1
|
Qi R, Lin J, Chen S, Jiang J, Zhang X, Yao B, Zheng H, Jin Z, Yuan Y, Hou W, Hua B, Guo Q. Breast cancer prognosis and P-cadherin expression: systematic review and study-level meta-analysis. BMJ Support Palliat Care 2022; 12:e893-e905. [PMID: 32943470 DOI: 10.1136/bmjspcare-2020-002204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 07/01/2020] [Accepted: 07/23/2020] [Indexed: 12/24/2022]
Abstract
OBJECTIVE P-cadherin can act both as a tumour suppressor and an oncogene. The clinical prognostic value of P-cadherin overexpression in breast cancer (BC) remains unclear. We conducted a study-level meta-analysis to determine whether P-cadherin expression can help predict prognosis in BC. METHODS A systematic literature search was performed to review eligible studies and clarify the relationship between P-cadherin overexpression and overall survival (OS), disease-free survival (DFS), pathological features, molecular subtypes and molecular phenotypes in BC. RESULTS Thirty-one studies including 12 332 patients were included. P-cadherin overexpression was correlated with significantly worse OS (HR=1.77, p<0.00001) and DFS (HR=1.96, p<0.00001) than P-cadherin-negative. P-cadherin overexpression could lead to high histological grade (OR=3.33, p<0.00001) and lymph node metastasis (OR=1.62, p<0.00001). Moreover, P-cadherin overexpression was associated with low odds of the luminal A subtype and high odds of the human epidermal growth factor receptor-2 (HER2)-positive and triple-negative subtypes. P-cadherin expression led to low expression of oestrogen and progesterone receptor (OR=0.37 and OR=0.36, respectively, both p<0.00001) and high expression of HER2 (OR=2.31, p<0.00001), Ki-67 (OR=2.79, p<0.00001), epidermal growth factor receptor (OR=5.85, p<0.00001) and cytokeratin 5/6 (OR=6.79, p<0.00001). CONCLUSIONS P-cadherin was found to be associated with invasiveness and metastasis. P-cadherin expression can probably be a useful biomarker for predicting poor survival and may act as an independent prognostic predictor.
Collapse
Affiliation(s)
- Runzhi Qi
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jinyin Lin
- Administrative Department, Beijing Tongren Hospital Affiliated to Capital Medical University, Beijing, China
| | - Shuntai Chen
- Beijing University of Chinese Medicine, Beijing, China
| | - Juling Jiang
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xing Zhang
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Bo Yao
- First Clinical Medical College, Heilongjiang University of Chinese Medicine, Heilongjiang, China
| | - Honggang Zheng
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhichao Jin
- Department of Oncology, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Yuan Yuan
- Department of Pneumology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wei Hou
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Baojin Hua
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qiujun Guo
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
2
|
Kayahashi K, Mizumoto Y, Matsuoka A, Obata T, Iwadare J, Nakamura M, Daikoku T, Fujiwara H. Mucinous, endometrioid, and serous ovarian cancers with peritoneal dissemination are potent candidates for P-cadherin targeted therapy: a retrospective cohort study. BMC Cancer 2021; 21:32. [PMID: 33413178 PMCID: PMC7791827 DOI: 10.1186/s12885-020-07737-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 12/15/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Aberrant expression of P-cadherin has been reported in various cancers, and has been attracting attention as a target for cancer treatment. Ovarian cancer, the leading cause of death among gynecologic malignancies, is classified into four histological subtypes: serous, mucinous, endometrioid, and clear cell, and each has distinct biological behavior. Although a negative survival impact in serous ovarian cancer patients and some functional role in peritoneal dissemination have been reported, differences of P-cadherin expression in histological subtypes and the proportion and distribution of positive cells remain to be investigated. The aims of this study were to clarify the histological and distributional profiles of P-cadherin expression in ovarian cancer for development of target-therapy in near future. METHODS A total of 162 primary, 60 metastatic, and 8 recurrent tumors (all cases from 162 ovarian cancer patients) were enrolled in the study. Immunohistochemistry was performed for P-cadherin expression. Associations with clinicopathological characteristics and survival were analyzed. RESULTS P-cadherin expression showed a strong correlation with the FIGO stage, histological subtypes, positive peritoneal dissemination (P < 0.01), positive distant metastasis (P < 0.05), and trend toward negative overall survival probability (P = 0.050). P-cadherin was intensely and broadly expressed in mucinous, endometrioid, and serous subtypes (P < 0.01). Disseminated tumors demonstrated similar P-cadherin expression to primary tumors whereas metastatic lymph nodes demonstrated significantly decreased expression (P < 0.01). CONCLUSIONS Mucinous, endometrioid, and serous ovarian cancer patients accompanied with peritoneal disseminations are the most potent candidates for P-cadherin targeted drug delivery strategies. P-cadherin-targeted therapy may benefit and improve survival of poor-prognosis populations.
Collapse
MESH Headings
- Adenocarcinoma, Mucinous/drug therapy
- Adenocarcinoma, Mucinous/metabolism
- Adenocarcinoma, Mucinous/pathology
- Biomarkers, Tumor/metabolism
- Cadherins/metabolism
- Cystadenocarcinoma, Serous/drug therapy
- Cystadenocarcinoma, Serous/metabolism
- Cystadenocarcinoma, Serous/pathology
- Endometrial Neoplasms/drug therapy
- Endometrial Neoplasms/metabolism
- Endometrial Neoplasms/pathology
- Female
- Follow-Up Studies
- Humans
- Middle Aged
- Molecular Targeted Therapy
- Neoplasm Recurrence, Local/drug therapy
- Neoplasm Recurrence, Local/metabolism
- Neoplasm Recurrence, Local/pathology
- Ovarian Neoplasms/drug therapy
- Ovarian Neoplasms/metabolism
- Ovarian Neoplasms/pathology
- Peritoneal Neoplasms/drug therapy
- Peritoneal Neoplasms/metabolism
- Peritoneal Neoplasms/secondary
- Prognosis
- Retrospective Studies
- Survival Rate
Collapse
Affiliation(s)
- Kayo Kayahashi
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kanazawa University, 13-1, Takaramachi, Kanazawa, Ishikawa, 920-8641, Japan
| | - Yasunari Mizumoto
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kanazawa University, 13-1, Takaramachi, Kanazawa, Ishikawa, 920-8641, Japan.
| | - Ayumi Matsuoka
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kanazawa University, 13-1, Takaramachi, Kanazawa, Ishikawa, 920-8641, Japan
| | - Takeshi Obata
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kanazawa University, 13-1, Takaramachi, Kanazawa, Ishikawa, 920-8641, Japan
| | - Junpei Iwadare
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kanazawa University, 13-1, Takaramachi, Kanazawa, Ishikawa, 920-8641, Japan
| | - Mitsuhiro Nakamura
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kanazawa University, 13-1, Takaramachi, Kanazawa, Ishikawa, 920-8641, Japan
| | - Takiko Daikoku
- Institute for Experimantal Animals, Advanced Science Research Center, Kanazawa University, 13-1, Takaramachi, Kanazawa, Ishikawa, 920-8641, Japan
| | - Hiroshi Fujiwara
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kanazawa University, 13-1, Takaramachi, Kanazawa, Ishikawa, 920-8641, Japan
| |
Collapse
|
3
|
Sousa B, Pereira J, Paredes J. The Crosstalk Between Cell Adhesion and Cancer Metabolism. Int J Mol Sci 2019; 20:E1933. [PMID: 31010154 PMCID: PMC6515343 DOI: 10.3390/ijms20081933] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 04/15/2019] [Accepted: 04/17/2019] [Indexed: 12/19/2022] Open
Abstract
Cancer cells preferentially use aerobic glycolysis over mitochondria oxidative phosphorylation for energy production, and this metabolic reprogramming is currently recognized as a hallmark of cancer. Oncogenic signaling frequently converges with this metabolic shift, increasing cancer cells' ability to produce building blocks and energy, as well as to maintain redox homeostasis. Alterations in cell-cell and cell-extracellular matrix (ECM) adhesion promote cancer cell invasion, intravasation, anchorage-independent survival in circulation, and extravasation, as well as homing in a distant organ. Importantly, during this multi-step metastatic process, cells need to induce metabolic rewiring, in order to produce the energy needed, as well as to impair oxidative stress. Although the individual implications of adhesion molecules and metabolic reprogramming in cancer have been widely explored over the years, the crosstalk between cell adhesion molecular machinery and metabolic pathways is far from being clearly understood, in both normal and cancer contexts. This review summarizes our understanding about the influence of cell-cell and cell-matrix adhesion in the metabolic behavior of cancer cells, with a special focus concerning the role of classical cadherins, such as Epithelial (E)-cadherin and Placental (P)-cadherin.
Collapse
Affiliation(s)
- Bárbara Sousa
- Ipatimup-Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135 Porto, Portugal.
- i3S, Institute of Investigation and Innovation in Health, 4200-135 Porto, Portugal.
| | - Joana Pereira
- Ipatimup-Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135 Porto, Portugal.
- i3S, Institute of Investigation and Innovation in Health, 4200-135 Porto, Portugal.
| | - Joana Paredes
- Ipatimup-Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135 Porto, Portugal.
- i3S, Institute of Investigation and Innovation in Health, 4200-135 Porto, Portugal.
- Medical Faculty of the University of Porto, 4200-135 Porto, Portugal.
| |
Collapse
|
4
|
Bruner HC, Derksen PWB. Loss of E-Cadherin-Dependent Cell-Cell Adhesion and the Development and Progression of Cancer. Cold Spring Harb Perspect Biol 2018; 10:a029330. [PMID: 28507022 PMCID: PMC5830899 DOI: 10.1101/cshperspect.a029330] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Classical cadherins are the key molecules that control cell-cell adhesion. Notwithstanding this function, it is also clear that classical cadherins are more than just the "glue" that keeps the cells together. Cadherins are essential regulators of tissue homeostasis that govern multiple facets of cellular function and development, by transducing adhesive signals to a complex network of signaling effectors and transcriptional programs. In cancer, cadherins are often inactivated or functionally inhibited, resulting in disease development and/or progression. This review focuses on E-cadherin and its causal role in the development and progression of breast and gastric cancer. We provide a summary of the biochemical consequences and consider the conceptual impact of early (mutational) E-cadherin loss in cancer. We advocate that carcinomas driven by E-cadherin loss should be considered "actin-diseases," caused by the specific disruption of the E-cadherin-actin connection and a subsequent dependence on sustained actomyosin contraction for tumor progression. Based on the available data from mouse and human studies we discuss opportunities for targeted clinical intervention.
Collapse
Affiliation(s)
- Heather C Bruner
- Department of Medicine, University of California at San Diego, La Jolla, California 92093
| | - Patrick W B Derksen
- Department of Pathology, University Medical Center Utrecht, Utrecht 3584CX, The Netherlands
| |
Collapse
|
5
|
Fisher TS, Hooper AT, Lucas J, Clark TH, Rohner AK, Peano B, Elliott MW, Tsaparikos K, Wang H, Golas J, Gavriil M, Haddish-Berhane N, Tchistiakova L, Gerber HP, Root AR, May C. A CD3-bispecific molecule targeting P-cadherin demonstrates T cell-mediated regression of established solid tumors in mice. Cancer Immunol Immunother 2018; 67:247-259. [PMID: 29067496 PMCID: PMC11028296 DOI: 10.1007/s00262-017-2081-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 10/14/2017] [Indexed: 12/11/2022]
Abstract
Strong evidence exists supporting the important role T cells play in the immune response against tumors. Still, the ability to initiate tumor-specific immune responses remains a challenge. Recent clinical trials suggest that bispecific antibody-mediated retargeted T cells are a promising therapeutic approach to eliminate hematopoietic tumors. However, this approach has not been validated in solid tumors. PF-06671008 is a dual-affinity retargeting (DART®)-bispecific protein engineered with enhanced pharmacokinetic properties to extend in vivo half-life, and designed to engage and activate endogenous polyclonal T cell populations via the CD3 complex in the presence of solid tumors expressing P-cadherin. This bispecific molecule elicited potent P-cadherin expression-dependent cytotoxic T cell activity across a range of tumor indications in vitro, and in vivo in tumor-bearing mice. Regression of established tumors in vivo was observed in both cell line and patient-derived xenograft models engrafted with circulating human T lymphocytes. Measurement of in vivo pharmacodynamic markers demonstrates PF-06671008-mediated T cell activation, infiltration and killing as the mechanism of tumor inhibition.
Collapse
Affiliation(s)
- Timothy S Fisher
- Oncology Research and Development Pfizer Inc., La Jolla, CA, USA.
- Oncology Research and Development Pfizer Inc., Pearl River, NY, USA.
- Pfizer Inc., 10777 Science Center Drive, San Diego, CA, 92121, USA.
| | - Andrea T Hooper
- Oncology Research and Development Pfizer Inc., La Jolla, CA, USA
- Oncology Research and Development Pfizer Inc., Pearl River, NY, USA
| | - Justin Lucas
- Oncology Research and Development Pfizer Inc., La Jolla, CA, USA
- Oncology Research and Development Pfizer Inc., Pearl River, NY, USA
| | | | - Allison K Rohner
- Oncology Research and Development Pfizer Inc., La Jolla, CA, USA
- Oncology Research and Development Pfizer Inc., Pearl River, NY, USA
| | - Bryan Peano
- Oncology Research and Development Pfizer Inc., La Jolla, CA, USA
- Oncology Research and Development Pfizer Inc., Pearl River, NY, USA
| | - Mark W Elliott
- Oncology Research and Development Pfizer Inc., La Jolla, CA, USA
- Oncology Research and Development Pfizer Inc., Pearl River, NY, USA
| | - Konstantinos Tsaparikos
- Oncology Research and Development Pfizer Inc., La Jolla, CA, USA
- Oncology Research and Development Pfizer Inc., Pearl River, NY, USA
| | - Hui Wang
- Oncology Research and Development Pfizer Inc., La Jolla, CA, USA
- Oncology Research and Development Pfizer Inc., Pearl River, NY, USA
| | - Jonathan Golas
- Oncology Research and Development Pfizer Inc., La Jolla, CA, USA
- Oncology Research and Development Pfizer Inc., Pearl River, NY, USA
| | - Maria Gavriil
- Oncology Research and Development Pfizer Inc., La Jolla, CA, USA
- Oncology Research and Development Pfizer Inc., Pearl River, NY, USA
| | - Nahor Haddish-Berhane
- BioMedicine Design Pfizer Inc., Cambridge, MA, USA
- Johnson and Johnson Pharmaceutical Research and Development, Spring House, PA, USA
| | | | - Hans-Peter Gerber
- Oncology Research and Development Pfizer Inc., La Jolla, CA, USA
- Oncology Research and Development Pfizer Inc., Pearl River, NY, USA
- Maverick Therapeutics, Brisbane, CA, USA
| | - Adam R Root
- BioMedicine Design Pfizer Inc., Cambridge, MA, USA
| | - Chad May
- Oncology Research and Development Pfizer Inc., La Jolla, CA, USA
- Oncology Research and Development Pfizer Inc., Pearl River, NY, USA
- Maverick Therapeutics, Brisbane, CA, USA
| |
Collapse
|
6
|
Spużak J, Ciaputa R, Kubiak K, Jankowski M, Glińska-Suchocka K, Poradowski D, Nowak M. Adenocarcinoma of the posterior segment of the gastrointestinal tract in dogs - clinical, endoscopic, histopathological and immunohistochemical findings. Pol J Vet Sci 2017; 20:539-549. [PMID: 29166282 DOI: 10.1515/pjvs-2017-0066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Of all the tumours in dogs, three percent are located in the intestines, and 36-60% of those tumours affect the large intestine. Adenocarcinomas of the intestines account for 20-35% of the gastrointestinal tumours and for almost 60% of the large intestine tumours. The aim of the study was to analyze clinical disorders and endoscopic, histopathological and immunohistochemical changes in colorectal adenocarcinomas in dogs with the use of the E-cadherin, β-catenin, cytokeratin 20 (CK20), Ki-67 and minichromosome maintenance 3 (MCM-3). The study comprised 11 dogs of both genders and of different breeds diagnosed with adenocarcinoma of the large intestine. They were from 4 to 11 years old. The large intestine adenocarcinoma was diagnosed in all the patients. 72.7% cases were diagnosed with a rectal adenocarcinoma, and 27.3% were found to have a colonic adenocarcinoma. All the studied proteins were expressed at different levels and, together with the histological findings, indicated different levels of malignancy (G). The statistical analysis revealed no statistically significant differences between the expression of E-cadherin and β-catenin in the studied tissues (p=0.79) and between the expression of Ki-67 andMCM-3 (p=0.39). A strong positive correlation was found between the expression of E-cadherin and β-catenin (r=0.86; p<0.05). The diagnosis of adenocarcinomas of the large intestine may be facilitated by the introduction of immunohistochemical studies using appropriate cell markers. They may also aid in the accurate evaluation of the biological character of the tumours, their origin, the connections between tumour cells and the mitotic index. That, in turn, may help determine the malignancy and the choice of treatment.
Collapse
|
7
|
P-cadherin: a useful biomarker for axillary-based breast cancer decisions in the clinical practice. Mod Pathol 2017; 30:698-709. [PMID: 28084338 DOI: 10.1038/modpathol.2016.232] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 11/29/2016] [Accepted: 11/29/2016] [Indexed: 02/06/2023]
Abstract
Axillary lymph node metastases represent the most powerful breast cancer prognostic factor, dictating disease staging and clinical therapeutic decisions. Nonetheless, breast cancer patients with positive lymph nodes still exhibit a heterogeneous behavior regarding disease progression. Stem-like subpopulations of cancer cells show high migratory and metastatic capacity, thus we hypothesize that breast cancer stem cell markers evaluation in metastasized lymph nodes could provide a more accurate prediction of patient's prognosis. Therefore, the expression profile of P-cadherin, CD44, and CD49f, which have been already associated to stem cell properties in breast cancer, has been evaluated by immunohistochemistry in a series of 135 primary tumors and matched axillary lymph node metastases from 135 breast cancer patients. Taking in consideration the expression of the stem cell markers only in axillary nodes, P-cadherin was the only biomarker significantly associated with poor disease-free and overall patient's survival. Moreover, although a concordant expression between primary tumors and matched lymph nodes has been found in the majority of the cases, a small but significant percentage displayed divergent expression (18.2-26.2%). Remarkably, although CD44 and CD49f changes between primary tumors and lymph node metastasis did not impact survival, the cases that were positive for P-cadherin in lymph node metastases being negative in the primary tumor, presented the worst disease-free and overall survival of the whole series. Accordingly, negative cases for this marker in the lymph nodes with positive expression in the matched breast carcinoma demonstrated a better prognosis, which overlapped with tumors that were negative in both sites. P-cadherin and CD49f gain of expression was mainly found in triple-negative carcinomas. Our results indicate for the first time that the evaluation of P-cadherin expression in lymph node metastases is an important predictor of disease outcome, being a putative valuable marker for axillary-based breast cancer decisions in the clinical practice.
Collapse
|
8
|
Roggiani F, Mezzanzanica D, Rea K, Tomassetti A. Guidance of Signaling Activations by Cadherins and Integrins in Epithelial Ovarian Cancer Cells. Int J Mol Sci 2016; 17:ijms17091387. [PMID: 27563880 PMCID: PMC5037667 DOI: 10.3390/ijms17091387] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 08/11/2016] [Accepted: 08/13/2016] [Indexed: 12/12/2022] Open
Abstract
Epithelial ovarian cancer (EOC) is the deadliest tumor among gynecological cancer in the industrialized countries. The EOC incidence and mortality have remained unchanged over the last 30 years, despite the progress in diagnosis and treatment. In order to develop novel and more effective therapeutic approaches, the molecular mechanisms involved in EOC progression have been thoroughly investigated in the last few decades. At the late stage, peritoneal metastases originate from the attachment of small clusters of cancer cells that shed from the primary site and carried by the ascites adhere to the abdominal peritoneum or omentum. This behavior suggests that cell–cell or cell–matrix adhesion mechanisms regulate EOC growth and dissemination. Complex downstream signalings, which might be influenced by functional cross-talk between adhesion molecules and co-expressed and activated signaling proteins, can affect the proliferation/survival and the migration/invasion of EOC cells. This review aimed to define the impact of the mechanisms of cell–cell, through cadherins, and cell–extracellular matrix adhesion, through integrins, on the signaling cascades induced by membrane receptors and cytoplasmic proteins known to have a role in the proliferation, migration and invasion of EOC cells. Finally, some novel approaches using peptidomimetic ligands to cadherin and integrins are summarized.
Collapse
Affiliation(s)
- Francesca Roggiani
- Unit of Molecular Therapies, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, Milan 20133, Italy.
| | - Delia Mezzanzanica
- Unit of Molecular Therapies, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, Milan 20133, Italy.
| | - Katia Rea
- Unit of Molecular Therapies, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, Milan 20133, Italy.
| | - Antonella Tomassetti
- Unit of Molecular Therapies, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, Milan 20133, Italy.
| |
Collapse
|
9
|
Zhao L, Jiang R, Xu M, Zhu P, Mo XM, Wang N, Chen GG, Liu ZM. Concomitant high expression of BRAFV600E, P-cadherin and cadherin 6 is associated with High TNM stage and lymph node metastasis in conventional papillary thyroid carcinoma. Clin Endocrinol (Oxf) 2016; 84:748-55. [PMID: 26285159 DOI: 10.1111/cen.12878] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 08/10/2015] [Accepted: 08/12/2015] [Indexed: 11/28/2022]
Abstract
CONTEXT AND OBJECTIVE BRAFV600E mutation is the most common activating mutation associated with aggressive behaviours in human tumours including conventional papillary thyroid carcinoma (cPTC). P-cadherin and cadherin 6 have been shown to be mesenchymal-associated cadherins and promote cancer cell invasion and metastasis. The purpose of this study was to examine BRAFV600E, P-cadherin and cadherin 6 expressions in cPTC and to assess the association of their expression with clinicopathological indicators. METHODS BRAFV600E, P-cadherin and cadherin 6 protein expressions in 80 cPTCs, 61 nodular hyperplasia and 76 normal thyroid tissues were examined by immunohistochemistry. The correlation of their protein expression with clinicopathological indicators of cPTC was statistically analysed. RESULTS Protein expression of BRAFV600E, P-cadherin and cadherin 6 was upregulated in cPTC. High protein expression of BRAFV600E, P-cadherin and cadherin 6 was significantly correlated with high TNM stage and lymph node metastasis (LNM) (P < 0·001). Furthermore, BRAFV600E, P-cadherin and cadherin 6 protein expressions were correlated with one another. BRAFV600E high expression combined with both P-cadherin and cadherin-6 high expressions had stronger correlation with high TNM stage and LNM when compared with BRAFV600E high expression combined with either P-cadherin or cadherin-6 high expression (P = 0·042, 0·017 for TNM stage and P = 0·003, 0·006 for LNM, respectively) and only BRAFV600E high expression (P < 0·001 for both TNM stage and LNM). CONCLUSIONS Concomitant high expression of BRAFV600E, P-cadherin and cadherin 6 is strongly associated with high TNM stage and LNM in cPTC.
Collapse
Affiliation(s)
- Le Zhao
- Department of Biochemistry and Molecular Biology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, China
| | - Rong Jiang
- Department of Pathology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, China
| | - Man Xu
- Department of Pathology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, China
| | - Ping Zhu
- Department of Biochemistry and Molecular Biology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, China
| | - Xiao-Mei Mo
- Department of Biochemistry and Molecular Biology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, China
| | - Ni Wang
- Department of Biochemistry and Molecular Biology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, China
| | - George G Chen
- Department of Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin N.T., Hong Kong, China
| | - Zhi-Min Liu
- Department of Biochemistry and Molecular Biology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, China
| |
Collapse
|
10
|
Hu QP, Kuang JY, Yang QK, Bian XW, Yu SC. Beyond a tumor suppressor: Soluble E-cadherin promotes the progression of cancer. Int J Cancer 2016; 138:2804-12. [PMID: 26704932 DOI: 10.1002/ijc.29982] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Accepted: 12/16/2015] [Indexed: 02/07/2023]
Abstract
E-cadherin (E-cad) plays important roles in tumorigenesis as well as in tumor progression, invasion and metastasis. This protein exists in two forms: a membrane-tethered form and a soluble form. Full-length E-cad is membrane tethered. As a type I transmembrane glycoprotein, E-cad mainly mediates adherens junctions between cells and is involved in maintaining the normal structure of epithelial tissues. Soluble E-cad (sE-cad) is the extracellular fragment of the protein that is cleaved from the membrane after proteolysis of full-length E-cad. The production of sE-cad undermines adherens junctions, causing a reduction in cell aggregation capacity; furthermore, sE-cad can diffuse into the extracellular environment and the blood. As a paracrine/autocrine signaling molecule, sE-cad activates or inhibits multiple signaling pathways and participates in the progression of various types of cancer, such as breast cancer, ovarian cancer, and lung cancer, by promoting invasion and metastasis. This article briefly reviews the role of sE-cad in tumorigenesis and tumor progression and its significance in clinical therapeutics.
Collapse
Affiliation(s)
- Qi-Ping Hu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Jing-Ya Kuang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Qing-Kai Yang
- Department of Oncology, The Second Affiliated Hospital of DaLian Medical University, Institute of Cancer Stem Cell, DaLian Medical University, Dalian, Liaoning, 116044, China
| | - Xiu-Wu Bian
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Shi-Cang Yu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| |
Collapse
|
11
|
Vieira AF, Paredes J. P-cadherin and the journey to cancer metastasis. Mol Cancer 2015; 14:178. [PMID: 26438065 PMCID: PMC4595126 DOI: 10.1186/s12943-015-0448-4] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 09/25/2015] [Indexed: 12/13/2022] Open
Abstract
P-cadherin is a classical cell-to-cell adhesion molecule with a homeostatic function in several normal tissues. However, its behaviour in the malignant setting is notably dependent on the cellular context. In some tumour models, such as melanoma and oral squamous cell carcinoma, P-cadherin acts as a tumour suppressor, since its absence is associated with a more aggressive cancer cell phenotype; nevertheless, the overexpression of this molecule is linked to significant tumour promoting effects in the breast, ovarian, prostate, endometrial, skin, gastric, pancreas and colon neoplasms. Herein, we review the role of P-cadherin in cancer cell invasion, as well as in loco-regional and distant metastatic dissemination. We focus in P-cadherin signalling pathways that are activated to induce invasion and metastasis, as well as cancer stem cell properties. The signalling network downstream of P-cadherin is notably dependent on the cellular and tissue context and includes the activation of integrin molecules, receptor tyrosine kinases, small molecule GTPases, EMT transcription factors, and crosstalk with other cadherin family members. As new oncogenic molecular pathways mediated by P-cadherin are uncovered, putative therapeutic options can be tested, which will allow for the targeting of invasion or metastatic disease, depending on the tumour model.
Collapse
Affiliation(s)
- André Filipe Vieira
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal. .,IPATIMUP - Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Rua Júlio Amaral de Carvalho, N. 45, 4200-135, Porto, Portugal.
| | - Joana Paredes
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal. .,IPATIMUP - Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Rua Júlio Amaral de Carvalho, N. 45, 4200-135, Porto, Portugal. .,Faculdade de Medicina da Universidade do Porto, Porto, Portugal.
| |
Collapse
|
12
|
Sakamoto K, Imai K, Higashi T, Taki K, Nakagawa S, Okabe H, Nitta H, Hayashi H, Chikamoto A, Ishiko T, Beppu T, Baba H. Significance of P-cadherin overexpression and possible mechanism of its regulation in intrahepatic cholangiocarcinoma and pancreatic cancer. Cancer Sci 2015; 106:1153-62. [PMID: 26132727 PMCID: PMC4582984 DOI: 10.1111/cas.12732] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 06/13/2015] [Accepted: 06/23/2015] [Indexed: 01/08/2023] Open
Abstract
It has become evident that P-cadherin, one of the classical cadherins, contributes to the malignant behavior of several types of cancer. In this study, we analyzed the expression of P-cadherin and its clinicopathological and prognostic values in intrahepatic cholangiocarcinoma (ICC) and pancreatic cancer. Furthermore, we investigated the functional role of P-cadherin in these cancer cells by knockdown and overexpression in vitro and by analyzing the correlation between the P-cadherin expression and its promoter methylation status. Thirty of 59 ICC cases (51%) and 36 of 73 pancreatic cancer cases (49%) stained positive for P-cadherin with mainly membranous distribution in tumor cells by immunohistochemistry. P-cadherin expression was significantly correlated with several clinicopathological factors, which reflect tumor behavior, and was identified as an independent adverse prognostic factor for disease-free survival in patients with ICC (relative risk [RR] 2.93, P = 0.04) and pancreatic cancer (RR 2.68, P = 0.005) via multivariate analyses. P-cadherin downregulation by siRNA suppressed migration and invasion, and P-cadherin overexpression induced the opposite effects in both ICC and pancreatic cancer cells, without any effects on cell proliferation. P-cadherin expression was related to its promoter methylation status in both cell lines and cancer tissues. In summary, P-cadherin overexpression may serve as a useful biomarker of invasive phenotype and poor prognosis; P-cadherin expression was found to be regulated by its promoter methylation. These results suggest that P-cadherin represents a novel therapeutic target for the treatment of ICC and pancreatic cancer.
Collapse
Affiliation(s)
- Keita Sakamoto
- Department of Gastroenterological Surgery, Graduate School of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Katsunori Imai
- Department of Gastroenterological Surgery, Graduate School of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Takaaki Higashi
- Department of Gastroenterological Surgery, Graduate School of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Katunobu Taki
- Department of Gastroenterological Surgery, Graduate School of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Shigeki Nakagawa
- Department of Gastroenterological Surgery, Graduate School of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Hirohisa Okabe
- Department of Gastroenterological Surgery, Graduate School of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Hidetoshi Nitta
- Department of Gastroenterological Surgery, Graduate School of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Hiromitsu Hayashi
- Department of Gastroenterological Surgery, Graduate School of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Akira Chikamoto
- Department of Gastroenterological Surgery, Graduate School of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Takatoshi Ishiko
- Department of Gastroenterological Surgery, Graduate School of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Toru Beppu
- Department of Gastroenterological Surgery, Graduate School of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Hideo Baba
- Department of Gastroenterological Surgery, Graduate School of Life Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
13
|
Shamir ER, Ewald AJ. Adhesion in mammary development: novel roles for E-cadherin in individual and collective cell migration. Curr Top Dev Biol 2015; 112:353-82. [PMID: 25733146 DOI: 10.1016/bs.ctdb.2014.12.001] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Epithelial tissues are essential for barrier function, secretion, and regulation of fluid transport. Their function requires cell polarity and cell-cell adhesion, mediated through intercellular junctions. Conversely, disruption of adhesion and polarity is thought to drive cancer progression. The mammary gland is an important model for cell adhesion due to its postnatal hormonally regulated development; ducts undergo branching morphogenesis in response to steroid hormones during puberty. These hormonal signals induce a transition from simple to stratified architecture, initiated by asymmetric luminal cell divisions. Ductal elongation is accomplished by this multilayered, low-polarity epithelium, and polarity is reestablished as elongation ceases. The requirement for cell adhesion has been tested in 3D culture and in vivo, using gene deletion, knockdown, and misexpression in both developmental and homeostatic contexts. Attention has focused on E-cadherin, the major classical cadherin in luminal epithelial cells. Classic studies revealed a requirement for E-cadherin during lactation, and E-cadherin loss is widely posited to promote metastasis. However, recent findings demonstrated a broader requirement for E-cadherin during branching morphogenesis and homeostasis and also, surprisingly, in epithelial dissemination. These studies suggest that long-standing models of the role of adhesion in epithelial biology need to be revisited. Advances in inducible gene expression and knockdown, CRISPR/Cas9 technology, and fluorescent labeling of genetically modified cells offer the opportunity to test the roles of diverse adhesion systems and to develop a mechanistic understanding of how cell adhesion regulates development and cancer.
Collapse
Affiliation(s)
- Eliah R Shamir
- Department of Cell Biology, Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Andrew J Ewald
- Department of Cell Biology, Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| |
Collapse
|
14
|
Figueira AC, Gomes C, de Oliveira JT, Vilhena H, Carvalheira J, de Matos AJF, Pereira PD, Gärtner F. Aberrant P-cadherin expression is associated to aggressive feline mammary carcinomas. BMC Vet Res 2014; 10:270. [PMID: 25424750 PMCID: PMC4254012 DOI: 10.1186/s12917-014-0270-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 11/06/2014] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Cadherins are calcium-dependent cell-to-cell adhesion glycoproteins playing a critical role in the formation and maintenance of normal tissue architecture. In normal mammary gland, E-cadherin is expressed by luminal epithelial cells, while P-cadherin is restricted to myoepithelial cells. Changes in the expression of classical E- and P-cadherins have been observed in mammary lesions and related to mammary carcinogenesis. P-cadherin and E-cadherin expressions were studied in a series of feline normal mammary glands, hyperplastic/dysplastic lesions, benign and malignant tumours by immunohistochemistry and double-label immunofluorescence. RESULTS In normal tissue and in the majority of hyperplastic/dysplastic lesions and benign tumours, P-cadherin was restricted to myoepithelial cells, while 80% of the malignant tumours expressed P-cadherin in luminal epithelial cells. P-cadherin expression was significantly related to high histological grade of carcinomas (p <0.0001), tumour necrosis (p = 0.001), infiltrative growth (p = 0.0051), and presence of neoplastic emboli (p = 0.0401). Moreover, P-cadherin positive carcinomas had an eightfold likelihood of developing neoplastic emboli than negative tumours. Cadherins expression profile in high grade and in infiltrative tumours was similar, the majority expressing P-cadherin, regardless of E-cadherin expression status. The two cadherins were found to be co-expressed in carcinomas with aberrant P-cadherin expression and preserved E-cadherin. CONCLUSIONS The results demonstrate a relationship between P-cadherin expression and aggressive biological behaviour of feline mammary carcinomas, suggesting that P-cadherin may be considered an indicator of poor prognosis in this animal species. Moreover, it indicates that, in queens, the aberrant expression of P-cadherin is a better marker of mammary carcinomas aggressive behaviour than the reduction of E-cadherin expression. Further investigation with follow-up studies in feline species should be conducted in order to evaluate the prognostic value of P-cadherin expression in E-cadherin positive carcinomas.
Collapse
Affiliation(s)
- Ana Catarina Figueira
- Escola Universitária Vasco da Gama (EUVG), Av. José R. Sousa Fernandes, Campus Universitário de Lordemão, Bloco B, Lordemão, 3020-210, Coimbra, Portugal. .,Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto (ICBAS-UP), Rua de Jorge Viterbo Ferreira No. 228, 4050-313, Porto, Portugal. .,Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), Rua Dr Roberto Frias s/n, 4200-465, Porto, Portugal.
| | - Catarina Gomes
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), Rua Dr Roberto Frias s/n, 4200-465, Porto, Portugal.
| | - Joana Tavares de Oliveira
- Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto (ICBAS-UP), Rua de Jorge Viterbo Ferreira No. 228, 4050-313, Porto, Portugal. .,Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), Rua Dr Roberto Frias s/n, 4200-465, Porto, Portugal.
| | - Hugo Vilhena
- Escola Universitária Vasco da Gama (EUVG), Av. José R. Sousa Fernandes, Campus Universitário de Lordemão, Bloco B, Lordemão, 3020-210, Coimbra, Portugal. .,Hospital Veterinário do Baixo Vouga (HVBV), Estrada Nacional 1, 355, Segadães, 3750-742, Águeda, Portugal. .,Centro de Ciência Animal e Veterinária (CECAV), Universidade de Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5000-801, Vila Real, Portugal.
| | - Júlio Carvalheira
- Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto (ICBAS-UP), Rua de Jorge Viterbo Ferreira No. 228, 4050-313, Porto, Portugal. .,Centro de Investigação em Biodiversidade e Recursos Genéticos (CIBIO), Universidade do Porto (UP), Rua Padre Armando Quintas, 4485-661, Vairão, Portugal.
| | - Augusto J F de Matos
- Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto (ICBAS-UP), Rua de Jorge Viterbo Ferreira No. 228, 4050-313, Porto, Portugal. .,Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências e Tecnologias Agrárias e Agro Alimentares (ICETA), Universidade do Porto (UP), Rua D. Manuel II, ap° 55142, 4051-401, Porto, Portugal.
| | - Patrícia Dias Pereira
- Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto (ICBAS-UP), Rua de Jorge Viterbo Ferreira No. 228, 4050-313, Porto, Portugal.
| | - Fátima Gärtner
- Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto (ICBAS-UP), Rua de Jorge Viterbo Ferreira No. 228, 4050-313, Porto, Portugal. .,Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), Rua Dr Roberto Frias s/n, 4200-465, Porto, Portugal.
| |
Collapse
|
15
|
A preliminary study of the relationship between breast cancer metastasis and loss of heterozygosity by using exome sequencing. Sci Rep 2014; 4:5460. [PMID: 24964733 PMCID: PMC5381542 DOI: 10.1038/srep05460] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 06/09/2014] [Indexed: 11/16/2022] Open
Abstract
We explored the feasibility of studying loss of heterozygosity (LOH) by using exome sequencing and compared the differences in genetic LOH between primary breast tumors and metastatic lesions. Exome sequencing was conducted to investigate the genetic LOH in the peripheral blood, a primary tumor, and a metastatic lesion from the same patient. LOH was observed in 30 and 48 chromosomal loci of the primary tumor and metastatic lesion, respectively. The incidence of LOH was the highest on chromosome 19, followed by chromosomes 14, 3, and 11 in the metastatic lesion. Among these ‘hot' regions, LOH was observed for multiple genes of the CECAM, MMP and ZNF families. Therefore, the use of exome sequencing for studying LOH is feasible. More members of gene families appeared with LOH in ‘hot' regions, suggesting that these gene families had synergistic effects in tumorigenesis.
Collapse
|
16
|
Owens MB, Hill AD, Hopkins AM. Ductal barriers in mammary epithelium. Tissue Barriers 2013; 1:e25933. [PMID: 24665412 PMCID: PMC3783220 DOI: 10.4161/tisb.25933] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Revised: 07/26/2013] [Accepted: 07/27/2013] [Indexed: 12/12/2022] Open
Abstract
Tissue barriers play an integral role in the biology and pathobiology of mammary ductal epithelium. In normal breast physiology, tight and adherens junctions undergo dynamic changes in permeability in response to hormonal and other stimuli, while several of their proteins are directly involved in mammary tumorigenesis. This review describes first the structure of mammary ductal epithelial barriers and their role in normal mammary development, examining the cyclical changes in response to puberty, pregnancy, lactation and involution. It then examines the role of adherens and tight junctions and the participation of their constituent proteins in mammary tumorigenic functions such as migration, invasion and metastasis. Finally, it discusses the potential of these adhesion proteins as both prognostic biomarkers and potential therapeutic targets in breast cancer.
Collapse
Affiliation(s)
- Mark B Owens
- Department of Surgery; Royal College of Surgeons in Ireland; Dublin, Ireland
| | - Arnold Dk Hill
- Department of Surgery; Royal College of Surgeons in Ireland; Dublin, Ireland
| | - Ann M Hopkins
- Department of Surgery; Royal College of Surgeons in Ireland; Dublin, Ireland
| |
Collapse
|
17
|
Calaf GM, Roy D, Narayan G, Balajee AS. Differential expression of cell adhesion molecules in an ionizing radiation-induced breast cancer model system. Oncol Rep 2013; 30:285-91. [PMID: 23670055 DOI: 10.3892/or.2013.2448] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 04/02/2013] [Indexed: 12/23/2022] Open
Abstract
Cell-cell adhesion is mediated by members of the cadherin-catenin system and among them E-cadherin and β-catenin are important adhesion molecules for epithelial cell function and preservation of tissue integrity. To investigate the importance of cell adhesion molecules in breast carcinogenesis, we developed an in vitro breast cancer model system wherein immortalized human breast epithelial cell line, MCF-10F, was malignantly transformed by exposure to low doses of high linear energy transfer (LET) α particle radiation (150 keV/µm) and subsequent growth in the presence or absence of 17β-estradiol. This model consisted of human breast epithelial cells in different stages of transformation: i) parental cell line MCF-10F; ii) MCF-l0F continuously grown with estradiol at 10(-8) (Estrogen); iii) a non-malignant cell line (Alpha3); and iv) a malignant and tumorigenic cell line (Alpha5) and the Tumor2 cell line derived from the nude mouse xenograft of the Alpha5 cell line. Expression levels of important cell adhesion molecules such as α-catenin, β-catenin, γ-catenin, E-cadherin and integrin were found to be higher at the protein level in the Alpha5 and Tumor2 cell lines relative to these levels in the non-tumorigenic MCF-10F, Estrogen and Alpha3 cell lines. In corroboration, cDNA expression analysis revealed elevated levels of genes involved in the cell adhesion function [E-cadherin, integrin β6 and desmocollin3 (DSc3)] in the Alpha5 and Tumor2 cell lines relative to the levels in the MCF-10F, Estrogen and Alpha3 cell lines. Collectively, our results suggest that cell adhesion molecules are expressed at higher levels in malignantly transformed breast epithelial cells relative to levels in non-malignant cells. However, reduced levels of adhesion molecules observed in the mouse xenograft-derived Tumor 2 cell line compared to the pre-tumorigenic Alpha5 cell line suggests that the altered expression levels of adhesion molecules depend on the tumor tissue microenvironment.
Collapse
Affiliation(s)
- Gloria M Calaf
- Institute for Advanced Research, Tarapacá University, Arica, Chile.
| | | | | | | |
Collapse
|
18
|
Albergaria A, Resende C, Nobre AR, Ribeiro AS, Sousa B, Machado JC, Seruca R, Paredes J, Schmitt F. CCAAT/enhancer binding protein β (C/EBPβ) isoforms as transcriptional regulators of the pro-invasive CDH3/P-cadherin gene in human breast cancer cells. PLoS One 2013; 8:e55749. [PMID: 23405208 PMCID: PMC3566012 DOI: 10.1371/journal.pone.0055749] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 12/31/2012] [Indexed: 11/22/2022] Open
Abstract
P-cadherin is a cell-cell adhesion molecule codified by the CDH3 gene, which expression is highly associated with undifferentiated cells in normal adult epithelial tissues, as well as with poorly differentiated carcinomas. In breast cancer, P-cadherin is frequently overexpressed in high-grade tumours and is a well-established indicator of aggressive tumour behaviour and poor patient prognosis. However, till now, the mechanisms controlling CDH3 gene activation have been poorly explored. Since we recently described the existence of several CCAAT/Enhancer Binding Protein β (C/EBPβ) transcription factor binding sites at the CDH3 promoter, the aim of this study was to assess if the distinct C/EBPβ isoforms were directly involved in the transcriptional activation of the CDH3 gene in breast cancer cells. DNA-protein interactions, mutation analysis and luciferase reporter assay studies have been performed. We demonstrated that C/EBPβ is co-expressed with P-cadherin in breast cancer cells and all the three isoforms function as transcriptional regulators of the CDH3 gene, directly interacting with specific regions of its promoter. Interestingly, this transcriptional activation was only reflected at the P-cadherin protein level concerning the LIP isoform. Taken together, our data show that CDH3 is a newly defined transcriptional target gene of C/EBPβ isoforms in breast cancer, and we also identified the binding sites that are relevant for this activation.
Collapse
Affiliation(s)
- André Albergaria
- Cancer Genetics Group, Institute of Molecular Pathology and Immunology of Porto University (IPATIMUP), Porto, Portugal
- Department of Pathology, Medical Faculty of Porto University, Porto, Portugal
| | - Carlos Resende
- Cancer Genetics Group, Institute of Molecular Pathology and Immunology of Porto University (IPATIMUP), Porto, Portugal
| | - Ana Rita Nobre
- Cancer Genetics Group, Institute of Molecular Pathology and Immunology of Porto University (IPATIMUP), Porto, Portugal
- Institute of Biomedical Sciences of Abel Salazar (ICBAS), Porto, Portugal
| | - Ana Sofia Ribeiro
- Cancer Genetics Group, Institute of Molecular Pathology and Immunology of Porto University (IPATIMUP), Porto, Portugal
| | - Bárbara Sousa
- Cancer Genetics Group, Institute of Molecular Pathology and Immunology of Porto University (IPATIMUP), Porto, Portugal
- Institute of Biomedical Sciences of Abel Salazar (ICBAS), Porto, Portugal
| | - José Carlos Machado
- Cancer Genetics Group, Institute of Molecular Pathology and Immunology of Porto University (IPATIMUP), Porto, Portugal
- Department of Pathology, Medical Faculty of Porto University, Porto, Portugal
| | - Raquel Seruca
- Cancer Genetics Group, Institute of Molecular Pathology and Immunology of Porto University (IPATIMUP), Porto, Portugal
- Department of Pathology, Medical Faculty of Porto University, Porto, Portugal
| | - Joana Paredes
- Cancer Genetics Group, Institute of Molecular Pathology and Immunology of Porto University (IPATIMUP), Porto, Portugal
- Department of Pathology, Medical Faculty of Porto University, Porto, Portugal
| | - Fernando Schmitt
- Cancer Genetics Group, Institute of Molecular Pathology and Immunology of Porto University (IPATIMUP), Porto, Portugal
- Department of Pathology, Medical Faculty of Porto University, Porto, Portugal
- * E-mail:
| |
Collapse
|
19
|
Niemiec J, Adamczyk A, Małecki K, Ambicka A, Ryś J. Tumor grade and matrix metalloproteinase 2 expression in stromal fibroblasts help to stratify the high-risk group of patients with early breast cancer identified on the basis of st Gallen recommendations. Clin Breast Cancer 2013; 13:119-28. [PMID: 23375518 DOI: 10.1016/j.clbc.2012.12.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Revised: 11/22/2012] [Accepted: 12/19/2012] [Indexed: 01/03/2023]
Abstract
BACKGROUND It is still being discussed if the assessment of basal markers or if adhesion molecules expression contributes additional prognostic information to the classic prognostic factors and hence should be included into standard morphologic reports. PATIENTS AND METHODS The aim of the study was to assess the prognostic significance of: (i) classification recommended by St Gallen experts (ii) tumor grade, expression of (iii) basal markers, (iv) adhesion molecules, and (v) matrix metalloproteinase 2 (MMP-2) in patients with T1-T2 N0M0 chemotherapy-naive ductal breast cancer. RESULTS In 79 patients with tumors characterized by estrogen receptor (ER) and progesterone receptor (PgR) positive, human epidermal growth factor receptor 2 negative (HER2) phenotype and MIB-1 labeling index (MIB-l) LI ≤ 15% (low-risk group) cumulative 17-year breast cancer-specific survival probability was 100% and was significantly higher than in 95 patients from the high-risk group (ER(-)/PgR(-)/HER2(-) or HER2(+) or MIB-1 LI > 15%) (72.5%). We found that MMP-2 fibroblast expression indicated 2 subgroups with significantly different survival rates in women with grade 3 tumor (88.9% for MMP-2 positivity and 56.0% for negativity). Cox multivariate analysis revealed that both grade 3 combined with stromal fibroblast MMP-2(-) and a high-risk group according to St Gallen recommendations are independent negative prognostic factors that influence survival of patients with breast cancer. CONCLUSION To the best of our knowledge, we have shown for the first time that MMP-2(-) in stromal fibroblasts might indicate poor survivors in the group of patients with grade 3 tumors and that the cumulative effect of both above-mentioned parameters might be helpful in selecting the high-risk individuals from the group of patients with luminal B subtype/HER2(+)/triple negative phenotype identified according to St Gallen recommendations.
Collapse
Affiliation(s)
- Joanna Niemiec
- Department of Applied Radiobiology, Maria Skłodowska-Curie Memorial Institute, Centre of Oncology, Cracow, Poland.
| | | | | | | | | |
Collapse
|
20
|
Ribeiro AS, Sousa B, Carreto L, Mendes N, Nobre AR, Ricardo S, Albergaria A, Cameselle-Teijeiro JF, Gerhard R, Söderberg O, Seruca R, Santos MA, Schmitt F, Paredes J. P-cadherin functional role is dependent on E-cadherin cellular context: a proof of concept using the breast cancer model. J Pathol 2013. [PMID: 23180380 DOI: 10.1002/path.4143] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
P-cadherin overexpression is associated with worse breast cancer survival, being a poor prognostic marker as well as a putative therapeutic target for the aggressive triple-negative and basal-like carcinomas (TNBCs). Previously, we have shown that P-cadherin promotes breast cancer invasion of cells where membrane E-cadherin was maintained; however, it suppresses invasion in models without endogenous cadherins, like melanomas. Here, we investigated if P-cadherin expression would interfere with the normal adhesion complex and which were the cellular/molecular consequences, constituting, in this way, a new mechanism by which E-cadherin invasive-suppressor function was disrupted. Using breast TNBC models, we demonstrated, for the first time, that P-cadherin co-localizes with E-cadherin, promoting cell invasion due to the disruption caused in the interaction between E-cadherin and cytoplasmic catenins. P-cadherin also induces cell migration and survival, modifying the expression profile of cells expressing wild-type E-cadherin and contributing to alter their cellular behaviour. Additionally, E- and P-cadherin co-expressing cells significantly enhanced in vivo tumour growth, compared with cells expressing only E- or only P-cadherin. Finally, we still found that co-expression of both molecules was significantly correlated with high-grade breast carcinomas, biologically aggressive, and with poor patient survival, being a strong prognostic factor in this disease. Our results show a role for E- and P-cadherin co-expression in breast cancer progression and highlight the potential benefit of targeting P-cadherin in the aggressive tumours expressing high levels of this protein.
Collapse
Affiliation(s)
- Ana Sofia Ribeiro
- IPATIMUP, Institute of Molecular Pathology and Immunology of the University of Porto, Rua Dr Roberto Frias s/n, Porto, Portugal
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
P-cadherin expression in feline mammary tissues. Vet Med Int 2012; 2012:687424. [PMID: 23091776 PMCID: PMC3469258 DOI: 10.1155/2012/687424] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Accepted: 08/13/2012] [Indexed: 01/22/2023] Open
Abstract
The search for molecular markers in the feline mammary gland, namely, the adhesion molecules belonging to the cadherin family, is useful in the understanding of the development of mammary carcinomas in felines and humans. To study P-cadherin expression in the feline mammary gland, 61 samples of normal (n = 4), hyperplastic (n = 12), and neoplastic (n = 45) feline mammary tissues were examined.
In both normal and hyperplastic mammary tissues as well as in benign tumours, P-cadherin immunolabelling was restricted to myoepithelial cells. In malignant tumours, however, there was an aberrant epithelial P-cadherin immunoexpression in 64.1% (n = 25) of cases, with a membranous and/or cytoplasmic pattern of distribution.
A statistically significant relationship was seen between epithelial P-cadherin expression and malignant mammary lesions (P = 0.0001). In malignant mammary tumours, there was likewise a statistically significant relationship between aberrant P-cadherin immunoexpression and histological grade (P = 0.0132). Aberrant epithelial P-cadherin expression seems to be related to malignancy in the feline mammary gland. To confirm the results of this investigation, further studies with larger samples and follow-up studies are warranted.
Collapse
|
22
|
Cadherin cell adhesion system in canine mammary cancer: a review. Vet Med Int 2012; 2012:357187. [PMID: 22973534 PMCID: PMC3432389 DOI: 10.1155/2012/357187] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Accepted: 07/15/2012] [Indexed: 12/21/2022] Open
Abstract
Cadherin-catenin adhesion complexes play important roles by providing cell-cell adhesion and communication in different organ systems. Abnormal expression of cadherin adhesion molecules constitutes a common phenomenon in canine mammary cancer and has been frequently implicated in tumour progression. This paper summarizes the current knowledge on cadherin/catenin adhesion molecules (E-cadherin, β-catenin, and P-cadherin) in canine mammary cancer, focusing on the putative biological functions and clinical significance of these molecules in this disease. This paper highlights the need for further research studies in this setting in order to elucidate the role of these adhesion molecules during tumour progression and metastasis.
Collapse
|
23
|
Paredes J, Figueiredo J, Albergaria A, Oliveira P, Carvalho J, Ribeiro AS, Caldeira J, Costa AM, Simões-Correia J, Oliveira MJ, Pinheiro H, Pinho SS, Mateus R, Reis CA, Leite M, Fernandes MS, Schmitt F, Carneiro F, Figueiredo C, Oliveira C, Seruca R. Epithelial E- and P-cadherins: role and clinical significance in cancer. Biochim Biophys Acta Rev Cancer 2012; 1826:297-311. [PMID: 22613680 DOI: 10.1016/j.bbcan.2012.05.002] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Revised: 05/09/2012] [Accepted: 05/11/2012] [Indexed: 01/26/2023]
Abstract
E-cadherin and P-cadherin are major contributors to cell-cell adhesion in epithelial tissues, playing pivotal roles in important morphogenetic and differentiation processes during development, and in maintaining integrity and homeostasis in adult tissues. It is now generally accepted that alterations in these two molecules are observed during tumour progression of most carcinomas. Genetic or epigenetic alterations in E- and P-cadherin-encoding genes (CDH1 and CDH3, respectively), or alterations in their proteins expression, often result in tissue disorder, cellular de-differentiation, increased invasiveness of tumour cells and ultimately in metastasis. In this review, we will discuss the major properties of E- and P-cadherin molecules, its regulation in normal tissue, and their alterations and role in cancer, with a specific focus on gastric and breast cancer models.
Collapse
|
24
|
The cadherin switch in ovarian high-grade serous carcinoma is associated with disease progression. Virchows Arch 2011; 459:21-9. [PMID: 21509572 DOI: 10.1007/s00428-011-1082-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2011] [Revised: 03/07/2011] [Accepted: 04/04/2011] [Indexed: 01/16/2023]
Abstract
Ovarian high-grade serous carcinoma (HGSC) often has a poor prognosis because of late presentation, lack of sensitivity and specificity of screening modalities and the development of chemoresistance. New targeted therapy is required if survival in these cases is to improve. The profile of E-, P- and N-cadherins in ovarian cancer and its association with survival remain poorly understood. Reduced expression of E-cadherin in prostate cancer associated with increase in the expression of N- and P-cadherins is described as cadherin switch. We hypothesised that there is a switch in the expression of cadherins that regulates the behaviour of HGSC and possibly its outcome. To identify the stages of the cadherin switch in HGSC, we studied the immunoexpression of E-, P- and N-cadherins in a cohort of 177 cases of HGSC. High expression of P-cadherin was associated with poor patient survival and was significantly higher in stage 2 disease when compared with stage 1 and stage 3 disease (P = 0.033). In contrast, loss of E-cadherin was observed in stage 3 HGSC when compared with other stages (P = 0.050). E-, P- and N- cadherin expressions were significantly associated with disease outcome when assessed individually and in various combinations with an interesting profile. Our results indicate that the cadherin switch alters through progression of HGSC. The profile of combined cadherin expressions in association with survival raises expectations in targeted therapy.
Collapse
|
25
|
Turashvili G, McKinney SE, Goktepe O, Leung SC, Huntsman DG, Gelmon KA, Los G, Rejto PA, Aparicio SAJR. P-cadherin expression as a prognostic biomarker in a 3992 case tissue microarray series of breast cancer. Mod Pathol 2011; 24:64-81. [PMID: 20852590 DOI: 10.1038/modpathol.2010.189] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
P-cadherin is a calcium-dependent cell-cell adhesion glycoprotein. P-cadherin expression is restricted to the myoepithelial cells in normal breast tissue, and aberrant staining has also been described in invasive tumors. Several small studies have reported P-cadherin as a marker of poor outcome in breast cancer patients but its prognostic significance in relation to other variables has not been established in a large series of breast cancers. A tissue microarray was constructed from 3992 cases of invasive breast carcinoma, and P-cadherin expression was evaluated using immunohistochemistry. Median follow-up was 12.5 years. The immunohistochemistry-based definitions of cancer subtypes were luminal (ER+ or PR+/HER2-), luminal/HER2+ (ER+ or PR+/HER2+), HER2+ (ER-/PR-/HER2+), and basal (ER-/PR-/HER2-/CK5/6+ or EGFR+). Clinical covariate and biomarker associations were assessed using contingency tables, and Pearson's χ(2) or Fisher's exact test. Survival associations were assessed using Kaplan-Meier plots, logrank and Breslow tests, and Cox proportional hazards regression analysis. P-cadherin was expressed in 34.8% (1290/3710, 50% cut point) of cases. P-cadherin staining was strongly associated with HER2+ and basal carcinoma subtypes (P<0.0005). P-cadherin-positive patients showed significantly poorer short-term (0-10 years) overall survival, disease-specific survival, distant relapse-free interval, and locoregional relapse-free interval in univariable models (P<0.05). In multivariable Cox models containing standard clinical covariates and cancer subtypes, P-cadherin did not show independent prognostic value. P-cadherin expression was positively associated with histological grade, chemotherapy, Ki-67, EGFR, CK5/6, p53, YB-1, and HER2 expression (P<0.002), and negatively associated with age at diagnosis, ER, PR, and Bcl-2 expression (P<0.0005). This study shows the value of P-cadherin as a marker of poor prognosis. The large sample size of this series clarifies contradictory findings of many smaller studies. P-cadherin positivity is associated with high-grade tumor subtypes and well-established markers of poor prognosis, and may represent a promising antibody therapeutic target.
Collapse
Affiliation(s)
- Gulisa Turashvili
- Molecular Oncology Department, BC Cancer Research Centre, Vancouver, BC, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Clark SE, Warwick J, Carpenter R, Bowen RL, Duffy SW, Jones JL. Molecular subtyping of DCIS: heterogeneity of breast cancer reflected in pre-invasive disease. Br J Cancer 2010; 104:120-7. [PMID: 21139586 PMCID: PMC3039794 DOI: 10.1038/sj.bjc.6606021] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background: Molecular profiling has identified at least four subtypes of invasive breast carcinoma, which exhibit distinct clinical behaviour. There is good evidence now that DCIS represents the non-obligate precursor to invasive breast cancer and therefore it should be possible to identify similar molecular subtypes at this stage. In addition to a limited five-marker system to identify molecular subtypes in invasive breast cancer, it is evident that other biological molecules may identify distinct tumour subsets, though this has not been formally evaluated in DCIS. Methods: Tissue microarrays were constructed for 188 cases of DCIS. Immunohistochemistry was performed to examine the expression patterns of oestrogen receptor (ER), progesterone receptor (PR), Her2, EGFR, cytokeratin (CK) 5/6, CK14, CK17, CK18, β4-integrin, β6-integrin, p53, SMA, maspin, Bcl-2, topoisomerase IIα and P-cadherin. Hierarchical clustering analysis was undertaken to identify any natural groupings, and the findings were validated in an independent sample series. Results: Each of the intrinsic molecular subtypes described for invasive breast cancer can be identified in DCIS, though there are differences in the relative frequency of subgroups, in particular, the triple negative and basal-like phenotype is very uncommon in DCIS. Hierarchical cluster analysis identified three main subtypes of DCIS determined largely by ER, PR, Her2 and Bcl-2, and this classification is related to conventional prognostic indicators. These subtypes were confirmed in an analysis on independent series of DCIS cases. Conclusion: This study indicates that DCIS may be classified in a similar manner to invasive breast cancer, and determining the relative frequency of different subtypes in DCIS and invasive disease may shed light on factors determining disease progression. It also demonstrates a role for Bcl-2 in classifying DCIS, which has recently been identified in invasive breast cancer.
Collapse
Affiliation(s)
- S E Clark
- Centre for Tumour Biology, Institute of Cancer and CR-UK Clinical Centre, Barts and the London School of Medicine and Dentistry, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK.
| | | | | | | | | | | |
Collapse
|
27
|
Reis-Filho JS, Cancela Paredes J, Milanezi F, Schmitt FC. Clinicopathologic implications of E-cadherin reactivity in patients with lobular carcinoma in situ of the breast. Cancer 2010. [DOI: 10.1002/cncr.0681] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
28
|
Zhang CC, Yan Z, Zhang Q, Kuszpit K, Zasadny K, Qiu M, Painter CL, Wong A, Kraynov E, Arango ME, Mehta PP, Popoff I, Casperson GF, Los G, Bender S, Anderes K, Christensen JG, VanArsdale T. PF-03732010: a fully human monoclonal antibody against P-cadherin with antitumor and antimetastatic activity. Clin Cancer Res 2010; 16:5177-88. [PMID: 20829331 DOI: 10.1158/1078-0432.ccr-10-1343] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE P-cadherin is a membrane glycoprotein that functionally mediates tumor cell adhesion, proliferation, and invasiveness. We characterized the biological properties of PF-03732010, a human monoclonal antibody against P-cadherin, in cell-based assays and tumor models. EXPERIMENTAL DESIGN The affinity, selectivity, and cellular inhibitory activity of PF-03732010 were tested in vitro. Multiple orthotopic and metastatic tumor models were used for assessing the antitumor and antimetastatic activities of PF-03732010. Treatment-associated pharmacodynamic changes were also investigated. RESULTS PF-03732010 selectively inhibits P-cadherin-mediated cell adhesion and aggregation in vitro. In the P-cadherin-overexpressing tumor models, including MDA-MB-231-CDH3, 4T1-CDH3, MDA-MB-435HAL-CDH3, HCT116, H1650, PC3M-CDH3, and DU145, PF-03732010 inhibited the growth of primary tumors and metastatic progression, as determined by bioluminescence imaging. Computed tomography imaging, H&E stain, and quantitative PCR analysis confirmed the antimetastatic activity of PF-03732010. In contrast, PF-03732010 did not show antitumor and antimetastatic efficacy in the counterpart tumor models exhibiting low P-cadherin expression. Mechanistic studies via immunofluorescence, immunohistochemical analyses, and 3'-[(18)F]fluoro-3'-deoxythymidine-positron emission tomography imaging revealed that PF-03732010 suppressed P-cadherin levels, caused degradation of membrane β-catenin, and concurrently suppressed cytoplasmic vimentin, resulting in diminished metastatic capacity. Changes in the levels of Ki67, caspase-3, and 3'-[(18)F]fluoro-3'-deoxythymidine tracer uptake also indicated antiproliferative activity and increased apoptosis in the tested xenografts. CONCLUSIONS These findings suggest that interrupting the P-cadherin signaling pathway may be a novel therapeutic approach for cancer therapy. PF-03732010 is presently undergoing evaluation in Phase 1 clinical trials.
Collapse
Affiliation(s)
- Cathy C Zhang
- Translational Research Group in Oncology Research Unit, Pfizer Global Research and Development, La Jolla Laboratories, San Diego, California 92121, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Baek S, Lee YW, Yoon S, Baek SY, Kim BS, Oh SO. CDH3/P-Cadherin regulates migration of HuCCT1 cholangiocarcinoma cells. Anat Cell Biol 2010; 43:110-7. [PMID: 21189991 PMCID: PMC2998785 DOI: 10.5115/acb.2010.43.2.110] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2010] [Revised: 04/22/2010] [Accepted: 05/12/2010] [Indexed: 11/27/2022] Open
Abstract
Intrahepatic cholangiocarcinoma is the second most common subtype of primary hepatobilliary cancer. Despite advances in surgical and medical therapy, its survival rate remains poor. Compared to hepatocellular carcinoma (HCC), the most common liver malignancy, the underlying mechanisms of cholangiocarcinoma carcinogenesis are poorly characterized. P-cadherin (CDH3) is a cadherin super family member. Although CDH3 is frequently over-expressed in cholangiocarcinoma tissues, its roles have never been characterized. To determine the roles of CDH3 in cholangiocarcinoma, we investigated CDH3 function in HuCCT1 cells using specific siRNA. Transfection with CDH3 siRNA did not affect proliferation of HuCCT1 cells. However, cell migration and invasion were significantly reduced when CDH3 was down-regulated. In addition, expressions of several biomarkers for epithelial-mesenchymal transition (EMT) were not changed by CDH3 down-regulation. These results suggest that CDH3 regulates cell migration independent of EMT in cholangiocarcinoma cells.
Collapse
Affiliation(s)
- Sungmin Baek
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan, Korea
| | | | | | | | | | | |
Collapse
|
30
|
Kim MA, Jung EJ, Lee HS, Lee HE, Yang HK, Oh DY, Bang YJ, Kim WH. P-cadherin expression in gastric carcinoma: its regulation mechanism and prognostic significance. Hum Pathol 2010; 41:877-85. [DOI: 10.1016/j.humpath.2009.04.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2008] [Revised: 04/24/2009] [Accepted: 04/28/2009] [Indexed: 11/28/2022]
|
31
|
Albergaria A, Ribeiro AS, Pinho S, Milanezi F, Carneiro V, Sousa B, Sousa S, Oliveira C, Machado JC, Seruca R, Paredes J, Schmitt F. ICI 182,780 induces P-cadherin overexpression in breast cancer cells through chromatin remodelling at the promoter level: a role for C/EBP in CDH3 gene activation. Hum Mol Genet 2010; 19:2554-66. [DOI: 10.1093/hmg/ddq134] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
32
|
Extracellular cleavage and shedding of P-cadherin: a mechanism underlying the invasive behaviour of breast cancer cells. Oncogene 2009; 29:392-402. [PMID: 19901964 DOI: 10.1038/onc.2009.338] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Cell-cell adhesion is an elementary process in normal epithelial cellular architecture. Several studies have shown the role mediated by cadherins in this process, besides their role in the maintenance of cell polarity, differentiation and cell growth. However, during tumour progression, these molecules are frequently altered. In breast cancer, tumours that overexpress P-cadherin usually present a high histological grade, show decreased cell polarity and are associated with worse patient survival. However, little is known about how this protein dictates the very aggressive behaviour of these tumours. To achieve this goal, we set up two breast cancer cell models, where P-cadherin expression was differently modulated and analysed in terms of cell invasion, motility and migration. We show that P-cadherin overexpression, in breast cancer cells with wild-type E-cadherin, promotes cell invasion, motility and migration. Moreover, we found that the overexpression of P-cadherin induces the secretion of matrix metalloproteases, specifically MMP-1 and MMP-2, which then lead to P-cadherin ectodomain cleavage. Further, we showed that soluble P-cadherin fragment is able to induce in vitro invasion of breast cancer cells. Overall, our results contribute to elucidate the mechanism underlying the invasive behaviour of P-cadherin expressing breast tumours.
Collapse
|
33
|
Liss M, Sreedhar N, Keshgegian A, Sauter G, Chernick MR, Prendergast GC, Wallon UM. Tissue inhibitor of metalloproteinase-4 is elevated in early-stage breast cancers with accelerated progression and poor clinical course. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 175:940-6. [PMID: 19700750 PMCID: PMC2731114 DOI: 10.2353/ajpath.2009.081094] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/04/2009] [Indexed: 11/20/2022]
Abstract
An increasing number of breast cancer patients are diagnosed with small, localized, early-stage tumors. These patients are typically thought to have a good prognosis for long-term disease-free survival, but epidemiological studies indicate that up to 30% may have a recurrence within 3 to 5 years of diagnosis. Identifying patients with a high risk of recurrence and/or progression is important because they could be more aggressively treated at diagnosis to improve their chances for disease-free survival. Recent evidence suggests that elevated levels of the matrix metalloproteinase inhibitor, tissue inhibitor of metalloproteinase (TIMP)-4, are associated with malignant progression of ductal carcinoma in situ, a precancerous lesion. To examine the association of TIMP-4 with survival outcomes, we conducted a retrospective immunohistochemical analysis of 314 cases from patients with early-stage disease, defined as tumors smaller than 2 cm and no spread to lymph nodes (tumor-node-metastasis staging: T1N0MX). We found that tumors with elevated levels of TIMP-4 were correlated with a reduced probability of long-term disease-free survival, especially in patients with estrogen receptor-negative tumors. Our findings prompt further evaluation of TIMP-4 as a simple prognostic marker that may help identify patients with early-stage breast cancer who could benefit from more aggressive treatment at diagnosis.
Collapse
Affiliation(s)
- Michaelann Liss
- Department of Hematology/Oncology, Lankenau Hospital, 100 Lancaster Ave., Wynnewood, PA 19096, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Sarrió D, Palacios J, Hergueta-Redondo M, Gómez-López G, Cano A, Moreno-Bueno G. Functional characterization of E- and P-cadherin in invasive breast cancer cells. BMC Cancer 2009; 9:74. [PMID: 19257890 PMCID: PMC2656544 DOI: 10.1186/1471-2407-9-74] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2008] [Accepted: 03/03/2009] [Indexed: 12/18/2022] Open
Abstract
Background Alterations in the cadherin-catenin adhesion complexes are involved in tumor initiation, progression and metastasis. However, the functional implication of distinct cadherin types in breast cancer biology is still poorly understood. Methods To compare the functional role of E-cadherin and P-cadherin in invasive breast cancer, we stably transfected these molecules into the MDA-MB-231 cell line, and investigated their effects on motility, invasion and gene expression regulation. Results Expression of either E- and P-cadherin significantly increased cell aggregation and induced a switch from fibroblastic to epithelial morphology. Although expression of these cadherins did not completely reverse the mesenchymal phenotype of MDA-MB-231 cells, both E- and P-cadherin decreased fibroblast-like migration and invasion through extracellular matrix in a similar way. Moreover, microarray gene expression analysis of MDA-MB-231 cells after expression of E- and P-cadherins revealed that these molecules can activate signaling pathways leading to significant changes in gene expression. Although the expression patterns induced by E- and P-cadherin showed more similarities than differences, 40 genes were differentially modified by the expression of either cadherin type. Conclusion E- and P-cadherin have similar functional consequences on the phenotype and invasive behavior of MDA-MB-231 cells. Moreover, we demonstrate for the first time that these cadherins can induce both common and specific gene expression programs on invasive breast cancer cells. Importantly, these identified genes are potential targets for future studies on the functional consequences of altered cadherin expression in human breast cancer.
Collapse
Affiliation(s)
- David Sarrió
- Department of Biochemistry UAM, Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Madrid, Spain.
| | | | | | | | | | | |
Collapse
|
35
|
Imai K, Hirata S, Irie A, Senju S, Ikuta Y, Yokomine K, Harao M, Inoue M, Tsunoda T, Nakatsuru S, Nakagawa H, Nakamura Y, Baba H, Nishimura Y. Identification of a novel tumor-associated antigen, cadherin 3/P-cadherin, as a possible target for immunotherapy of pancreatic, gastric, and colorectal cancers. Clin Cancer Res 2008; 14:6487-95. [PMID: 18927288 DOI: 10.1158/1078-0432.ccr-08-1086] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE To establish cancer immunotherapy, it is important to identify the tumor-associated antigens (TAA) that are strongly expressed in the tumor cells but not in the normal cells. In this study, to establish an effective anticancer immunotherapy, we tried to identify the useful TAA of pancreatic cancer. EXPERIMENTAL DESIGN Based on a previous genome-wide cDNA microarray analysis of pancreatic cancer, we focused on cadherin 3 (CDH3)/P-cadherin as a novel candidate TAA for anticancer immunotherapy. To identify the HLA-A2 (A*0201)-restricted CTL epitopes of CDH3, we used HLA-A2.1 (HHD) transgenic mice (Tgm). Furthermore, we examined the cytotoxicity against the tumor cells in vitro and in vivo of CTLs specific to CDH3 induced from HLA-A2-positive healthy donors and cancer patients. RESULTS CDH3 was overexpressed in the majority of pancreatic cancer and various other malignancies, including gastric and colorectal cancers, but not in their noncancerous counterparts or in many normal adult tissues. In the experiment using HLA-A2.1 Tgm, we found that the CDH3-4(655-663) (FILPVLGAV) and CDH3-7(757-765) (FIIENLKAA) peptides could induce HLA-A2-restricted CTLs in Tgm. In addition, peptides-reactive CTLs were successfully induced from peripheral blood mononuclear cells by in vitro stimulation with these two peptides in HLA-A2-positive healthy donors and cancer patients, and these CTLs exhibited cytotoxicity specific to cancer cells expressing both CDH3 and HLA-A2. Furthermore, the adoptive transfer of the CDH3-specific CTLs could inhibit the tumor growth of human cancer cells engrafted into nonobese diabetic/severe combined immunodeficiency mice. CONCLUSIONS These results suggest that CDH3 is a novel TAA useful for immunotherapy against a broad spectrum of cancers, including pancreatic cancer.
Collapse
Affiliation(s)
- Katsunori Imai
- Department of Immunogenetics and Gastroenterological Surgery, Kumamoto University, Kumamoto, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Mannello F, Tonti GAM, Medda V, Pederzoli A, Sauter ER. Increased shedding of soluble fragments of P-cadherin in nipple aspirate fluids from women with breast cancer. Cancer Sci 2008; 99:2160-9. [PMID: 18811693 PMCID: PMC11158546 DOI: 10.1111/j.1349-7006.2008.00921.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Breast cancer, a worldwide disease with increasing incidence, develops from ductal/lobular epithelium. Nipple aspirate fluid (NAF), secreted from the breast ducts and lobules, can be analyzed to assess breast metabolic activity. P-cadherin is frequently over-expressed in high-grade invasive breast carcinomas and has been reported to be an enhancer of migration and invasion of breast cancer cells, being correlated with tumor aggressiveness. The present study analyzed the soluble fragment of P-cadherin in milk, NAF and matched plasma samples of healthy subjects and in women with precancer conditions and breast cancer. Soluble P-cadherin was detected in all plasma and milk samples, and in about 31.3% of NAF samples. The lowest levels of soluble P-cadherin were found in plasma, with no significant difference among NoCancer, PreCancer and Cancer patients. The highest concentration of soluble P-cadherin was detected in milk collected during the first trimester of lactation, significantly with respect to all NAF samples. There were significantly higher levels of soluble P-cadherin in NAF from Cancer patients than those in women with NoCancer and PreCancer (P < 0.0001). Although no significant difference was found between in situ and invasive breast cancer, soluble P-cadherin levels were found at high concentrations in c-erbB-2-positive tumors, showing a positive correlation with disease stage grouping and tumor grade, and an inverse relationship with estrogen/progesterone receptor status. High levels of the soluble fragment of P-cadherin in Cancer NAF suggest its possible release via proteolytic processing, favoring cancer cell detachment from breast duct, and suggesting that measuring soluble P-cadherin in NAF may improve the identification of women with increased breast cancer risk.
Collapse
Affiliation(s)
- Ferdinando Mannello
- Department of Biomolecular Sciences, Section of Clinical Biochemistry, University Carlo Bo, Urbino PU, Italy.
| | | | | | | | | |
Collapse
|
37
|
Xi L, Feber A, Gupta V, Wu M, Bergemann AD, Landreneau RJ, Litle VR, Pennathur A, Luketich JD, Godfrey TE. Whole genome exon arrays identify differential expression of alternatively spliced, cancer-related genes in lung cancer. Nucleic Acids Res 2008; 36:6535-47. [PMID: 18927117 PMCID: PMC2582617 DOI: 10.1093/nar/gkn697] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Alternative processing of pre-mRNA transcripts is a major source of protein diversity in eukaryotes and has been implicated in several disease processes including cancer. In this study we have performed a genome wide analysis of alternative splicing events in lung adenocarcinoma. We found that 2369 of the 17 800 core Refseq genes appear to have alternative transcripts that are differentially expressed in lung adenocarcinoma versus normal. According to their known functions the largest subset of these genes (30.8%) is believed to be cancer related. Detailed analysis was performed for several genes using PCR, quantitative RT-PCR and DNA sequencing. We found overexpression of ERG variant 2 but not variant 1 in lung tumors and overexpression of CEACAM1 variant 1 but not variant 2 in lung tumors but not in breast or colon tumors. We also identified a novel, overexpressed variant of CDH3 and verified the existence and overexpression of a novel variant of P16 transcribed from the CDKN2A locus. These findings demonstrate how analysis of alternative pre-mRNA processing can shed additional light on differences between tumors and normal tissues as well as between different tumor types. Such studies may lead to the development of additional tools for tumor diagnosis, prognosis and therapy.
Collapse
Affiliation(s)
- Liqiang Xi
- Department of Pathology, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Ellis PE, Cano SD, Fear M, Kelsell DP, Ghali L, Crow JC, Perrett CW, MacLean AB. Reduced E-cadherin expression correlates with disease progression in Paget's disease of the vulva but not Paget's disease of the breast. Mod Pathol 2008; 21:1192-9. [PMID: 18469796 DOI: 10.1038/modpathol.2008.50] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The growth and metastasis of many cancers is due in part to loss of cell-cell adhesion. E-cadherin, plakoglobin and beta-catenin are important in cell adhesion. Our aim was to examine the presence of these molecules in Paget's disease of the vulva and Paget's disease of the breast, and to correlate any differences in their expression with the presence of invasive disease or an underlying carcinoma. Sixty-three archival cases of Paget's disease of the vulva, including eight associated with invasive disease, and 23 archival cases of Paget's disease of breast, which included 10 cases with ductal carcinoma in situ alone, four cases with both ductal carcinoma in situ and invasive carcinoma, and five cases with underlying invasive carcinoma alone, were analysed immunohistochemically for expression of E-cadherin, plakoglobin and beta-catenin proteins. The respective mRNAs were also detected by in situ hybridisation using digoxigenin-labelled cRNA probes. Seventy-six percent (41/54) of Paget's disease of vulva cases had >50% of Paget cells expressing the E-cadherin protein, compared with 28 % (2/7) of Paget's disease vulva with invasive disease. This result was significant, with a P-value of 0.039. Twenty-five percent (14/55) of the intraepidermal Paget's disease of the vulva cases had >50% of Paget cells expressing the plakoglobin protein, compared with 12% (1/8) of cases of Paget's disease of vulva with invasive disease, and for beta-catenin, 9% (5/55) of the non-invasive Paget's disease of the vulva had >50% of Paget cells expressing beta-catenin, compared with 12% (1/8) of Paget's disease of the vulva cases with invasive disease. Sixty-five percent (15/23) of the Paget's disease of the breast had >50% of Paget cells expressing E-cadherin, and for plakoglobin and beta-catenin it was 17% (4/23) and 28% (6/21), respectively. The results were not significant. The results suggest that reduced expression of E-cadherin may have a role to play in the pathogenesis of invasive Paget's disease of the vulva. Abnormal plakoglobin expression may be involved in the formation of some cases of Paget's of the vulva and the breast.
Collapse
Affiliation(s)
- Patricia E Ellis
- Department of Obstetrics and Gynaecology, Royal Free and University College Medical School (Hampstead Campus), University College London, London, UK.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Gama A, Alves A, Schmitt F. Identification of molecular phenotypes in canine mammary carcinomas with clinical implications: application of the human classification. Virchows Arch 2008; 453:123-32. [PMID: 18677512 DOI: 10.1007/s00428-008-0644-3] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2008] [Accepted: 07/07/2008] [Indexed: 02/06/2023]
Abstract
Similarly to humans, canine mammary cancer represents a heterogeneous group in terms of morphology and biological behaviour. In the present study, we evaluated a series of canine mammary carcinomas based on a new human classification, initially based on gene expression profiling analysis. Similarly to human breast cancer, by using an immunohistochemistry surrogate panel based on five molecular markers [estrogen receptor, human epidermal growth factor receptor 2 (HER2), cytokeratin 5, p63 and P-cadherin], we were able to classify canine mammary carcinomas into four different subtypes: luminal A [estrogen receptor (ER)+/HER2-; 44.8%], luminal B (ER+/HER2+; 13.5%), basal (ER-/HER2- and a basal marker positive; 29.2%) and HER2 overexpressing tumours (ER-/HER2+; 8.3%). Luminal A-type tumours were characterised by lower grade and proliferation rate, whereas basal-type tumours were mostly high grade, high proliferative and positive for cytokeratin 5, p63 and P-cadherin. In addition, as in humans, basal subtype was significantly associated with shorter disease-free and overall survival rates, and we propose canine mammary carcinomas as a suitable natural model for the study of this particular subset of human carcinomas.
Collapse
Affiliation(s)
- A Gama
- Department of Veterinary Sciences, CECAV, University of Trás-os-Montes and Alto Douro (UTAD), 5001-811, Vila Real, Portugal
| | | | | |
Collapse
|
40
|
Bryan RT, Atherfold PA, Yeo Y, Jones LJ, Harrison RF, Wallace DMA, Jankowski JA. Cadherin switching dictates the biology of transitional cell carcinoma of the bladder: ex vivo and in vitro studies. J Pathol 2008; 215:184-94. [PMID: 18393367 DOI: 10.1002/path.2346] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bladder cancer is the fifth most common malignancy in the UK. Clinically, the most important process in determining prognosis is the development of invasion, initially of the lamina propria and then beyond as these transitional cell carcinomas (TCCs) progress from stage pT1 to stages T2+. Cadherins and catenins are the main mediators of cell-cell interactions in epithelial tissues, and loss of membranous E-cadherin immunoreactivity is strongly correlated with high grade, advanced stage and poor prognosis in bladder cancer and other malignancies. However, the role of P-cadherin is yet to be fully elucidated in bladder TCC. The objectives of this study were to establish how the expression of cadherins and catenins determines clinical and in vitro behaviour in bladder TCC. Utilizing immunohistochemistry, immunofluorescence and western blotting, we demonstrated a significant reduction in the expression of E-cadherin and beta-catenin as grade and stage of bladder TCC progress, accompanied by a significant increase in P-cadherin expression (all p < 0.05, Pearson's chi2 test). Increased P-cadherin expression was also associated with a significantly worse bladder cancer-specific survival (log rank p = 0.008), with Cox regression showing P-cadherin to be an independent prognostic factor. Utilizing a variety of tissue culture models in a range of functional studies, we demonstrated that P-cadherin mediates defective cell-cell adhesion and enhances anchorage-independent growth. The results provide evidence that increased P-cadherin expression promotes a more malignant and invasive phenotype of bladder cancer, and appears to have a novel role late in the disease.
Collapse
Affiliation(s)
- R T Bryan
- Department of Public Health and Epidemiology, University of Birmingham, UK.
| | | | | | | | | | | | | |
Collapse
|
41
|
Murphy KM, Chen F, Clark DP. Identification of immunohistochemical biomarkers for papillary thyroid carcinoma using gene expression profiling. Hum Pathol 2008; 39:420-6. [PMID: 18261626 DOI: 10.1016/j.humpath.2007.07.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2007] [Revised: 07/25/2007] [Accepted: 07/26/2007] [Indexed: 11/18/2022]
Abstract
We report the successful validation of a combined gene expression profiling and tissue microarray approach to papillary thyroid carcinoma (PTC) biomarker identification. Our ultimate goal is the identification of protein biomarkers that can be effectively used in immunocytochemical assays applied to thyroid fine needle aspiration biopsy (FNAB) samples. To that end, we designed our approach to prioritize molecules that were minimally expressed in normal thyroid and highly expressed in PTC. We first generated gene expression profiles from 11 normal thyroid tissue samples and 9 samples of classic PTC. The results were segregated to rank most highly those molecules not expressed in normal thyroid and up-regulated at least 6-fold in PTC. From this list, we chose 2 molecules (P-cadherin and Bax) for immunohistochemical analysis for which commercial antibodies were available. These were compared with 2 other molecules that have been previously studied in thyroid cancer (cytokeratin-19 and galectin-3). For immunohistochemistry, a tissue microarray was generated that contained the following tissues: classic PTC (n = 20), follicular variant of PTC (n = 9), normal thyroid (n = 19), Hashimoto thyroiditis (n = 11), follicular adenoma (n = 15), and follicular carcinoma (n = 14). Immunohistochemical staining was scored and compared with the gene expression profiling. As anticipated, cytokeratin-19 and galectin-3 were highly expressed in PTC and less expressed in other tissues. Bax and P-cadherin were also expressed in PTC, but to a lower level than cytokeratin-19 and galectin-3; however, Bax and P-cadherin demonstrated virtually no staining of normal thyroid, unlike cytokeratin-19 and galectin-3. These results validate our approach for PTC biomarker discovery and identify several candidate biomarkers for further development.
Collapse
Affiliation(s)
- Kathleen M Murphy
- Department of Pathology, The Johns Hopkins Medical Institutions, Baltimore, MD 21287, USA
| | | | | |
Collapse
|
42
|
|
43
|
|
44
|
Burchette JL, Pham TT, Higgins SP, Cook JL, Soler AP. Expression of Cadherin/Catenin Cell—Cell Adhesion Molecules in a Onychomatricoma. Int J Surg Pathol 2008; 16:349-53. [DOI: 10.1177/1066896907310374] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Onychomatricoma is a rare nail tumor with a distinctive architecture. Proximally, there are serum-filled invaginations of nail matrix epithelium into the stroma, and distally, dermal protrusions perforate the nail plate. Because other matrical tumors of follicular and odontogenic origin express nuclear β-catenin, we examined the expression of cadherin/catenin proteins in this onychomatricoma case. The patient presented with a toenail yellow streak, and the biopsy revealed an onychomatricoma. E-cadherin and β-catenin were at the cell membrane in the epithelial invaginations. P-cadherin was restricted to basal cells. In contrast to other matrical tumors, nuclear β-catenin was not present. These results suggest that onychomatricoma may lack the transcriptional activating role of β-catenin that characterizes follicular and odontogenic matrical tumors. This is the first report on the expression of cadherin/ catenin cell—cell adhesion proteins in this rare nail tumor.
Collapse
Affiliation(s)
| | - Tram T. Pham
- Department of Pathology, Duke University Medical Center
| | - Steven P. Higgins
- Division of Dermatology, Department of Medicine Duke University Medical Center, Durham, North Carolina
| | - Jonathan L. Cook
- Division of Dermatology, Department of Medicine Duke University Medical Center, Durham, North Carolina
| | | |
Collapse
|
45
|
Paredes J, Correia AL, Ribeiro AS, Albergaria A, Milanezi F, Schmitt FC. P-cadherin expression in breast cancer: a review. Breast Cancer Res 2008; 9:214. [PMID: 18001487 PMCID: PMC2242663 DOI: 10.1186/bcr1774] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
P-cadherin is frequently over-expressed in high-grade invasive breast carcinomas and has been reported to be an enhancer of migration and invasion of breast cancer cells, being correlated with tumour aggressiveness. In addition, expression of P-cadherin is well established as an indicator of poor prognosis in human breast cancer, which has stimulated our interest in studying its role in this setting. This review describes the most important findings on P-cadherin expression and function in normal mammary tissue and breast cancer cells, emphasizing that further research is required to elucidate the role played by this protein in human mammary tumours.
Collapse
Affiliation(s)
- Joana Paredes
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| | | | | | | | | | | |
Collapse
|
46
|
Fanelli MA, Montt-Guevara M, Diblasi AM, Gago FE, Tello O, Cuello-Carrión FD, Callegari E, Bausero MA, Ciocca DR. P-cadherin and beta-catenin are useful prognostic markers in breast cancer patients; beta-catenin interacts with heat shock protein Hsp27. Cell Stress Chaperones 2008; 13:207-20. [PMID: 18320359 PMCID: PMC2673888 DOI: 10.1007/s12192-007-0007-z] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2007] [Revised: 12/19/2007] [Accepted: 12/26/2007] [Indexed: 12/11/2022] Open
Abstract
The cadherin-catenin proteins have in common with heat shock proteins (HSP) the capacity to bind/interact proteins of other classes. Moreover, there are common molecular pathways that connect the HSP response and the cadherin-catenin protein system. In the present study, we have explored whether in breast cancer the HSP might interact functionally with the cadherin-catenin cell adhesion system. Beta-catenin was immunoprecipitated from breast cancer biopsy samples, and the protein complexes isolated in this way were probed with antibodies against HSP family members. We are thus the first to demonstrate a specific interaction between beta-catenin and Hsp27. However, beta-catenin did not bind Hsp60, Hsp70, Hsp90, gp96, or the endoplasmic reticulum stress response protein CHOP. To confirm the finding of Hsp27-beta-catenin interaction, the 27-kDa immunoprecipitated band was excised from one-dimensional polyacrylamide gel electrophoresis gels and submitted to liquid chromatography-tandem mass spectrometry with electrospray ionization, confirming a role for Hsp27. In addition, beta-catenin interacted with other proteins including heat shock transcription factor 1, P-cadherin, and caveolin-1. In human breast cancer biopsy samples, beta-catenin was coexpressed in the same tumor areas and in the same tumor cells that expressed Hsp27. However, this coexpression was strong when beta-catenin was present in the cytoplasm of the tumor cells and not when beta-catenin was expressed at the cell surface only. Furthermore, murine breast cancer cells transfected with hsp25 showed a redistribution of beta-catenin from the cell membrane to the cytoplasm. When the prognostic significance of cadherin-catenin expression was examined by immunohistochemistry in breast cancer patients (n = 215, follow-up = >10 years), we found that the disease-free survival and overall survival were significantly shorter for patients expressing P-cadherin and for patients showing expression of beta-catenin in the cytoplasm only (not at the cell surface). The interactions of beta-catenin with Hsp27 and with HSF1 may explain some of the molecular pathways that influence tumor cell survival and the clinical significance in the prognosis of the breast cancer patients.
Collapse
Affiliation(s)
- Mariel A Fanelli
- Oncology Laboratory, Institute of Experimental Medicine and Biology of Cuyo, Regional Center for Scientific and Technological Research, National Research Council (CONICET), Mendoza, Argentina.
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Gama A, Paredes J, Gärtner F, Alves A, Schmitt F. Expression of E-cadherin, P-cadherin and beta-catenin in canine malignant mammary tumours in relation to clinicopathological parameters, proliferation and survival. Vet J 2007; 177:45-53. [PMID: 17631398 DOI: 10.1016/j.tvjl.2007.05.024] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2007] [Revised: 05/17/2007] [Accepted: 05/27/2007] [Indexed: 10/23/2022]
Abstract
Cadherin-catenin complexes play a critical role in intercellular adhesion, and their altered expression has been implicated in tumour progression. In this study, the expression of E-cadherin, P-cadherin and beta-catenin was analysed in 65 canine malignant mammary tumours and correlated with clinicopathological parameters, proliferation and survival. Reduction in E-cadherin expression was significantly associated with increased tumour size, high histological and invasion grades, lymph node metastasis and high mitotic index. Reduced beta-catenin expression was associated with high histological and invasion grades. Anomalous expression of P-cadherin was only associated with invasion. In 39 cases for which follow-up data were available, reduced E-cadherin and beta-catenin expression was significantly associated with shorter overall survival and disease free survival. Abnormal expression of adhesion molecules is a common phenomenon in canine mammary malignant tumours and may play a central role in tumour progression.
Collapse
Affiliation(s)
- Adelina Gama
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5001-911 Vila Real, Portugal
| | | | | | | | | |
Collapse
|
48
|
Dufloth RM, Matos I, Schmitt F, Zeferino LC. Tissue microarrays for testing basal biomarkers in familial breast cancer cases. SAO PAULO MED J 2007; 125:226-30. [PMID: 17992394 PMCID: PMC11020546 DOI: 10.1590/s1516-31802007000400007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2006] [Revised: 10/15/2006] [Accepted: 06/20/2007] [Indexed: 11/22/2022] Open
Abstract
CONTEXT AND OBJECTIVE The proteins p63, p-cadherin and CK5 are consistently expressed by the basal and myoepithelial cells of the breast, although their expression in sporadic and familial breast cancer cases has yet to be fully defined. The aim here was to study the basal immunoprofile of a breast cancer case series using tissue microarray technology. DESIGN AND SETTING This was a cross-sectional study at Universidade Estadual de Campinas, Brazil, and the Institute of Pathology and Molecular Immunology, Porto, Portugal. METHODS Immunohistochemistry using the antibodies p63, CK5 and p-cadherin, and also estrogen receptor (ER) and Human Epidermal Receptor Growth Factor 2 (HER2), was per-formed on 168 samples from a breast cancer case series. The criteria for identifying women at high risk were based on those of the Breast Cancer Linkage Consortium. RESULTS Familial tumors were more frequently positive for the p-cadherin (p = 0.0004), p63 (p < 0.0001) and CK5 (p < 0.0001) than was sporadic cancer. Moreover, familial tumors had coexpression of the basal biomarkers CK5+/ p63+, grouped two by two (OR = 34.34), while absence of coexpression (OR = 0.13) was associated with the sporadic cancer phenotype. CONCLUSION Familial breast cancer was found to be associated with basal biomarkers, using tissue microarray technology. Therefore, characterization of the familial breast cancer phenotype will improve the understanding of breast carcinogenesis.
Collapse
Affiliation(s)
- Rozany Mucha Dufloth
- Department of Obstetrics and Gynecology, Universidade Estadual de Campinas, Porto, Portugal.
| | | | | | | |
Collapse
|
49
|
Troxell ML, Masek M, Sibley RK. Immunohistochemical staining of papillary breast lesions. Appl Immunohistochem Mol Morphol 2007; 15:145-53. [PMID: 17525625 DOI: 10.1097/01.pai.0000210420.45869.f4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The separation of ductal papilloma from intraductal papillary carcinoma of the breast on hematoxylin and eosin stained sections often presents diagnostic difficulty. Immunohistochemical staining is often employed in diagnosis, historically with smooth muscle actin (SMA). In this study, the staining characteristics of a panel of myoepithelial markers (calponin, p63, P-cadherin), were compared with SMA, and the epithelial expression of CD44s was assessed in 99 papillary lesions. SMA, calponin, and p63 demonstrated myoepithelial cells in 61%, 63%, and 65% of papillary lesions, respectively. However, specificity was quite variable. Calponin-stained stromal myofibroblasts (35% of cases), vessel pericytes (92%), and endothelial cells (69%), though each to a lesser degree than SMA. Calponin also showed cross reactivity with epithelium in 18% of cases. p63 was almost completely restricted to myoepithelial cell nuclei, and did not stain vascular smooth muscle or myofibroblasts. However, p63 stained the epithelial component in one papillary carcinoma, a basal layer of cells in 1 biphasic invasive carcinoma, and the cytoplasm in 1 case. P-cadherin stained both epithelial and myoepithelial cells. The epithelial expression of CD44s and did not distinguish papillomas from papillary carcinomas. Thus, P-cadherin and CD44s are not useful in the characterization of papillary lesions. Given increased specificity as compared with SMA, the combination of p63 and calponin is recommended for analysis of breast papillary lesions.
Collapse
Affiliation(s)
- Megan L Troxell
- Department of Pathology, Stanford University Medical Center, Stanford, CA 94305, USA.
| | | | | |
Collapse
|
50
|
Pendás-Franco N, González-Sancho JM, Suárez Y, Aguilera O, Steinmeyer A, Gamallo C, Berciano MT, Lafarga M, Muñoz A. Vitamin D regulates the phenotype of human breast cancer cells. Differentiation 2006; 75:193-207. [PMID: 17288543 DOI: 10.1111/j.1432-0436.2006.00131.x] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
1alpha,25-dihydroxyvitamin D(3) (1,25(OH)(2)D(3)), the most active vitamin D metabolite, regulates proliferation, survival, and differentiation in many cell types. 1,25(OH)(2)D(3) and several less calcemic analogs are in clinical trials against various neoplasias. We studied the effects of 1,25(OH)(2)D(3) on a panel of human breast cancer cells, which show similar vitamin D receptor (VDR) content but variable transcriptional and anti-proliferative responsiveness. In MDA-MB-453 cells, one of the responsive lines, 1,25(OH)(2)D(3) increased cell and nuclear size and induced a change from a rounded to a flattened morphology. By phase contrast, laser confocal and electron microscopy, we found that 1,25(OH)(2)D(3) changed the cytoarchitecture of actin filaments and microtubules and nuclear shape, induced filopodia and lamellipodia, and promoted cell-to-cell contacts via large cytoplasmic extensions. However, although claudin-7 and occludin content in the cells increased upon exposure to 1,25(OH)(2)D(3), these proteins were not located at the plasma membrane probably due to the absence of E-cadherin expression. Additionally, 1,25(OH)(2)D(3) induced the accumulation of alpha(v)-integrin, beta(5)-integrin, focal adhesion kinase (FAK), and paxillin in focal adhesion plaques, concomitant with the increased phosphorylation of the FAK. 1,25(OH)(2)D(3) enhanced MDA-MB-453 and MDA-MB-468 cell adhesion to plastic but decreased adhesion to laminin. The expression of the mesenchymal marker N-cadherin and of the myoepithelial marker P-cadherin was down-regulated by 1,25(OH)(2)D(3) in several breast cancer cell lines. Other myoepithelial proteins such as alpha(6)-integrin, beta(4)-integrin, and smooth muscle alpha-actin (SMA) were also repressed by 1,25(OH)(2)D(3) in MDA-MB-453 and MDA-MB-468 cells. Accordingly, mice lacking VDR (Vdr(-/-)) showed abnormally high levels of SMA and P-cadherin in their mammary gland. These findings show that 1,25(OH)(2)D(3) profoundly affects the phenotype of breast cancer cells, and suggest that it reverts the myoepithelial features associated with more aggressive forms and poor prognosis in human breast cancer.
Collapse
Affiliation(s)
- Natalia Pendás-Franco
- Instituto de Investigaciones Biomédicas Alberto Sols Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid E-28029 Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|