1
|
Tsuruta H, Kihara H, Sano T, Amemiya Y, Vachette P. Influence of nucleotide effectors on the kinetics of the quaternary structure transition of allosteric aspartate transcarbamylase. J Mol Biol 2005; 348:195-204. [PMID: 15808863 DOI: 10.1016/j.jmb.2005.02.041] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2004] [Revised: 02/16/2005] [Accepted: 02/17/2005] [Indexed: 11/30/2022]
Abstract
We report the effects of allosteric effectors, ATP, CTP and UTP on the kinetics of the quaternary structure change of Escherichia coli ATCase during the enzyme reaction with physiological substrates. Time-resolved, small-angle, X-ray scattering of solutions allows direct observation of structural transitions over the entire time-course of the enzyme reaction initiated by fast mixing of the enzyme and substrates. In the absence of effectors, all scattering patterns recorded during the reaction are consistent with a two-state, concerted transition model, involving no detectable intermediate conformation that differs from the less active, unliganded T-state and the more active, substrate-bound R-state. The latter predominates during the steady-state phase of enzyme catalysis, while the initial T-state is recovered after substrate consumption. The concerted character of the structural transition is preserved in the presence of all effectors. CTP slightly shifts the dynamical equilibrium during a shortened steady state toward T while the additional presence of UTP makes the steady state vanishingly short. The return transition to the T conformation is slowed significantly in the presence of inhibitors, the effect being most severe in the presence of UTP. While ATP increases the apparent T to R rate, it also increases the duration of the steady-state phase, an apparently paradoxical observation. This observation can be accounted for by the greater increase in the association rate constant of aspartate, promoted by ATP, while the nucleotide produces a lesser degree of increase in the dissociation rate constant. Under our experimental conditions, using high concentrations of both enzyme and substrate, it appears that this very mechanism of activation turns the activator into an efficient inhibitor. The scattering patterns recorded in the presence of ATP support the view that ATP alters the quaternary structure of the substrate-bound enzyme, an effect reminiscent of the reported modification of PALA-bound R-state by Mg-ATP.
Collapse
Affiliation(s)
- Hiro Tsuruta
- Stanford Synchrotron Radiation Laboratory, SLAC, MS 69, 2575 Sand Hill Rd, Menlo Park, CA 94025-7015, USA.
| | | | | | | | | |
Collapse
|
2
|
Stieglitz KA, Pastra-Landis SC, Xia J, Tsuruta H, Kantrowitz ER. A single amino acid substitution in the active site of Escherichia coli aspartate transcarbamoylase prevents the allosteric transition. J Mol Biol 2005; 349:413-23. [PMID: 15890205 PMCID: PMC1479453 DOI: 10.1016/j.jmb.2005.03.073] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2005] [Revised: 03/13/2005] [Accepted: 03/17/2005] [Indexed: 11/26/2022]
Abstract
Modeling of the tetrahedral intermediate within the active site of Escherichia coli aspartate transcarbamoylase revealed a specific interaction with the side-chain of Gln137, an interaction not previously observed in the structure of the X-ray enzyme in the presence of N-phosphonacetyl-L-aspartate (PALA). Previous site-specific mutagenesis experiments showed that when Gln137 was replaced by alanine, the resulting mutant enzyme (Q137A) exhibited approximately 50-fold less activity than the wild-type enzyme, exhibited no homotropic cooperativity, and the binding of both carbamoyl phosphate and aspartate were extremely compromised. To elucidate the structural alterations in the mutant enzyme that might lead to such pronounced changes in kinetic and binding properties, the Q137A enzyme was studied by time-resolved, small-angle X-ray scattering and its structure was determined in the presence of PALA to 2.7 angstroms resolution. Time-resolved, small-angle X-ray scattering established that the natural substrates, carbamoyl phosphate and L-aspartate, do not induce in the Q137A enzyme the same conformational changes as observed for the wild-type enzyme, although the scattering pattern of the Q137A and wild-type enzymes in the presence of PALA were identical. The overall structure of the Q137A enzyme is similar to that of the R-state structure of wild-type enzyme with PALA bound. However, there are differences in the manner by which the Q137A enzyme coordinates PALA, especially in the side-chain positions of Arg105 and His134. The replacement of Gln137 by Ala also has a dramatic effect on the electrostatics of the active site. These data taken together suggest that the side-chain of Gln137 in the wild-type enzyme is required for the binding of carbamoyl phosphate in the proper orientation so as to induce conformational changes required for the creation of the high-affinity aspartate-binding site. The inability of carbamoyl phosphate to create the high-affinity binding site in the Q137A enzyme results in an enzyme locked in the low-activity low-affinity T state. These results emphasize the absolute requirement of the binding of carbamoyl phosphate for the creation of the high-affinity aspartate-binding site and for inducing the homotropic cooperativity in aspartate transcarbamoylase.
Collapse
Affiliation(s)
- Kimberly A. Stieglitz
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA 02467, USA
| | | | - Jiarong Xia
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA 02467, USA
| | - Hiro Tsuruta
- Stanford Synchrotron Radiation Laboratory, Stanford Linear Accelerator Center, MS69, 2575 Sand Hill Rd, Menlo Park, CA 94025, USA
| | - Evan R. Kantrowitz
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA 02467, USA
- * Corresponding author, E-mail address of corresponding author:
| |
Collapse
|
3
|
Stieglitz K, Stec B, Baker DP, Kantrowitz ER. Monitoring the transition from the T to the R state in E.coli aspartate transcarbamoylase by X-ray crystallography: crystal structures of the E50A mutant enzyme in four distinct allosteric states. J Mol Biol 2004; 341:853-68. [PMID: 15288791 DOI: 10.1016/j.jmb.2004.06.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2003] [Revised: 06/01/2004] [Accepted: 06/01/2004] [Indexed: 10/26/2022]
Abstract
A detailed description of the transition that allosteric enzymes undergo constitutes a major challenge in structural biology. We have succeeded in trapping four distinct allosteric states of a mutant enzyme of Escherichia coli aspartate transcarbomylase and determining their structures by X-ray crystallography. The mutant version of aspartate transcarbamoylase in which Glu50 in the catalytic chains was replaced by Ala destabilizes the native R state and shifts the equilibrium towards the T state. This behavior allowed the use of substrate analogs such as phosphonoacetamide and malonate to trap the enzyme in T-like and R-like structures that are distinct from the T-state structure of the wild-type enzyme (as represented by the structure of the enzyme with CTP bound and the R-state structure as represented by the structure with N-(phosphonacetyl)-L-aspartate bound). These structures shed light on the nature and the order of internal structural rearrangements during the transition from the T to the R state. They also suggest an explanation for diminished activity of the E50A enzyme and for the change in reaction mechanism from ordered to random for this mutant enzyme.
Collapse
Affiliation(s)
- Kimberly Stieglitz
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA 02467, USA
| | | | | | | |
Collapse
|
4
|
West JM, Tsuruta H, Kantrowitz ER. A fluorescent probe-labeled Escherichia coli aspartate transcarbamoylase that monitors the allosteric conformational state. J Biol Chem 2003; 279:945-51. [PMID: 14581486 DOI: 10.1074/jbc.m304018200] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A new system has been developed capable of monitoring conformational changes of the 240s loop of aspartate transcarbamoylase, which are tightly correlated with the quaternary structural transition, with high sensitivity in solution. Pyrene, a fluorescent probe, was conjugated to residue 241 in the 240s loop of aspartate transcarbamoylase to monitor changes in conformation by fluorescence spectroscopy. Pyrene maleimide was conjugated to a cysteine residue on the 240s loop of a previously constructed double catalytic chain mutant version of the enzyme, C47A/A241C. The pyrene-labeled enzyme undergoes the normal T to R structural transition, as demonstrated by small-angle x-ray scattering. Like the wild-type enzyme, the pyrene-labeled enzyme exhibits cooperativity toward aspartate, and is activated by ATP and inhibited by CTP at subsaturating concentrations of aspartate. The binding of the bisubstrate analogue N-(phosphonoacetyl)-l-aspartate (PALA), or the aspartate analogue succinate, in the presence of saturating carbamoyl phosphate, to the pyrenelabeled enzyme caused a sigmoidal change in the fluorescence emission. Saturation with ATP and CTP (in the presence of either subsaturating amounts of PALA or succinate and carbamoyl phosphate) caused a hyperbolic increase and decrease, respectively, in the fluorescence emission. The half-saturation values from the fluorescence saturation curves and kinetic saturation curves were, within error, identical. Fluorescence and small-angle x-ray scattering stopped-flow experiments, using aspartate and carbamoyl phosphate, confirm that the change in excimer fluorescence and the quaternary structure change correlate. These results in conjunction with previous studies suggest that the allosteric transition involves both global and local conformational changes and that the heterotropic effect of the nucleotides may be exerted through local conformational changes in the active site by directly influencing the conformation of the 240s loop.
Collapse
Affiliation(s)
- Jay M West
- Department of Chemistry, Boston College, Merkert Chemistry Center, Chestnut Hill, Massachusetts 02467, USA
| | | | | |
Collapse
|
5
|
Schmölzer S, Gräbner D, Gradzielski M, Narayanan T. Millisecond-range time-resolved small-angle x-ray scattering studies of micellar transformations. PHYSICAL REVIEW LETTERS 2002; 88:258301. [PMID: 12097133 DOI: 10.1103/physrevlett.88.258301] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2001] [Indexed: 05/23/2023]
Abstract
The transformation of mixtures of cationic and anionic micelles to vesicles has been studied by time-resolved small-angle x-ray scattering (SAXS). Equimolar amounts of ionic surfactant solutions, the anionic TexaponN70-H and the cationic TTAOH, were mixed by a stopped-flow device. Time-resolved SAXS patterns reveal that within the mixing time (<10 ms) mixed micelles are formed. These globular micelles dissolve within about 400-1000 ms and form monodisperse unilamellar vesicles in a much slower process of 5-100 s duration.
Collapse
Affiliation(s)
- St Schmölzer
- Lehrstuhl für Physikalische Chemie I, Universität Bayreuth, D-95440 Bayreuth, Germany
| | | | | | | |
Collapse
|
6
|
Fetler L, Tauc P, Baker DP, Macol CP, Kantrowitz ER, Vachette P. Replacement of Asp-162 by Ala prevents the cooperative transition by the substrates while enhancing the effect of the allosteric activator ATP on E. coli aspartate transcarbamoylase. Protein Sci 2002; 11:1074-81. [PMID: 11967364 PMCID: PMC2373563 DOI: 10.1110/ps.4500102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
The available crystal structures of Escherichia coli aspartate transcarbamoylase (ATCase) show that the conserved residue Asp-162 from the catalytic chain interacts with essentially the same residues in both the T- and R-states. To study the role of Asp-162 in the regulatory properties of the enzyme, this residue has been replaced by alanine. The mutant D162A shows a 7700-fold reduction in the maximal observed specific activity, a twofold decrease in the affinity for aspartate, a loss of homotropic cooperativity, and decreased activation by the nucleotide effector adenosine triphosphate (ATP) compared with the wild-type enzyme. Small-angle X-ray scattering (SAXS) measurements reveal that the unliganded mutant enzyme adopts the T-quaternary structure of the wild-type enzyme. Most strikingly, the bisubstrate analog N-phosphonacetyl-L-aspartate (PALA) is unable to induce the T to R quaternary structural transition, causing only a small alteration of the scattering pattern. In contrast, addition of the activator ATP in the presence of PALA causes a significant increase in the scattering amplitude, indicating a large quaternary structural change, although the mutant does not entirely convert to the wild-type R structure. Attempts at modeling this new conformation using rigid body movements of the catalytic trimers and regulatory dimers did not yield a satisfactory solution. This indicates that intra- and/or interchain rearrangements resulting from the mutation bring about domain movements not accounted for in the simple model. Therefore, Asp-162 appears to play a crucial role in the cooperative structural transition and the heterotropic regulatory properties of ATCase.
Collapse
Affiliation(s)
- L Fetler
- Laboratoire pour l'Utilisation du Rayonnement Electromagnétique (CNRS, CEA, MER), Université Paris-Sud, F-91898 Orsay Cedex, France
| | | | | | | | | | | |
Collapse
|
7
|
Sakash JB, Williams MK, Tsuruta H, Kantrowitz ER. Domain bridging interactions. A necessary contribution to the function and structure of Escherichia coli aspartate transcarbamoylase. J Biol Chem 2001; 276:26441-7. [PMID: 11352920 DOI: 10.1074/jbc.m103226200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Aspartate transcarbamoylase undergoes a domain closure in the catalytic chains upon binding of the substrates that initiates the allosteric transition. Interdomain bridging interactions between Glu(50) and both Arg(167) and Arg(234) have been shown to be critical for stabilization of the R state. A hybrid version of the enzyme has been generated in vitro containing one wild-type catalytic subunit, one catalytic subunit in which Glu(50) in each catalytic chain has been replaced by Ala (E50A), and wild-type regulatory subunits. Thus, the hybrid enzyme has one catalytic subunit capable of domain closure and one catalytic subunit incapable of domain closure. The hybrid does not behave as a simple mixture of the constituent subunits; it exhibits lower catalytic activity and higher aspartate affinity than would be expected. As opposed to the wild-type enzyme, the hybrid is inhibited allosterically by CTP at saturating substrate concentrations. As opposed to the E50A holoenzyme, the hybrid is not allosterically activated by ATP at saturating substrate concentrations. Small angle x-ray scattering showed that three of the six interdomain bridging interactions in the hybrid is sufficient to cause the global structural change to the R state, establishing the critical nature of these interactions for the allosteric transition of aspartate transcarbamoylase.
Collapse
Affiliation(s)
- J B Sakash
- Department of Chemistry, Boston College, Merkert Chemistry Center, Chestnut Hill, Massachusetts 02467, USA
| | | | | | | |
Collapse
|
8
|
Roche O, Field MJ. Simulations of the T <--> R conformational transition in aspartate transcarbamylase. PROTEIN ENGINEERING 1999; 12:285-95. [PMID: 10325398 DOI: 10.1093/protein/12.4.285] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Aspartate transcarbamylase (ATCase) from Escherichia coli is one of the best known allosteric enzymes. In spite of numerous experiments performed by biochemists, no consensus model for the cooperative transition between the tensed (T) and the relaxed (R) forms exists. It is hypothesized, however, that changes in the quaternary structure play a key role in the allosteric properties of oligomeric proteins such as ATCase. Previous normal mode calculations of the two states of ATCase illustrated the type of motions that could be important in initiating the transition. In this work four pathways for the transition were calculated using the targeted molecular dynamics (TMD) method without constraint on the symmetry of the system. The most important quaternary structure changes are the relative rotation and translation of the catalytic trimers and the rotations of the regulatory dimers. The simulations show that these quaternary changes start immediately and finish when about 70% of the transition is completed whereas there are tertiary changes throughout the transition. In agreement with the work of Lipscomb et al., it was found that the relative translation between the catalytic trimers appears to play a central role in allowing the transition to occur. In all the simulations differences are observed in the opening and closing behaviours of the domains in the catalytic and regulatory chains that could provide a structural interpretation for the results of certain site-directed mutagenesis experiments. Overall the motions of the subunits are concerted even though the constraint imposed on the TMD method does not explicitly require that this be so.
Collapse
Affiliation(s)
- O Roche
- Laboratoire de Dynamique Moléculaire, Institut de Biologie Structurale--Jean-Pierre Ebel, 41 Avenue des Martyrs, F-38027 Grenoble Cedex 01, France
| | | |
Collapse
|