybrid" strains that contained portions of the genomes from the "pure" lines, as well as alleles termed "Lager" that represent a third genome commonly associated with lager brewing strains. The two pure lines represent S. uvarum and S. bayanus, the latter a novel group of strains that may be of use in strain improvement programs. Hybrid lines identified include (i) S. cerevisiae/S. bayanus/Lager, (ii) S. bayanus/S. uvarum/Lager, and (iii) S. cerevisiae/S. bayanus/S. uvarum/Lager. The genome of the lager strains may have resulted from chromosomal loss, replacement, or rearrangement within the hybrid genetic lines. This study identifies brewing strains that could be used as novel genetic sources in strain improvement programs and provides data that can be used to generate a model of how naturally occurring and industrial hybrid strains may have evolved.
Collapse
Affiliation(s)
- Sandra Rainieri
- Suntory Research Center, Institute for Advanced Technology, 1-1-1 Wakayamadai, Shimamoto-cho, Mishima-gun, Osaka 618-8503, Japan.
| | | | | | | | | | | |
Collapse
|
17
|
Abstract
Acyl-CoA-binding protein (ACBP) is a 10 kDa protein that binds C12-C22 acyl-CoA esters with high affinity. In vitro and in vivo experiments suggest that it is involved in multiple cellular tasks including modulation of fatty acid biosynthesis, enzyme regulation, regulation of the intracellular acyl-CoA pool size, donation of acyl-CoA esters for beta-oxidation, vesicular trafficking, complex lipid synthesis and gene regulation. In the present study, we delineate the evolutionary history of ACBP to get a complete picture of its evolution and distribution among species. ACBP homologues were identified in all four eukaryotic kingdoms, Animalia, Plantae, Fungi and Protista, and eleven eubacterial species. ACBP homologues were not detected in any other known bacterial species, or in archaea. Nearly all of the ACBP-containing bacteria are pathogenic to plants or animals, suggesting that an ACBP gene could have been acquired from a eukaryotic host by horizontal gene transfer. Many bacterial, fungal and higher eukaryotic species only harbour a single ACBP homologue. However, a number of species, ranging from protozoa to vertebrates, have evolved two to six lineage-specific paralogues through gene duplication and/or retrotransposition events. The ACBP protein is highly conserved across phylums, and the majority of ACBP genes are subjected to strong purifying selection. Experimental evidence indicates that the function of ACBP has been conserved from yeast to humans and that the multiple lineage-specific paralogues have evolved altered functions. The appearance of ACBP very early on in evolution points towards a fundamental role of ACBP in acyl-CoA metabolism, including ceramide synthesis and in signalling.
Collapse
Affiliation(s)
- Mark Burton
- *Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Timothy M. Rose
- †Department of Pathobiology, School of Public Health and Community Medicine, University of Washington, Seattle, WA, 98195, U.S.A
| | - Nils J. Færgeman
- *Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Jens Knudsen
- *Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
- To whom correspondence should be addressed (email )
| |
Collapse
|
18
|
James SA, Bond CJ, Stratford M, Roberts IN. Molecular evidence for the existence of natural hybrids in the genus. FEMS Yeast Res 2005; 5:747-55. [PMID: 15851103 DOI: 10.1016/j.femsyr.2005.02.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2004] [Revised: 01/17/2005] [Accepted: 02/14/2005] [Indexed: 11/26/2022] Open
Abstract
26S rDNA D1/D2 sequencing was used to characterise a number of food-associated Zygosaccharomyces rouxii strains held at the National Collection of Yeast Cultures. In the course of this study, four strains (NCYC 1682, NCYC 3042, NCYC 3060 and NCYC 3061) were identified which appeared, based on their D1/D2 sequences, to belong to a novel Zygosaccharomyces species. However, subsequent sequence analysis showed that NCYC 1682, NCYC 3060 and NCYC 3061 possess two highly divergent copies of the nuclear-encoded ADE2, HIS3 and SOD2 genes, indicating these three strains are in fact hybrids. NCYC 3042, however, does appear to represent a novel species which may be hypothesized to have crossed with Z. rouxii and given rise to hybrid strains. Additional approaches to define precise taxonomic status and mechanisms of hybrid genome formation amongst yeast species are discussed.
Collapse
Affiliation(s)
- Stephen A James
- National Collection of Yeast Cultures (NCYC), Institute of Food Research, Norwich Research Park, Colney, Norwich NR4 7UA, United Kingdom.
| | | | | | | |
Collapse
|
19
|
Nguyen HV, Gaillardin C. Evolutionary relationships between the former species and the hybrids and ; reinstatement of (Beijerinck) as a distinct species. FEMS Yeast Res 2005; 5:471-83. [PMID: 15691752 DOI: 10.1016/j.femsyr.2004.12.004] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2004] [Revised: 12/03/2004] [Accepted: 12/03/2004] [Indexed: 10/26/2022] Open
Abstract
Analysis of the nucleotide sequence of the GDH1 homologues from Saccharomyces bayanus strain CBS 380T and S. pastorianus strains showed that they share an almost identical sequence, SuGDH1*, which is a diverged form of the SuGDH1 from the type strain of the former species S. uvarum, considered as synonym of S. bayanus. SuGDH1* is close to but differs from SuGDH1 by the accumulation of a high number of neutral substitutions designated as Multiple Neutral Mutations Accumulation (MNMA). Further analysis carried out with three other markers, BAP2, HO and MET2 showed that they have also diverged from their S. uvarum counterparts by MNMA. S. bayanus CBS 380T is placed between S. uvarum and S. pastorianus sharing MET2, CDC91 sequences with the former and BAP2, GDH1, HO sequences with the latter. S. bayanus CBS 380T has been proposed to be a S. uvarum/S. cerevisiae hybrid and this proposal is confirmed by the presence in its genome a S. cerevisiae SUC4 gene. Strain S. bayanus CBS 380T, with a composite genome, is genetically isolated from strains of the former S. uvarum species, thus justifying the reinstatement of S. uvarum as a distinct species.
Collapse
Affiliation(s)
- Huu-Vang Nguyen
- Laboratoire de Microbiologie et Génétique Moléculaire, Collection de Levures d'Intérêt Biotechnologique, INRA UMR1238-CNRS UMR2585, INA-PG, Centre Versailles-Grignon, BP 01, F-78850 Thiverval-Grignon, France.
| | | |
Collapse
|
20
|
Naumova ES, Naumov GI, Masneuf-Pomarède I, Aigle M, Dubourdieu D. Molecular genetic study of introgression betweenSaccharomyces bayanus andS. cerevisiae. Yeast 2005; 22:1099-115. [PMID: 16240458 DOI: 10.1002/yea.1298] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
The genomic constitution of different S. bayanus strains and natural interspecific Saccharomyces hybrids has been studied by genetic and molecular methods. Unlike S. bayanus var. uvarum, some S. bayanus var. bayanus strains (the type culture CBS 380, CBS 378, CBS 425, CBS 1548) harbour a number of S. cerevisiae subtelomeric sequences: Y', pEL50, SUC, RTM and MAL. The two varieties, having 86-100% nDNA-nDNA reassociation, are partly genetically isolated from one another but completely isolated from S. cerevisiae. Genetic and molecular data support the maintaining of var. bayanus and var. uvarum strains in the species S. bayanus. Using Southern hybridization with species-specific molecular markers, RFLP of the MET2 gene and flow cytometry analysis, we showed that the non-S. cerevisiae parents are different in lager brewing yeasts and in wine hybrid strains. Our results suggest that S. pastorianus is a hybrid between S. cerevisiae and S. bayanus var. bayanus, while S. bayanus var. uvarum contributed to the formation of the wine hybrids S6U and CID1. According to the partial sequence of ACT1 gene and flow cytometry analysis, strain CID1 is a triple hybrid between S. cerevisiae, S. kudriavzevii and S. bayanus var. uvarum.
Collapse
Affiliation(s)
- Elena S Naumova
- State Institute for Genetics and Selection of Industrial Microorganisms, Moscow 117545, Russia
| | | | | | | | | |
Collapse
|
21
|
Kobi D, Zugmeyer S, Potier S, Jaquet-Gutfreund L. Two-dimensional protein map of an ?ale?-brewing yeast strain: proteome dynamics during fermentation. FEMS Yeast Res 2004; 5:213-30. [PMID: 15556083 DOI: 10.1016/j.femsyr.2004.07.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2004] [Revised: 06/28/2004] [Accepted: 07/01/2004] [Indexed: 11/28/2022] Open
Abstract
The first protein map of an ale-fermenting yeast is presented in this paper: 205 spots corresponding to 133 different proteins were identified. Comparison of the proteome of this ale strain with a lager brewing yeast and the Saccharomyces cerevisiae strain S288c confirmed that this ale strain is much closer to S288c than the lager strain at the proteome level. The dynamics of the ale-brewing yeast proteome during production-scale fermentation was analysed at the beginning and end of the first and the third usage of the yeast (called generation in the brewing industry). During the first generation, most changes were related to the switch from aerobic propagation to anaerobic fermentation. Fewer changes were observed during the third generation but certain stress-response proteins such as Hsp26p, Ssa4p and Pnc1p exhibited constitutive expression in subsequent generations. The ale brewing yeast strain appears to be quite well adapted to fermentation conditions and stresses.
Collapse
Affiliation(s)
- Dominique Kobi
- TEPRAL, Centre de recherche des brasseries Kronenbourg, 68 route d'Oberhausbergen, F-67037 Strasbourg Cedex, France
| | | | | | | |
Collapse
|
22
|
Marinangeli P, Clementi F, Ciani M, Mannazzu I. polymorphism within the genus. FEMS Yeast Res 2004; 5:73-9. [PMID: 15381124 DOI: 10.1016/j.femsyr.2004.07.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2004] [Revised: 07/05/2004] [Accepted: 07/07/2004] [Indexed: 11/17/2022] Open
Abstract
The SED1 gene is characterised by abundant length and sequence polymorphisms within the species Saccharomyces cerevisiae, due to the expansion and contraction of minisatellite-like sequences located within the ORF. A survey of the SED1 ORFs of 26 yeasts ascribed to the species S. cerevisiae, S. bayanus, S. pastorianus, S. paradoxus, S. cariocanus, S. kudriavzevii and S. mikatae revealed SED1 gene length and sequence variations between the species of the genus. Moreover, results obtained by Neighbour-Joining analysis of a dataset comprising the partial predicted amino acid sequences of SED1 ORFs agreed with the phylogenetic relationships of the seven species. Thus, the SED1 gene may represent a further molecular target for the identification of Saccharomyces isolates.
Collapse
Affiliation(s)
- Paola Marinangeli
- Dipartimento di Scienze degli Alimenti, Università Politecnica delle Marche, Via Brecce Bianche, 60100 Ancona, Italy
| | | | | | | |
Collapse
|
23
|
Brewer’s yeast: genetic structure and targets for improvement. ACTA ACUST UNITED AC 2003. [DOI: 10.1007/3-540-37003-x_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
24
|
Olesen K, Felding T, Gjermansen C, Hansen J. The dynamics of the Saccharomyces carlsbergensis brewing yeast transcriptome during a production-scale lager beer fermentation. FEMS Yeast Res 2002; 2:563-73. [PMID: 12702272 DOI: 10.1111/j.1567-1364.2002.tb00123.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The transcriptome of a lager brewing yeast (Saccharomyces carlsbergensis, syn. of S. pastorianus), was analysed at 12 different time points spanning a production-scale lager beer fermentation. Generally, the average expression rapidly increased and had a maximum value on day 2, then decreased as the sugar got consumed. Especially genes involved in protein and lipid biosynthesis or glycolysis were highly expressed during the beginning of the fermentation. Similarities as well as significant differences in expression profiles could be observed when comparing to a previous transcriptome analysis of a laboratory yeast grown in YPD. The regional distribution of various expression levels on the chromosomes appeared to be random or near-random and no reduction in expression near telomeres was observed.
Collapse
Affiliation(s)
- Kjeld Olesen
- Carlsberg Research Laboratory, Gamle Carlsberg Vej 10, DK-2500 Copenhagen Valby, Denmark.
| | | | | | | |
Collapse
|
25
|
Hjelmqvist L, Tuson M, Marfany G, Herrero E, Balcells S, Gonzàlez-Duarte R. ORMDL proteins are a conserved new family of endoplasmic reticulum membrane proteins. Genome Biol 2002; 3:RESEARCH0027. [PMID: 12093374 PMCID: PMC116724 DOI: 10.1186/gb-2002-3-6-research0027] [Citation(s) in RCA: 147] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2002] [Revised: 03/12/2002] [Accepted: 04/10/2002] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Annotations of completely sequenced genomes reveal that nearly half of the genes identified are of unknown function, and that some belong to uncharacterized gene families. To help resolve such issues, information can be obtained from the comparative analysis of homologous genes in model organisms. RESULTS While characterizing genes from the retinitis pigmentosa locus RP26 at 2q31-q33, we have identified a new gene, ORMDL1, that belongs to a novel gene family comprising three genes in humans (ORMDL1, ORMDL2 and ORMDL3), and homologs in yeast, microsporidia, plants, Drosophila, urochordates and vertebrates. The human genes are expressed ubiquitously in adult and fetal tissues. The Drosophila ORMDL homolog is also expressed throughout embryonic and larval stages, particularly in ectodermally derived tissues. The ORMDL genes encode transmembrane proteins anchored in the endoplasmic reticulum (ER). Double knockout of the two Saccharomyces cerevisiae homologs leads to decreased growth rate and greater sensitivity to tunicamycin and dithiothreitol. Yeast mutants can be rescued by human ORMDL homologs. CONCLUSIONS From protein sequence comparisons we have defined a novel gene family, not previously recognized because of the absence of a characterized functional signature. The sequence conservation of this family from yeast to vertebrates, the maintenance of duplicate copies in different lineages, the ubiquitous pattern of expression in human and Drosophila, the partial functional redundancy of the yeast homologs and phenotypic rescue by the human homologs, strongly support functional conservation. Subcellular localization and the response of yeast mutants to specific agents point to the involvement of ORMDL in protein folding in the ER.
Collapse
Affiliation(s)
- Lars Hjelmqvist
- Departament de Genètica, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain.
| | | | | | | | | | | |
Collapse
|
26
|
Brewer's yeast: Genetics and biotechnology. ACTA ACUST UNITED AC 2002. [DOI: 10.1016/s1874-5334(02)80004-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
27
|
Kodama Y, Omura F, Ashikari T. Isolation and characterization of a gene specific to lager brewing yeast that encodes a branched-chain amino acid permease. Appl Environ Microbiol 2001; 67:3455-62. [PMID: 11472919 PMCID: PMC93043 DOI: 10.1128/aem.67.8.3455-3462.2001] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We found two types of branched-chain amino acid permease gene (BAP2) in the lager brewing yeast Saccharomyces pastorianus BH-225 and cloned one type of BAP2 gene (Lg-BAP2), which is identical to that of Saccharomyces bayanus (by-BAP2-1). The other BAP2 gene of the lager brewing yeast (cer-BAP2) is very similar to the Saccharomyces cerevisiae BAP2 gene. This result substantiates the notion that lager brewing yeast is a hybrid of S. cerevisiae and S. bayanus. The amino acid sequence homology between S. cerevisiae Bap2p and Lg-Bap2p was 88%. The transcription of Lg-BAP2 was not induced by the addition of leucine to the growth medium, while that of cer-BAP2 was induced. The transcription of Lg-BAP2 was repressed by the presence of ethanol and weak organic acid, while that of cer-BAP2 was not affected by these compounds. Furthermore, Northern analysis during beer fermentation revealed that the transcription of Lg-BAP2 was repressed at the beginning of the fermentation, while cer-BAP2 was highly expressed throughout the fermentation. These results suggest that the transcription of Lg-BAP2 is regulated differently from that of cer-BAP2 in lager brewing yeasts.
Collapse
Affiliation(s)
- Y Kodama
- Institute for Fundamental Research, Suntory Research Center, Mishima-gun, Osaka 618-8503, Japan.
| | | | | |
Collapse
|
28
|
Gaigg B, Neergaard TB, Schneiter R, Hansen JK, Faergeman NJ, Jensen NA, Andersen JR, Friis J, Sandhoff R, Schrøder HD, Knudsen J. Depletion of acyl-coenzyme A-binding protein affects sphingolipid synthesis and causes vesicle accumulation and membrane defects in Saccharomyces cerevisiae. Mol Biol Cell 2001; 12:1147-60. [PMID: 11294913 PMCID: PMC32293 DOI: 10.1091/mbc.12.4.1147] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Deletion of the yeast gene ACB1 encoding Acb1p, the yeast homologue of the acyl-CoA-binding protein (ACBP), resulted in a slower growing phenotype that adapted into a faster growing phenotype with a frequency >1:10(5). A conditional knockout strain (Y700pGAL1-ACB1) with the ACB1 gene under control of the GAL1 promoter exhibited an altered acyl-CoA profile with a threefold increase in the relative content of C18:0-CoA, without affecting total acyl-CoA level as previously reported for an adapted acb1Delta strain. Depletion of Acb1p did not affect the general phospholipid pattern, the rate of phospholipid synthesis, or the turnover of individual phospholipid classes, indicating that Acb1p is not required for general glycerolipid synthesis. In contrast, cells depleted for Acb1p showed a dramatically reduced content of C26:0 in total fatty acids and the sphingolipid synthesis was reduced by 50-70%. The reduced incorporation of [(3)H]myo-inositol into sphingolipids was due to a reduced incorporation into inositol-phosphoceramide and mannose-inositol-phosphoceramide only, a pattern that is characteristic for cells with aberrant endoplasmic reticulum to Golgi transport. The plasma membrane of the Acb1p-depleted strain contained increased levels of inositol-phosphoceramide and mannose-inositol-phosphoceramide and lysophospholipids. Acb1p-depleted cells accumulated 50- to 60-nm vesicles and autophagocytotic like bodies and showed strongly perturbed plasma membrane structures. The present results strongly suggest that Acb1p plays an important role in fatty acid elongation and membrane assembly and organization.
Collapse
Affiliation(s)
- B Gaigg
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense University
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Joubert R, Brignon P, Lehmann C, Monribot C, Gendre F, Boucherie H. Two-dimensional gel analysis of the proteome of lager brewing yeasts. Yeast 2000; 16:511-22. [PMID: 10790688 DOI: 10.1002/(sici)1097-0061(200004)16:6<511::aid-yea544>3.0.co;2-i] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Modern lager brewing yeasts used in beer production are hybrid strains consisting of at least two different genomes. To obtain information on the identity of the parental strains that gave rise to industrial lager yeasts, we used two-dimensional (2-D) gel electrophoresis and analysed the proteomes of different Saccharomyces species isolated from breweries. We found that the proteome of lager brewing yeasts and of the type strains of S. carlsbergensis, S. monacensis and S. pastorianus can be interpreted as the superimposition of two elementary patterns. One originates from proteins encoded by a S. cerevisiae-like genome. The other corresponds to a divergent Saccharomyces species whose best representative is a particular S. pastorianus strain, NRRL Y-1551. A map of industrial lager brewing yeasts has been established, with the individual origin of proteins and with identification of protein spots by comparison to known S. cerevisiae proteins. This 2-D map can be accessed on the Lager Brewing Yeast Protein Map server through the World Wide Web. This study provides the first example of the use of proteome analysis for investigating taxonomic relationships between divergent yeast species.
Collapse
Affiliation(s)
- R Joubert
- Institut de Biochimie et Génétique Cellulaires, UPR CNRS 9026, 1 rue Camille Saint-Saëns, F-33077, Bordeaux Cedex, France
| | | | | | | | | | | |
Collapse
|
30
|
Abstract
A genomic comparison of bottom fermenting yeasts was performed by pulsed-field gel electrophoresis and Southern blot analysis with some S. cerevisiae gene probes. We confirmed that strains of bottom fermenting yeast have four chromosomes originating from S. bayanus. Since the structures of these chromosomes were recombined with S. cerevisiae chromosomes, these S. bayanus chromosomes could be differentiated from S. cerevisiae chromosomes using Southern hybridization. Our Southern hybridization results indicate that bottom fermenting yeasts have both chromosomes originating from both S. cerevisiae and S. bayanus. It was reconfirmed that top fermenting yeast should be classified as S. cerevisiae, based on the chromosomal structure. The chromosomal structure of S. pastorianus CBS1538, the type stain of S. pastorianus, was also investigated. This strain has chromosomes originating only from S. bayanus. S. carlsbergensis CBS1513 has chromosomes originating from both S. cerevisiae and S. bayanus. From these results, we contend that bottom fermenting yeasts should be classified as S. carlsbergensis.
Collapse
Affiliation(s)
- H Yamagishi
- Brewing Research & Development Laboratory, Asahi Breweris, LTD, Ibaraki, Japan
| | | |
Collapse
|
31
|
Kobayashi O, Hayashi N, Kuroki R, Sone H. Region of FLO1 proteins responsible for sugar recognition. J Bacteriol 1998; 180:6503-10. [PMID: 9851992 PMCID: PMC107751 DOI: 10.1128/jb.180.24.6503-6510.1998] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/1998] [Accepted: 10/16/1998] [Indexed: 11/20/2022] Open
Abstract
Yeast flocculation is a phenomenon which is believed to result from an interaction between a lectin-like protein and a mannose chain located on the yeast cell surface. The FLO1 gene, which encodes a cell wall protein, is considered to play an important role in yeast flocculation, which is inhibited by mannose but not by glucose (mannose-specific flocculation). A new homologue of FLO1, named Lg-FLO1, was isolated from a flocculent bottom-fermenting yeast strain in which flocculation is inhibited by both mannose and glucose (mannose/glucose-specific flocculation). In order to confirm that both FLO1 and Lg-FLO1 are involved in the yeast flocculation phenomenon, the FLO1 gene in the mannose-specific flocculation strain was replaced by the Lg-FLO1 gene. The transformant in which the Lg-FLO1 gene was incorporated showed the same flocculation phenotype as the mannose/glucose-specific flocculation strain, suggesting that the FLO1 and Lg-FLO1 genes encode mannose-specific and mannose/glucose-specific lectin-like proteins, respectively. Moreover, the sugar recognition sites for these sugars were identified by expressing chimeric FLO1 and Lg-FLO1 genes. It was found that the region from amino acid 196 to amino acid 240 of both gene products is important for flocculation phenotypes. Further mutational analysis of this region suggested that Thr-202 in the Lg-Flo1 protein and Trp-228 in the Flo1 protein are involved in sugar recognition.
Collapse
Affiliation(s)
- O Kobayashi
- Central Laboratories for Key Technology, Kirin Brewery Co., Ltd., 1-13-5 Fukuura, Kanazawa-ku, Yokohama-shi, Kanagawa 236-0004, Japan.
| | | | | | | |
Collapse
|