1
|
Bertolla M, Cenci L, Anesi A, Ambrosi E, Tagliaro F, Vanzetti L, Guella G, Bossi AM. Solvent-Responsive Molecularly Imprinted Nanogels for Targeted Protein Analysis in MALDI-TOF Mass Spectrometry. ACS APPLIED MATERIALS & INTERFACES 2017; 9:6908-6915. [PMID: 28151640 DOI: 10.1021/acsami.6b16291] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Molecular imprinted poly(acrylamido)-derivative nanogels have shown their selectivity to bind the protein human serum transferrin (HTR) and also showed their capability for instantaneous solvent-induced modification upon the addition of acetonitrile. Integrated to matrix-assisted laser desorption/ionization time-of-flight mass analysis the HTR-imprinted solvent-responsive nanogels permitted the determination of HTR straight from serum and offered novel perspectives in targeted protein analysis.
Collapse
Affiliation(s)
- Maddalena Bertolla
- Department of Physics, University of Trento , Via Sommarive 14, 38123 Trento, Italy
| | - Lucia Cenci
- Department of Biotechnology, University of Verona , Strada Le Grazie 15, 37134 Verona, Italy
| | - Andrea Anesi
- Department of Physics, University of Trento , Via Sommarive 14, 38123 Trento, Italy
| | - Emmanuele Ambrosi
- Department of Molecular Sciences and Nanosystems, University Cà Foscari Venezia , Via Torino 155/b, 30173 Venice, Italy
| | - Franco Tagliaro
- Department of Diagnostics and Public Health, Unit of Forensic Medicine, University of Verona , P.le L.A. Scuro 10, 37134 Verona, Italy
| | - Lia Vanzetti
- Fondazione Bruno Kessler CMM-MNF , Via Sommarive 18, 38123 Trento, Italy
| | - Graziano Guella
- Department of Physics, University of Trento , Via Sommarive 14, 38123 Trento, Italy
| | - Alessandra Maria Bossi
- Department of Biotechnology, University of Verona , Strada Le Grazie 15, 37134 Verona, Italy
| |
Collapse
|
2
|
D’Agostino T, Solana JR, Emanuele A. Prediction of thermodynamic instabilities of protein solutions from simple protein–protein interactions. Chem Phys 2013. [DOI: 10.1016/j.chemphys.2013.01.041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
3
|
Solvent-induced free energy landscape and solute-solvent dynamic coupling in a multielement solute. Biophys J 2008; 77:2470-8. [PMID: 20540927 DOI: 10.1016/s0006-3495(99)77083-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/1999] [Accepted: 07/27/1999] [Indexed: 11/24/2022] Open
Abstract
Molecular dynamics simulations using a simple multielement model solute with internal degrees of freedom and accounting for solvent-induced interactions to all orders in explicit water are reported. The potential energy landscape of the solute is flat in vacuo. However, the sole untruncated solvent-induced interactions between apolar (hydrophobic) and charged elements generate a rich landscape of potential of mean force exhibiting typical features of protein landscapes. Despite the simplicity of our solute, the depth of minima in this landscape is not far in size from free energies that stabilize protein conformations. Dynamical coupling between configurational switching of the system and hydration reconfiguration is also elicited. Switching is seen to occur on a time scale two orders of magnitude longer than that of the reconfiguration time of the solute taken alone, or that of the unperturbed solvent. Qualitatively, these results are unaffected by a different choice of the water-water interaction potential. They show that already at an elementary level, solvent-induced interactions alone, when fully accounted for, can be responsible for configurational and dynamical features essential to protein folding and function.
Collapse
|
4
|
Vaiana SM, Rotter MA, Emanuele A, Ferrone FA, Palma-Vittorelli MB. Effect of T-R conformational change on sickle-cell hemoglobin interactions and aggregation. Proteins 2006; 58:426-38. [PMID: 15573374 DOI: 10.1002/prot.20339] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We compare the role of a conformational switch and that of a point mutation in the thermodynamic stability of a protein solution and in the consequent propensity toward aggregation. We study sickle-cell hemoglobin (HbS), the beta6 Glu-Val point mutant of adult human hemoglobin (HbA), in its R (CO-liganded) conformation, and compare its aggregation properties to those of both HbS and HbA in their T (unliganded) conformation. Static and dynamic light scattering measurements performed for various hemoglobin concentrations showed critical divergences with mean field exponents as temperature was increased. This allowed determining spinodal data points T(S)(c) by extrapolation. These points were fitted to theoretical expressions of the T(S)(c) spinodal line, which delimits the region where the homogeneous solution becomes thermodynamically unstable against demixing in two sets of denser and dilute mesoscopic domains, while remaining still liquid. Fitting provided model-free numerical values of enthalpy and entropy parameters measuring the stability of solutions against demixing, namely, 93.2 kJ/mol and 314 J/ degrees K-mol, respectively. Aggregation was observed also for R-HbS, but in amorphous form and above physiological temperatures close to the spinodal, consistent with the role played in nucleation by anomalous fluctuations governed by the parameter epsilon = (T - T(S))/T(S). Fourier transform infrared (FTIR) and optical spectroscopy showed that aggregation is neither preceded nor followed by denaturation. Transient multiple interprotein contacts occur in the denser liquid domains for R-HbS, T-HbS, and T-HbA. The distinct effects of their specific nature and configurations, and those of desolvation on the demixing and aggregation thermodynamics, and on the aggregate structure are highlighted.
Collapse
Affiliation(s)
- S M Vaiana
- INFM at Department of Physical and Astronomical Sciences, Università di Palermo, Palermo, Italy
| | | | | | | | | |
Collapse
|
5
|
Cordone L, Cottone G, Giuffrida S, Palazzo G, Venturoli G, Viappiani C. Internal dynamics and protein–matrix coupling in trehalose-coated proteins. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2005; 1749:252-81. [PMID: 15886079 DOI: 10.1016/j.bbapap.2005.03.004] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2004] [Revised: 03/04/2005] [Accepted: 03/04/2005] [Indexed: 11/23/2022]
Abstract
We review recent studies on the role played by non-liquid, water-containing matrices on the dynamics and structure of embedded proteins. Two proteins were studied, in water-trehalose matrices: a water-soluble protein (carboxy derivative of horse heart myoglobin) and a membrane protein (reaction centre from Rhodobacter sphaeroides). Several experimental techniques were used: Mossbauer spectroscopy, elastic neutron scattering, FTIR spectroscopy, CO recombination after flash photolysis in carboxy-myoglobin, kinetic optical absorption spectroscopy following pulsed and continuous photoexcitation in Q(B) containing or Q(B) deprived reaction centre from R. sphaeroides. Experimental results, together with the outcome of molecular dynamics simulations, concurred to give a picture of how water-containing matrices control the internal dynamics of the embedded proteins. This occurs, in particular, via the formation of hydrogen bond networks that anchor the protein surface to the surrounding matrix, whose stiffness increases by lowering the sample water content. In the conclusion section, we also briefly speculate on how the protein-matrix interactions observed in our samples may shed light on the protein-solvent coupling also in liquid aqueous solutions.
Collapse
Affiliation(s)
- Lorenzo Cordone
- Dipartimento di Scienze Fisiche ed Astronomiche, Università di Palermo, Italy.
| | | | | | | | | | | |
Collapse
|
6
|
Manno M, San Biagio PL, Palma MU. The role of pH on instability and aggregation of sickle hemoglobin solutions. Proteins 2004; 55:169-76. [PMID: 14997550 DOI: 10.1002/prot.10648] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Understanding the physical basis of protein aggregation covers strong physical and biomedical interests. Sickle hemoglobin (HbS) is a point-mutant form of normal human adult hemoglobin (HbA). It is responsible for the first identified "molecular disease," as its propensity to aggregation is responsible for sickle cell disease. At moderately higher than physiological pH value, this propensity is inhibited: The rate of aggregate nucleation becomes exceedingly small and solubility after polymerization increases. These order-of-magnitude effects on polymer nucleation rates and concurrent relatively modest changes of solubility after polymerization are here shown to be related to both pH-induced changes of location and shape of the liquid-liquid demixing (LLD) region. This allows establishment of a self-consistent contact between the thermodynamics of the solution as such (i.e., the LLD region), the kinetics of fiber nucleation, the theory of percolation, and the thermodynamics of gelation. The observed pH-induced changes are largely attributable to strong perturbations of hydrophobic hydration configurations and related free energy by electric charges. Similar mechanisms of effective control of aggregate nucleation rates by means of agents such as cosolutes, pH, salts, and additives, shifting the LLD and associated regions of anomalous fluctuations, promise to be relevant to the whole field of protein aggregation pathologies.
Collapse
Affiliation(s)
- M Manno
- INFM Unit at the Department of Physical and Astronomical Sciences, Università di Palermo, Palermo, Italy
| | | | | |
Collapse
|
7
|
Longhi G, Lebon F, Abbate S, Fornili SL. Molecular dynamics simulation of a model oligomer for poly(N-isopropylamide) in water. Chem Phys Lett 2004. [DOI: 10.1016/j.cplett.2004.01.045] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Vaiana SM, Palma-Vittorelli MB, Palma MU. Time scale of protein aggregation dictated by liquid-liquid demixing. Proteins 2003; 51:147-53. [PMID: 12596271 DOI: 10.1002/prot.10306] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The growing impact of protein aggregation pathologies, together with the current high need for extensive information on protein structures are focusing much interest on the physics underlying the nucleation and growth of protein aggregates and crystals. Sickle Cell Hemoglobin (HbS), a point-mutant form of normal human Hemoglobin (HbA), is the first recognized and best-studied case of pathologically aggregating protein. Here we reanalyze kinetic data on nucleation of deoxy-HbS aggregates by referring them to the (concentration-dependent) temperature T(s) characterizing the occurrence of the phase transition of liquid-liquid demixing (LLD) of the solution. In this way, and by appropriate scaling of kinetic data at different concentrations, so as to normalize their spans, the apparently disparate sets of data are seen to fall on a master curve. Expressing the master curve vs. the parameter epsilon = (T - T(s)) / T(s), familiar from phase transition theory, allows eliciting the role of anomalously large concentration fluctuations associated with the LLD phase transition and also allows decoupling quantitatively the role of such fluctuations from that of microscopic, inter-protein interactions leading to nucleation. Referring to epsilon shows how in a narrow temperature span, that is at T - T(s), nucleation kinetics can undergo orders-of-magnitude changes, unexpected in terms of ordinary chemical kinetics. The same is true for similarly small changes of other parameters (pH, salts, precipitants), capable of altering T(s) and consequently epsilon. This offers the rationale for understanding how apparently minor changes of parameters can dramatically affect protein aggregation and related diseases.
Collapse
Affiliation(s)
- S M Vaiana
- INFM Unit at the Department of Physical and Astronomical Sciences, University of Palermo, Palermo, Italy
| | | | | |
Collapse
|
9
|
Shimizu S, Chan HS. Anti-cooperativity and cooperativity in hydrophobic interactions: Three-body free energy landscapes and comparison with implicit-solvent potential functions for proteins. Proteins 2002; 48:15-30. [PMID: 12012334 DOI: 10.1002/prot.10108] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Potentials of mean force (PMFs) of three-body hydrophobic association are investigated to gain insight into similar processes in protein folding. Free energy landscapes obtained from explicit simulations of three methanes in water are compared with that predicted by popular implicit-solvent effective potentials for the study of proteins. Explicit-water simulations show that for an extended range of three-methane configurations, hydrophobic association at 25 degrees C under atmospheric pressure is mostly anti-cooperative, that is, less favorable than if the interaction free energies were pairwise additive. Effects of free energy nonadditivity on the kinetic path of association and the temperature dependence of additivity are explored by using a three-methane system and simplified chain models. The prevalence of anti-cooperativity under ambient conditions suggests that driving forces other than hydrophobicity also play critical roles in protein thermodynamic cooperativity. We evaluate the effectiveness of several implicit-solvent potentials in mimicking explicit water simulated three-body PMFs. The favorability of the contact free energy minimum is found to be drastically overestimated by solvent accessible surface area (SASA). Both the SASA and a volume-based Gaussian solvent exclusion model fail to predict the desolvation barrier. However, this barrier is qualitatively captured by the molecular surface area model and a recent "hydrophobic force field." None of the implicit-solvent models tested are accurate for the entire range of three-methane configurations and several other thermodynamic signatures considered.
Collapse
Affiliation(s)
- Seishi Shimizu
- Department of Biochemistry and Department of Medical Genetics and Microbiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
10
|
Manno M, Emanuele A, Martorana V, San Biagio PL, Bulone D, Palma-Vittorelli MB, McPherson DT, Xu J, Parker TM, Urry DW. Interaction of processes on different length scales in a bioelastomer capable of performing energy conversion. Biopolymers 2001; 59:51-64. [PMID: 11343280 DOI: 10.1002/1097-0282(200107)59:1<51::aid-bip1005>3.0.co;2-8] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
This work concerns the aggregation properties of (Gly-Val-Gly-Val-Pro)(251) rec, a polypentapeptide reflecting a highly conserved repetitive unit of the bioelastomer, elastin. On raising the temperature of aqueous solutions above 25 degrees C, this polypeptide was already known to undergo concurrent conformational changes (hydrophobic folding), phase separation, and self-assembly with formation of aggregated three-stranded filaments composed of dynamic polypeptide helices, called beta-spirals. Aggregates obtained from the solution can be shaped into bands that acquire entropic elastic properties upon gamma-irradiation and can perform a variety of energy conversions. Previous studies have shown that aggregation is prompted by the (diverging) critical fluctuations of concentration occurring in the solution, in vicinity of its spinodal line. Here, we present combined circular dicroism (CD) and light scattering experiments, and independent fittings of experimental data to the theoretical spinodal and binodal (coexistence) lines. Results show the following logical and causal sequence of processes: (a) Smooth and progressive conformational changes promoted by concentration fluctuations occurring as temperature is raised "pull down" (in the temperature scale) the instability region of the solution. (b) This further promotes critical fluctuations. (c) The related locally high concentration prompts a further substantial conformational change ending in triple-helix formation and coacervation. (d) This intertwining of processes, covering different length scales (from that of individual peptides to the mesoscopic one of demixed regions), is related to the fact that solvent-induced interactions play a strong role over the entire scale span. These results concur with other recent ones in pointing out that process interactions over many length-scales probably reflect a frequent if not ubiquitous pattern in protein aggregation. This may be highly relevant to the desirable deep understanding of such phenomenon, whose interests cover many fields.
Collapse
Affiliation(s)
- M Manno
- Progetto Sud and INFM Unit at Department of Physical and Astronomical Sciences, Via Archirafi 36, 90123 Palermo, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Bulone D, Martorana V, Palma-Vittorelli MB. Effects of electric charges on hydrophobic forces. II. PHYSICAL REVIEW. E, STATISTICAL PHYSICS, PLASMAS, FLUIDS, AND RELATED INTERDISCIPLINARY TOPICS 2000; 62:6799-809. [PMID: 11102033 DOI: 10.1103/physreve.62.6799] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2000] [Indexed: 11/07/2022]
Abstract
We study by molecular-dynamics simulations the effect of electric charges of either sign on hydrophobic interactions and on the dynamics of hydration water, using explicit water and very simplified solutes. Results show that the presence of a charged solute can disrupt the "hydrophobic contact bond" between two apolar solutes nearby, by forcing them towards a different configuration. As a consequence of different structural changes of the solvent caused by charges of opposite sign, the effect is markedly charge-sign-dependent. Analogous weaker effects appear to be induced by the presence of one additional apolar element. The dynamics of hydration water around each solute is also seen to be strongly influenced by the presence of other (charged or uncharged) nearby solutes. Comparison between our results on hydration water dynamics around charged solutes and available experimental data allows sorting out the effects of solute charge sign and size. Our results also offer a plain interpretation of the equivalence of the effects on water structure due to solute ions and to high pressures. These results reflect at a basic paradigmatic level the immensely more complex cases of well-known phenomena such as salting-in and salting-out, and of protein conformational changes caused, e.g., by the arrival of a charged or of an apolar group (phosphorilation or methylation). As it will be discussed, they help in the direction of Delbruck's desirable "progress towards a radical physical explanation" for this class of phenomena.
Collapse
Affiliation(s)
- D Bulone
- CNR Institute for Interdisciplinary Applications of Physics, Via U. La Malfa 153, I-90146 Palermo, Italy
| | | | | |
Collapse
|
12
|
San Biagio PL, Martorana V, Emanuele A, Vaiana SM, Manno M, Bulone D, Palma-Vittorelli MB, Palma MU. Interacting processes in protein coagulation. Proteins 1999; 37:116-20. [PMID: 10451555 DOI: 10.1002/(sici)1097-0134(19991001)37:1<116::aid-prot11>3.0.co;2-i] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A strong interest is currently focused on protein self-association and deposit. This usually involves conformational changes of the entire protein or of a fragment. It can occur even at low concentrations and is responsible for pathologies such as systemic amyloidosis, Alzheimer's and Prion diseases, and other neurodegenerative pathologies. Readily available proteins, exhibiting at low concentration self-association properties related to conformational changes, offer very convenient model systems capable of providing insight into this class of problems. Here we report experiments on bovine serum albumin, showing that the process of conformational change of this protein towards an intermediate form required for coagulation occurs simultaneously and interacts with two more processes: mesoscopic demixing of the solution and protein cross-linking. This pathway of three interacting processes allows coagulation even at very low concentrations, and it has been recently observed also in the case of a nonpeptidic polymer. It could therefore be a fairly common feature in polymer coagulation/gelation. Proteins 1999;37:116-120.
Collapse
|