1
|
Steinbuch KB, Bucardo M, Tor Y. Emissive Alkylated Guanine Analogs as Probes for Monitoring O 6-Alkylguanine-DNA-transferase Activity. ACS OMEGA 2024; 9:36778-36786. [PMID: 39220506 PMCID: PMC11360037 DOI: 10.1021/acsomega.4c05700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/22/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024]
Abstract
Human O 6-alkylguanine-DNA-transferase (hAGT) is a repair protein that provides protection from mutagenic events caused by O 6-alkylguanine lesions. As this stoichiometric activity is tissue-specific, indicative of tumor status, and correlated to chemotherapeutic success, tracking the activity of hAGT could prove to be informative for disease diagnosis and therapy. Herein, we explore two families of emissive O 6-methyl- and O 6-benzylguanine analogs based on our previously described th G N and tz G N , thieno- and isothiazolo-guanine surrogates, respectively, as potential reporters. We establish that O 6 -Bn th G N and O 6 -Bn tz G N provide a spectral window to optically monitor hAGT activity, can be used as substrates for the widely used SNAP-Tag delivery system, and are sufficiently bright to be visualized in mammalian cells using fluorescence microscopy.
Collapse
Affiliation(s)
| | | | - Yitzhak Tor
- Department of Chemistry and
Biochemistry, University of California San
Diego, 9500 Gilman Drive, La Jolla, California 92093-0358, United States
| |
Collapse
|
2
|
Nguyen VT, Tran TTN, Van TK, Tran T. DNA-Templated Silver Nanoclusters Used as a Label-Free Fluorescent Probe for the Detection of O6-Methyltransferase Activity. JOURNAL OF ANALYTICAL CHEMISTRY 2021. [DOI: 10.1134/s1061934821050130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
3
|
Roberts A, Pelton JG, Wemmer DE. Structural studies of MJ1529, an O6-methylguanine-DNA methyltransferase. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2006; 44 Spec No:S71-82. [PMID: 16826543 DOI: 10.1002/mrc.1823] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The structure of an O6-methylguanine-DNA methyltransferase (MGMT) from the thermophile Methanococcus jannaschii has been determined using multinuclear multidimensional NMR spectroscopy. The structure is similar to homologs from other organisms that have been determined by crystallography, with some variation in the N-terminal domain. The C-terminal domain is more highly conserved in both sequence and structure. Regions of the protein show broadening, reflecting conformational flexibility that is likely related to function.
Collapse
Affiliation(s)
- Anne Roberts
- Department of Chemistry, University of California and Physical Biosciences Division, Lawrence Berkeley National Lab, Berkeley, CA 94720-1460, USA
| | | | | |
Collapse
|
4
|
Zang H, Fang Q, Pegg AE, Guengerich FP. Kinetic analysis of steps in the repair of damaged DNA by human O6-alkylguanine-DNA alkyltransferase. J Biol Chem 2005; 280:30873-81. [PMID: 16000301 DOI: 10.1074/jbc.m505283200] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Rates of individual steps in the removal of alkyl groups from O6-methyl (Me) and -benzyl (Bz) guanine in oligonucleotides by human O6-alkylguanine DNA alkyltransferase (AGT) were estimated using rapid reaction kinetic methods. The overall reaction yields hyperbolic plots of rate versus AGT concentration for O6-MeG but linear plots for the O6-BzG reaction, which is approximately 100-fold faster. The binding of AGT and DNA (double-stranded 30-mer/36-mer complex) appears to be diffusion-limited. The rate of dissociation of the complex is approximately 25-fold slower (approximately 1 s(-1)) for DNA containing O6-MeG or O6-BzG than unmodified DNA. The fluorescent dC-analog 6-methylpyrrolo[2,3-d]pyrimidine-2(3H) one deoxyribonucleoside (pyrrolo dC), which pairs with G, was positioned opposite G, O6-MeG, or O6-BzG and used as a probe of the rate of base flipping. A rapid increase of fluorescence (k approximately 200 s(-1)) was observed with O6-MeG and O6-BzG and AGT but not with a Gly mutation at Arg128, which has been implicated in base flipping with crystal structures. Only weak and slower fluorescence changes were observed with G:pyrrolo dC or T:2-aminopurine pairs. These rate estimates were used in a kinetic model in which AGT binds and scans DNA rapidly, flips O6-alkylG residues, transfers the alkyl group in a chemical step that is rate-limiting in the case of O6-MeG but not O6-BzG, and releases the dealkylated DNA. The results explain the overall patterns of rates of alkyl group removal versus AGT concentration and the effects of the mutations, as well as the greater affinity of AGT for DNA with O6-alkylG lesions.
Collapse
Affiliation(s)
- Hong Zang
- Department of Biochemistry and Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, USA
| | | | | | | |
Collapse
|
5
|
Juillerat A, Heinis C, Sielaff I, Barnikow J, Jaccard H, Kunz B, Terskikh A, Johnsson K. Engineering Substrate Specificity of O6-Alkylguanine-DNA Alkyltransferase for Specific Protein Labeling in Living Cells. Chembiochem 2005; 6:1263-9. [PMID: 15934048 DOI: 10.1002/cbic.200400431] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Fusion proteins of human O(6)-alkylguanine-DNA alkyltransferase (AGT) can be specifically labeled with a wide variety of synthetic probes in mammalian cells; this makes them an attractive tool for studying protein function. However, to avoid undesired labeling of endogenous wild-type AGT (wtAGT), the specific labeling of AGT fusion proteins has been restricted to AGT-deficient mammalian cell lines. We present here the synthesis of an inhibitor of wtAGT and the generation of AGT mutants that are resistant to this inhibitor. This enabled the inactivation of wtAGT and specific labeling of fusion proteins of the AGT mutant in vitro and in living cells. The ability to specifically label AGT fusion proteins in the presence of endogenous AGT, after brief incubation of the cells with a small-molecule inhibitor, should significantly broaden the scope of application of AGT fusion proteins for studying protein function in living cells.
Collapse
Affiliation(s)
- Alexandre Juillerat
- Ecole Polytechnique Fédérale de Lausanne, Institute of Chemical Sciences and Engineering, 1015 Lausanne, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Scicchitano DA, Olesnicky EC, Dimitri A. Transcription and DNA adducts: what happens when the message gets cut off? DNA Repair (Amst) 2005; 3:1537-48. [PMID: 15474416 DOI: 10.1016/j.dnarep.2004.06.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2004] [Indexed: 01/18/2023]
Abstract
DNA damage located within a gene's transcription unit can cause RNA polymerase to stall at the modified site, resulting in a truncated transcript, or progress past, producing full-length RNA. However, it is not immediately apparent why some lesions pose strong barriers to elongation while others do not. Studies using site-specifically damaged DNA templates have demonstrated that a wide range of lesions can impede the progress of elongating transcription complexes. The collected results of this work provide evidence for the idea that subtle structural elements can influence how an RNA polymerase behaves when it encounters a DNA adduct during elongation. These elements include: (1) the ability of the RNA polymerase active site to accommodate the damaged base; (2) the size and shape of the adduct, which includes the specific modified base; (3) the stereochemistry of the adduct; (4) the base incorporated into the growing transcript; and (5) the local DNA sequence.
Collapse
Affiliation(s)
- David A Scicchitano
- Department of Biology, New York University, 1009 Silver Center, 100 Washington Square East, New York, NY 10003, USA.
| | | | | |
Collapse
|
7
|
Daniels DS, Woo TT, Luu KX, Noll DM, Clarke ND, Pegg AE, Tainer JA. DNA binding and nucleotide flipping by the human DNA repair protein AGT. Nat Struct Mol Biol 2004; 11:714-20. [PMID: 15221026 DOI: 10.1038/nsmb791] [Citation(s) in RCA: 243] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2004] [Accepted: 05/19/2004] [Indexed: 01/09/2023]
Abstract
O(6)-alkylguanine-DNA alkyltransferase (AGT), or O(6)-methylguanine-DNA methyltransferase (MGMT), prevents mutations and apoptosis resulting from alkylation damage to guanines. AGT irreversibly transfers the alkyl lesion to an active site cysteine in a stoichiometric, direct damage reversal pathway. AGT expression therefore elicits tumor resistance to alkylating chemotherapies, and AGT inhibitors are in clinical trials. We report here structures of human AGT in complex with double-stranded DNA containing the biological substrate O(6)-methylguanine or crosslinked to the mechanistic inhibitor N(1),O(6)-ethanoxanthosine. The prototypical DNA major groove-binding helix-turn-helix (HTH) motif mediates unprecedented minor groove DNA binding. This binding architecture has advantages for DNA repair and nucleotide flipping, and provides a paradigm for HTH interactions in sequence-independent DNA-binding proteins like RecQ and BRCA2. Structural and biochemical results further support an unpredicted role for Tyr114 in nucleotide flipping through phosphate rotation and an efficient kinetic mechanism for locating alkylated bases.
Collapse
Affiliation(s)
- Douglas S Daniels
- Skaggs Institute for Chemical Biology, The Scripps Research Institute, MB-4, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | | | | | | | | | | | | |
Collapse
|
8
|
Meyers M, Hwang A, Wagner MW, Boothman DA. Role of DNA mismatch repair in apoptotic responses to therapeutic agents. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2004; 44:249-264. [PMID: 15468331 DOI: 10.1002/em.20056] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Deficiencies in DNA mismatch repair (MMR) have been found in both hereditary cancer (i.e., hereditary nonpolyposis colorectal cancer) and sporadic cancers of various tissues. In addition to its primary roles in the correction of DNA replication errors and suppression of recombination, research in the last 10 years has shown that MMR is involved in many other processes, such as interaction with other DNA repair pathways, cell cycle checkpoint regulation, and apoptosis. Indeed, a cell's MMR status can influence its response to a wide variety of chemotherapeutic agents, such as temozolomide (and many other methylating agents), 6-thioguanine, cisplatin, ionizing radiation, etoposide, and 5-fluorouracil. For this reason, identification of a tumor's MMR deficiency (as indicated by the presence of microsatellite instability) is being utilized more and more as a prognostic indicator in the clinic. Here, we describe the basic mechanisms of MMR and apoptosis and investigate the literature examining the influence of MMR status on the apoptotic response following treatment with various therapeutic agents. Furthermore, using isogenic MMR-deficient (HCT116) and MMR-proficient (HCT116 3-6) cells, we demonstrate that there is no enhanced apoptosis in MMR-proficient cells following treatment with 5-fluoro-2'-deoxyuridine. In fact, apoptosis accounts for only a small portion of the induced cell death response.
Collapse
Affiliation(s)
- Mark Meyers
- Department of Radiation Oncology, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | | | | | |
Collapse
|
9
|
Sedgwick B, Lindahl T. Recent progress on the Ada response for inducible repair of DNA alkylation damage. Oncogene 2002; 21:8886-94. [PMID: 12483506 DOI: 10.1038/sj.onc.1205998] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Barbara Sedgwick
- Cancer Research UK London Research Institute, Clare Hall Laboratories, South Mimms, Hertfordshire EN6 3LD, UK
| | | |
Collapse
|
10
|
Noll DM, Clarke ND. Covalent capture of a human O(6)-alkylguanine alkyltransferase-DNA complex using N(1),O(6)-ethanoxanthosine, a mechanism-based crosslinker. Nucleic Acids Res 2001; 29:4025-34. [PMID: 11574685 PMCID: PMC60232 DOI: 10.1093/nar/29.19.4025] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The DNA repair protein O(6)-alkylguanine alkyltransferase (AGT) is responsible for removing promutagenic alkyl lesions from exocyclic oxygens located in the major groove of DNA, i.e. the O(6) and O(4) positions of guanine and thymine. The protein carries out this repair reaction by transferring the alkyl group to an active site cysteine and in doing so directly repairs the premutagenic lesion in a reaction that inactivates the protein. In order to trap a covalent AGT-DNA complex, oligodeoxyribonucleotides containing the novel nucleoside N(1),O(6)-ethanoxanthosine ((e)X) have been prepared. The (e)X nucleoside was prepared by deamination of 3',5'-protected O(6)-hydroxyethyl-2'-deoxyguanosine followed by cyclization to produce 3',5'-protected N(1),O(6)-ethano-2'-deoxyxanthosine, which was converted to the nucleoside phosphoramidite and used in the preparation of oligodeoxyribonucleotides. Incubation of human AGT with a DNA duplex containing (e)X resulted in the formation of a covalent protein-DNA complex. Formation of this complex was dependent on both active human AGT and (e)X and could be prevented by chemical inactivation of the AGT with O(6)-benzylguanine. The crosslinking of AGT to DNA using (e)X occurs with high yield and the resulting complex appears to be well suited for further biochemical and biophysical characterization.
Collapse
Affiliation(s)
- D M Noll
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University, School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, USA.
| | | |
Collapse
|
11
|
Kanugula S, Pegg AE. Novel DNA repair alkyltransferase from Caenorhabditis elegans. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2001; 38:235-243. [PMID: 11746760 DOI: 10.1002/em.1077] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
O6-alkylguanine DNA-alkyltransferase (AGT) is a widely distributed DNA repair protein that protects living organisms from endogenous and exogenous alkylation damage to DNA at the O6-position of guanine. The search of the C. elegans genome database for an AGT protein revealed the presence of a protein (cAGT-2) with some similarity to known AGTs in addition to the easily recognized cAGT-1 protein. The predicted protein sequence of cAGT-2 contains the amino acid sequence -ProCysHisPro- at the presumed active site of the protein, whereas all other known AGTs have -ProCysHisArg-. A truncated version of the cAGT-2 protein was expressed in E. coli. This purified recombinant protein was able to repair O6-methylguanine and O4-methylthymine adducts in DNA in vitro and also reacted with the bulky benzyl adduct in O6-benzylguanine. This fragment of cAGT-2 (104 amino acids) is the smallest protein possessing AGT activity yet described. The full-length cAGT-2 protein (274 amino acids) totally lacks the N-terminal domain present in all other known AGTs but has a long C-terminal extension that has significant homology to histone 1C. Expression of cAGT-2 in an E. coli strain lacking endogenous AGT activity provided modest but statistically significant resistance to the toxicity of N-methyl-N'-nitro-N-nitrosoguanidine, confirming that cAGT-2 is an alkyltransferase.
Collapse
Affiliation(s)
- S Kanugula
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, The Milton S. Hershey Medical Center, Hershey, Pennsylvania 17033-0850, USA
| | | |
Collapse
|
12
|
Daniels DS, Tainer JA. Conserved structural motifs governing the stoichiometric repair of alkylated DNA by O(6)-alkylguanine-DNA alkyltransferase. Mutat Res 2000; 460:151-63. [PMID: 10946226 DOI: 10.1016/s0921-8777(00)00024-0] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
O(6)-alkylguanine-DNA alkyltransferase (AGT) directly repairs alkylation damage at the O(6)-position of guanine in a unique, stoichiometric reaction. Crystal structures of AGT homologs from the three kingdoms of life reveal that despite their extremely low primary sequence homology, the topology and overall structure of AGT has been remarkably conserved. The C-terminal domain of the two-domain, alpha/beta fold bears a helix-turn-helix (HTH) motif that has been implicated in DNA-binding by structural and mutagenic studies. In the second helix of the HTH, the recognition helix, lies a conserved RAV[A/G] motif, whose "arginine finger" promotes flipping of the target nucleotide from the base stack. Recognition of the extrahelical guanine is likely predominantly through interactions with the protein backbone, while hydrophobic sidechains line the alkyl-binding pocket, as defined by product complexes of human AGT. The irreversible dealkylation reaction is accomplished by an active-site cysteine that participates in a hydrogen bond network with invariant histidine and glutamic acid residues, reminiscent of the serine protease catalytic triad. Structural and biochemical results suggest that cysteine alkylation opens the domain-interfacing "Asn-hinge", which couples the active-site to the recognition helix, providing both a mechanism for release of repaired DNA and a signal for the observed degradation of alkylated AGT.
Collapse
Affiliation(s)
- D S Daniels
- The Skaggs Institute for Chemical Biology, Department of Molecular Biology, MB-4, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037-1027, USA
| | | |
Collapse
|
13
|
Abstract
This article describes the five main classes of DNA repair processes that occur in humans with respect to their mechanism of action, major substrates, and role in protection against endogenous and environmental DNA damaging agents. The importance of all of these processes in protection from the initiation of neoplastic growth has been established either in studies of inheritable diseases affecting DNA repair or experiments with transgenic animals or both. The capacity of DNA repair pathways to deal with DNA damage is therefore a critical factor in the cellular response to environmental, and dietary carcinogens. DNA repair activity and factors affecting this activity either directly or indirectly must be taken into account in risk assessment.
Collapse
Affiliation(s)
- A E Pegg
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Hershey 17033, USA
| |
Collapse
|
14
|
Abstract
The predominant pathway for the repair of O(6)-methylguanine in DNA is via the activity of an alkyltransferase protein that transfers the methyl group to a cysteine acceptor site on the protein itself. This review article describes recent studies on this alkyltransferase. The protein repairs not only methyl groups but also 2-chloroethyl-, benzyl- and pyridyloxobutyl-adducts. It acts on double-stranded DNA by flipping the O(6)-guanine adduct out of the DNA helix and into a binding pocket. The free base, O(6)-benzylguanine, is able to bind in this pocket and react with the cysteine, rendering it an effective inactivator of mammalian alkyltransferases. The alkylated form of the protein is rapidly degraded by the ubiquitin/proteasomal system. Some tumor cells do not express alkyltransferase despite having an intact gene. Methylation of key sites in CpG-rich islands in the promoter region are involved in this silencing and a change in the nuclear localization of an enhancer binding protein may also contribute. The alkyltransferase promoter contains Sp1, GRE and AP-1 sites and is slightly inducible by glucocorticoids and protein kinase C activators. There is a complex relationship between p53 and alkyltransferase expression with p53 mediating a rise in alkyltransferase in response to ionizing radiation but having no clear effect on basal levels. DNA adducts at the O(6)-position of guanine are a major factor in the carcinogenic, mutagenic, apoptopic and clastogenic actions of methylating agents and chloroethylating agents. Studies with transgenic mice in which alkyltransferase levels are increased or decreased confirm the importance of this repair pathway in protecting against carcinogenesis. Alkyltransferase activity in tumors protects them from therapeutic agents such as temozolomide and BCNU. This resistance is abolished by O(6)-benzylguanine and this drug is currently in clinical trials to enhance cancer chemotherapy by these agents. Studies are in progress to reduce the toxicity of such therapy towards the bone marrow by gene therapy to express alkyltransferases with mutations imparting resistance to O(6)-benzylguanine at high levels in marrow stem cells. Several polymorphisms in the human alkyltransferase gene have been identified but the significance of these in terms of alkyltransferase action is currently unknown.
Collapse
Affiliation(s)
- A E Pegg
- Departments of Cellular and Molecular Physiology and Pharmacology, Milton S. Hershey Medical Center, Pennsylvania State University College of Medicine, P.O. Box 850, 500 University Drive, Hershey, PA, USA.
| |
Collapse
|
15
|
Matés JM, Sánchez-Jiménez FM. Role of reactive oxygen species in apoptosis: implications for cancer therapy. Int J Biochem Cell Biol 2000; 32:157-70. [PMID: 10687951 DOI: 10.1016/s1357-2725(99)00088-6] [Citation(s) in RCA: 493] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Reactive oxygen species are widely generated in biological systems. Consequently humans have evolved antioxidant defence systems that limit their production. Intracellular production of active oxygen species such as *OH, O2- and H2O2 is associated with the arrest of cell proliferation. Similarly, generation of oxidative stress in response to various external stimuli has been implicated in the activation of transcription factors and to the triggering of apoptosis. Here we review how free radicals induce DNA sequence changes in the form of mutations. deletions, gene amplification and rearrangements. These alterations may result in the initiation of apoptosis signalling leading to cell death, or to the activation of several proto-oncogenes and or the inactivation of some tumour suppressor genes. The regulation of gene expression by means of oxidants, antioxidants and the redox state remains as a promising therapeutic approach. Several anticarcinogenic agents have been shown to inhibit reactive oxygen species production and oxidative DNA damage, inhibiting tumour promotion. In addition, recombinant vectors expressing radical-scavenging enzymes reduce apoptosis. In conclusion, oxidative stress has been implicated in both apoptosis and the pathogenesis of cancer providing contrived support for two notions: free radical reactions may be increased in malignant cells and oxidant scavenging systems may be useful in cancer therapy.
Collapse
Affiliation(s)
- J M Matés
- Department of Molecular Biology and Biochemistry, Sciences Faculty, University of Málaga, Campus de Teatinos, Málaga, Spain.
| | | |
Collapse
|
16
|
Hashimoto H, Inoue T, Nishioka M, Fujiwara S, Takagi M, Imanaka T, Kai Y. Hyperthermostable protein structure maintained by intra and inter-helix ion-pairs in archaeal O6-methylguanine-DNA methyltransferase. J Mol Biol 1999; 292:707-16. [PMID: 10497033 DOI: 10.1006/jmbi.1999.3100] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The crystal structure of O6-methylguanine-DNA methyltransferase (EC 2.1.1.63) of hyperthermophilic archaeon Pyrococcuskodakaraensis strain KOD1 (Pk -MGMT) was determined by single isomorphous replacement method with anomalous scattering (SIRAS) at 1.8 A resolution. The archaeal protein is extremely thermostable and repairs alkylated DNA by suicidal alkyl transfer from guanine O6 to its own cysteine residue. Archaea constitute the third primary kingdom of living organisms, sharing characteristics with procaryotic and eucaryotic cells. They live in various extreme environments and are thought to include the most ancient organisms on the earth. Structural studies on hyperthermophilic archaeal proteins reveal the structural features essential for stability under the extreme environments in which these organisms live, and will provide the structural basis required for stabilizing various mesophilic proteins for industrial applications. Here, we report the crystal structure of Pk-MGMT and structural comparison of Pk-MGMT and methyltransferase homologue from Escherichia coli (AdaC, C-terminal fragment of Ada protein). Analyses of solvent-accessible surface area (SASA) reveals a large discrepancy between Pk-MGMT and AdaC with respect to the property of the ASA. In the Pk-MGMT structure, the intra-helix ion-pairs contribute to reinforce stability of alpha-helices. The inter-helix ion-pairs exist in the interior of Pk-MGMT and stabilize internal packing of tertiary structure. Furthermore, structural features of helix cappings, intra and inter-helix ion-pairs are found around the active-site structure in Pk-MGMT.
Collapse
Affiliation(s)
- H Hashimoto
- Department of Materials Chemistry, Graduate School of Engineering, Osaka University, Suita, 565-0871, Japan
| | | | | | | | | | | | | |
Collapse
|
17
|
Edara S, Kanugula S, Pegg AE. Expression of the inactive C145A mutant human O6-alkylguanine-DNA alkyltransferase in E.coli increases cell killing and mutations by N-methyl-N'-nitro-N-nitrosoguanidine. Carcinogenesis 1999; 20:103-8. [PMID: 9934856 DOI: 10.1093/carcin/20.1.103] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Human O6-alkylguanine-DNA alkyltransferase (AGT) counteracts the mutagenic and toxic effects of methylating agents such as N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) by removing the methyl group from O6-methylguanine lesions in DNA. The methyl group is transferred to a cysteine acceptor residue in the AGT protein, which is located at residue 145. The C145A mutant of AGT in which this cysteine is converted to an alanine residue is therefore inactive. When this C145A mutant was expressed in an Escherichia coli strain lacking endogenous alkyltransferase activity, the number of G:C-->A:T mutations actually increased and the toxicity of the MNNG treatment was enhanced. These effects were not seen when an E.coli strain also lacking nucleotide excision repair (NER) was used. The enhancement of mutagenesis and toxicity of MNNG produced by the C145A mutant AGT was not seen with another inactive mutant Y114E that contains a mutation preventing DNA binding, and the double mutant C145A/Y114E was also ineffective. These results suggest that the C145A mutant AGT binds to O6-methylguanine lesions in DNA and prevents their repair by NER. The inactive C145A mutant AGT also increased the number of A:T-->G:C transition mutations in MNNG-treated cells. These mutations are likely to arise from the minor methylation product, O4-methylthymine. However, expression of wild-type AGT also increased the incidence of these mutations. These results support the hypothesis that mammalian AGTs bind to O4-methylthymine but repair the lesion so slowly that they effectively shield it from more efficient repair by NER.
Collapse
Affiliation(s)
- S Edara
- Department of Cellular and Molecular Physiology, Milton S. Hershey Medical Center, Pennsylvania State University College of Medicine, Hershey 17033, USA
| | | | | |
Collapse
|