1
|
Lamellipodial wrinkles in fish keratocytes as markers of imperfect coordination between extension and retraction during cell migration. Biochem Biophys Res Commun 2018. [PMID: 29530529 DOI: 10.1016/j.bbrc.2018.03.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cell migration involves the precise coordination between extension at the front of the cell and retraction at the rear. This coordination is particularly evident in fast moving cells such as fish keratocytes, where it leads to highly stable gliding motion, propelled at the front by broad, 0.1-0-2 μm thick lamellipodia. Transient uncoupling between extension and retraction can occur if the rear is temporarily stuck, which might eventually lead to cell shape instabilities. We have frequently observed in fish keratocytes the presence of lamellipodial radial wrinkles, detected by confocal, scanning electron and side-view microscopy as folds in the lamellipodium up to 2 μm in height. Using a linear finite elements analysis, we simulated the displacement of cells either with perfect coordination between extension and retraction or with the rear transiently stuck while the front continues extending, and we observed that in this last condition compression stresses arise in the lamellipodium which predict the formation of the observed pattern of lamellipodial wrinkles. In support of the numerical modeling findings, we observed that the transient halting of retraction at the rear using micromanipulation induced the formation of lamellipodial wrinkles in previously flat lamellipodia. The obtained results suggest that the conspicuous lamellipodial wrinkles observed in migrating fish keratocytes are the product of transient imbalances between front and rear displacements, and are therefore useful markers of the short scale dynamics of extension and retraction coordination during cell migration.
Collapse
|
2
|
Emmert M, Witzel P, Rothenburger-Glaubitt M, Heinrich D. Nanostructured surfaces of biodegradable silica fibers enhance directed amoeboid cell migration in a microtubule-dependent process. RSC Adv 2017. [DOI: 10.1039/c6ra25739a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This study reveals significantly enhanced amoeboid cell migration on biodegradable silica fibers in comparison to plain glass surfaces.
Collapse
Affiliation(s)
- Martin Emmert
- Fraunhofer Institute for Silicate Research ISC
- 97082 Würzburg
- Germany
- Julius-Maximilians-Universität Würzburg
- Chemical Technology of Material Synthesis
| | - Patrick Witzel
- Fraunhofer Institute for Silicate Research ISC
- 97082 Würzburg
- Germany
- Julius-Maximilians-Universität Würzburg
- Chemical Technology of Material Synthesis
| | | | - Doris Heinrich
- Fraunhofer Institute for Silicate Research ISC
- 97082 Würzburg
- Germany
- Leiden University
- LION Leiden Institute of Physics
| |
Collapse
|
3
|
Seerapu HR, Borthakur S, Kong N, Agrawal S, Drazba J, Vasanji A, Fantin A, Ruhrberg C, Buck M, Horowitz A. The cytoplasmic domain of neuropilin-1 regulates focal adhesion turnover. FEBS Lett 2013; 587:3392-9. [PMID: 24021649 DOI: 10.1016/j.febslet.2013.08.040] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 08/26/2013] [Indexed: 01/13/2023]
Abstract
Though the vascular endothelial growth factor coreceptor neuropilin-1 (Nrp1) plays a critical role in vascular development, its precise function is not fully understood. We identified a group of novel binding partners of the cytoplasmic domain of Nrp1 that includes the focal adhesion regulator, Filamin A (FlnA). Endothelial cells (ECs) expressing a Nrp1 mutant devoid of the cytoplasmic domain (nrp1(cyto)(Δ/Δ)) migrated significantly slower in response to VEGF relative to the cells expressing wild-type Nrp1 (nrp1(+/+) cells). The rate of FA turnover in VEGF-treated nrp1(cyto)(Δ/Δ) ECs was an order of magnitude lower in comparison to nrp1(+/+) ECs, thus accounting for the slower migration rate of the nrp1(cyto)(Δ/Δ) ECs.
Collapse
Affiliation(s)
- Himabindu Reddy Seerapu
- Department of Molecular Cardiology, Lerner Research Institute, the Cleveland Clinic, Cleveland, OH 44195, United States
| | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Nhe1 is essential for potassium but not calcium facilitation of cell motility and the monovalent cation requirement for chemotactic orientation in Dictyostelium discoideum. EUKARYOTIC CELL 2011; 10:320-31. [PMID: 21239624 DOI: 10.1128/ec.00255-10] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In Dictyostelium discoideum, extracellular K+ or Ca2+ at a concentration of 40 or 20 mM, respectively, facilitates motility in the absence or presence of a spatial gradient of chemoattractant. Facilitation results in maximum velocity, cellular elongation, persistent translocation, suppression of lateral pseudopod formation, and myosin II localization in the posterior cortex. A lower threshold concentration of 15 mM K+ or Na or 5 mM Ca2+ is required for chemotactic orientation. Although the common buffer solutions used by D. discoideum researchers to study chemotaxis contain sufficient concentrations of cations for chemotactic orientation, the majority contain insufficient levels to facilitate motility. Here it has been demonstrated that Nhe1, a plasma membrane protein, is required for K+ but not Ca2+ facilitation of cell motility and for the lower K+ but not Ca2+ requirement for chemotactic orientation.
Collapse
|
5
|
Xiong Y, Kabacoff C, Franca-Koh J, Devreotes PN, Robinson DN, Iglesias PA. Automated characterization of cell shape changes during amoeboid motility by skeletonization. BMC SYSTEMS BIOLOGY 2010; 4:33. [PMID: 20334652 PMCID: PMC2864235 DOI: 10.1186/1752-0509-4-33] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Accepted: 03/24/2010] [Indexed: 01/14/2023]
Abstract
BACKGROUND The ability of a cell to change shape is crucial for the proper function of many cellular processes, including cell migration. One type of cell migration, referred to as amoeboid motility, involves alternating cycles of morphological expansion and retraction. Traditionally, this process has been characterized by a number of parameters providing global information about shape changes, which are insufficient to distinguish phenotypes based on local pseudopodial activities that typify amoeboid motility. RESULTS We developed a method that automatically detects and characterizes pseudopodial behavior of cells. The method uses skeletonization, a technique from morphological image processing to reduce a shape into a series of connected lines. It involves a series of automatic algorithms including image segmentation, boundary smoothing, skeletonization and branch pruning, and takes into account the cell shape changes between successive frames to detect protrusion and retraction activities. In addition, the activities are clustered into different groups, each representing the protruding and retracting history of an individual pseudopod. CONCLUSIONS We illustrate the algorithms on movies of chemotaxing Dictyostelium cells and show that our method makes it possible to capture the spatial and temporal dynamics as well as the stochastic features of the pseudopodial behavior. Thus, the method provides a powerful tool for investigating amoeboid motility.
Collapse
Affiliation(s)
- Yuan Xiong
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | | | | | | | | | | |
Collapse
|
6
|
Meili R, Alonso-Latorre B, del Alamo JC, Firtel RA, Lasheras JC. Myosin II is essential for the spatiotemporal organization of traction forces during cell motility. Mol Biol Cell 2009; 21:405-17. [PMID: 19955212 PMCID: PMC2814786 DOI: 10.1091/mbc.e09-08-0703] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Amoeboid motility results from pseudopod protrusions and retractions driven by traction forces of cells. We propose that the motor and actin-crosslinking functions of MyoII differentially control the temporal and spatial distribution of the traction forces, and establish mechanistic relationships between these distributions, enabling cells to move. Amoeboid motility requires spatiotemporal coordination of biochemical pathways regulating force generation and consists of the quasi-periodic repetition of a motility cycle driven by actin polymerization and actomyosin contraction. Using new analytical tools and statistical methods, we provide, for the first time, a statistically significant quantification of the spatial distribution of the traction forces generated at each phase of the cycle (protrusion, contraction, retraction, and relaxation). We show that cells are constantly under tensional stress and that wild-type cells develop two opposing “pole” forces pulling the front and back toward the center whose strength is modulated up and down periodically in each cycle. We demonstrate that nonmuscular myosin II complex (MyoII) cross-linking and motor functions have different roles in controlling the spatiotemporal distribution of traction forces, the changes in cell shape, and the duration of all the phases. We show that the time required to complete each phase is dramatically increased in cells with altered MyoII motor function, demonstrating that it is required not only for contraction but also for protrusion. Concomitant loss of MyoII actin cross-linking leads to a force redistribution throughout the cell perimeter pulling inward toward the center. However, it does not reduce significantly the magnitude of the traction forces, uncovering a non–MyoII-mediated mechanism for the contractility of the cell.
Collapse
Affiliation(s)
- Ruedi Meili
- Section of Cell and Developmental Biology, Division of Biological Sciences, Department of Mechanical and Aerospace Engineering, and Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | | | | | | | | |
Collapse
|
7
|
Lusche DF, Wessels D, Soll DR. The effects of extracellular calcium on motility, pseudopod and uropod formation, chemotaxis, and the cortical localization of myosin II in Dictyostelium discoideum. ACTA ACUST UNITED AC 2009; 66:567-87. [PMID: 19363786 DOI: 10.1002/cm.20367] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Extracellular Ca(++), a ubiquitous cation in the soluble environment of cells both free living and within the human body, regulates most aspects of amoeboid cell motility, including shape, uropod formation, pseudopod formation, velocity, and turning in Dictyostelium discoideum. Hence it affects the efficiency of both basic motile behavior and chemotaxis. Extracellular Ca(++) is optimal at 10 mM. A gradient of the chemoattractant cAMP generated in the absence of added Ca(++) only affects turning, but in combination with extracellular Ca(++), enhances the effects of extracellular Ca(++). Potassium, at 40 mM, can partially substitute for Ca(++). Mg(++), Mn(++), Zn(++), and Na(+) cannot. Extracellular Ca(++), or K(+), also induce the cortical localization of myosin II in a polar fashion. The effects of Ca(++), K(+) or a cAMP gradient do not appear to be similarly mediated by an increase in the general pool of free cytosolic Ca(++). These results suggest a model, in which each agent functioning through different signaling systems, converge to affect the cortical localization of myosin II, which in turn effects the behavioral changes leading to efficient cell motility and chemotaxis. Cell Motil. Cytoskeleton 2009. (c) 2009 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- Daniel F Lusche
- Department of Biology, The W.M. Keck Dynamic Image Analysis Facility, University of Iowa, Iowa City, Iowa 52242, USA.
| | | | | |
Collapse
|
8
|
Delanoë-Ayari H, Iwaya S, Maeda YT, Inose J, Rivière C, Sano M, Rieu JP. Changes in the magnitude and distribution of forces at different Dictyostelium developmental stages. ACTA ACUST UNITED AC 2008; 65:314-31. [PMID: 18205201 DOI: 10.1002/cm.20262] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The distribution of forces exerted by migrating Dictyostelium amebae at different developmental stages was measured using traction force microscopy. By using very soft polyacrylamide substrates with a high fluorescent bead density, we could measure stresses as small as 30 Pa. Remarkable differences exist both in term of the magnitude and distribution of forces in the course of development. In the vegetative state, cells present cyclic changes in term of speed and shape between an elongated form and a more rounded one. The forces are larger in this first state, especially when they are symmetrically distributed at the front and rear edge of the cell. Elongated vegetative cells can also present a front-rear asymmetric force distribution with the largest forces in the crescent-shaped rear of the cell (uropod). Pre-aggregating cells, once polarized, only present this last kind of asymmetric distribution with the largest forces in the uropod. Except for speed, no cycle is observed. Neither the force distribution of pre-aggregating cells nor their overall magnitude are modified during chemotaxis, the later being similar to the one of vegetative cells (F(0) approximately 6 nN). On the contrary, both the force distribution and overall magnitude is modified for the fast moving aggregating cells. In particular, these highly elongated cells exert lower forces (F(0) approximately 3 nN). The location of the largest forces in the various stages of the development is consistent with the myosin II localization described in the literature for Dictyostelium (Yumura et al.,1984. J Cell Biol 99:894-899) and is confirmed by preliminary experiments using a GFP-myosin Dictyostelium strain.
Collapse
Affiliation(s)
- H Delanoë-Ayari
- Université de Lyon, F-6900, France, Université Lyon 1,CNRS UMR 5586, F-69622 Villeurbanne Cedex, France
| | | | | | | | | | | | | |
Collapse
|
9
|
Kay RR, Langridge P, Traynor D, Hoeller O. Changing directions in the study of chemotaxis. Nat Rev Mol Cell Biol 2008; 9:455-63. [PMID: 18500256 DOI: 10.1038/nrm2419] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Chemotaxis--the guided movement of cells in chemical gradients--probably first emerged in our single-celled ancestors and even today is recognizably similar in neutrophils and amoebae. Chemotaxis enables immune cells to reach sites of infection, allows wounds to heal and is crucial for forming embryonic patterns. Furthermore, the manipulation of chemotaxis may help to alleviate disease states, including the metastasis of cancer cells. This review discusses recent results concerning how cells orientate in chemotactic gradients and the role of phosphatidylinositol-3,4,5-trisphosphate, what produces the force for projecting pseudopodia and a new role for the endocytic cycle in movement.
Collapse
Affiliation(s)
- Robert R Kay
- MRC Laboratory of Molecular Biology, Hill Road, Cambridge CB2 0QH, UK.
| | | | | | | |
Collapse
|
10
|
Wessels D, Lusche DF, Kuhl S, Heid P, Soll DR. PTEN plays a role in the suppression of lateral pseudopod formation during Dictyostelium motility and chemotaxis. J Cell Sci 2007; 120:2517-31. [PMID: 17623773 DOI: 10.1242/jcs.010876] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
It has been suggested that the phosphatydylinositol (3,4,5)-trisphosphate [PtdIns(3,4,5)P(3)] phosphatase and tensin homolog PTEN plays a fundamental role in Dictyostelium discoideum chemotaxis. To identify that role, the behavior of a pten(-) mutant was quantitatively analyzed using two-dimensional and three-dimensional computer-assisted methods. pten(-) cells were capable of polarizing and translocating in the absence of attractant, and sensing and responding to spatial gradients, temporal gradients and natural waves of attractant. However, all of these responses were compromised (i.e. less efficient) because of the fundamental incapacity of pten(-) cells to suppress lateral pseudopod formation and turning. This defect was equally manifested in the absence, as well as presence, of attractant. PTEN, which is constitutively localized in the cortex of polarized cells, was found essential for the attractant-stimulated increase in cortical myosin II and F-actin that is responsible for the increased suppression of pseudopods during chemotaxis. PTEN, therefore, plays a fundamental role in the suppression of lateral pseudopod formation, a process essential for the efficiency of locomotion and chemotaxis, but not in directional sensing.
Collapse
Affiliation(s)
- Deborah Wessels
- W. M. Keck Dynamic Image Analysis Facility, Department of Biological Sciences, The University of Iowa, Iowa City, IA 52242, USA
| | | | | | | | | |
Collapse
|
11
|
Yoshida K, Soldati T. Dissection of amoeboid movement into two mechanically distinct modes. J Cell Sci 2006; 119:3833-44. [PMID: 16926192 DOI: 10.1242/jcs.03152] [Citation(s) in RCA: 156] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The current dominant model of cell locomotion proposes that actin polymerization pushes against the membrane at the leading edge producing filopodia and lamellipodia that move the cell forward. Despite its success, this model does not fully explain the complex process of amoeboid motility, such as that occurring during embryogenesis and metastasis. Here, we show that Dictyostelium cells moving in a physiological milieu continuously produce `blebs' at their leading edges, and demonstrate that focal blebbing contributes greatly to their locomotion. Blebs are well-characterized spherical hyaline protrusions that occur when a patch of cell membrane detaches from its supporting cortex. Their formation requires the activity of myosin II, and their physiological contribution to cell motility has not been fully appreciated. We find that pseudopodia extension, cell body retraction and overall cell displacement are reduced under conditions that prevent blebbing, including high osmolarity and blebbistatin, and in myosin-II-null cells. We conclude that amoeboid motility comprises two mechanically different processes characterized by the production of two distinct cell-surface protrusions, blebs and filopodia-lamellipodia.
Collapse
Affiliation(s)
- Kunito Yoshida
- Department of Biological Sciences, Sir Alexander Fleming Building, Imperial College, South Kensington, London, SW7 2AZ, UK
| | | |
Collapse
|
12
|
Wessels D, Brincks R, Kuhl S, Stepanovic V, Daniels KJ, Weeks G, Lim CJ, Spiegelman G, Fuller D, Iranfar N, Loomis WF, Soll DR. RasC plays a role in transduction of temporal gradient information in the cyclic-AMP wave of Dictyostelium discoideum. EUKARYOTIC CELL 2005; 3:646-62. [PMID: 15189986 PMCID: PMC420135 DOI: 10.1128/ec.3.3.646-662.2004] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
To define the role that RasC plays in motility and chemotaxis, the behavior of a rasC null mutant, rasC-, in buffer and in response to the individual spatial, temporal, and concentration components of a natural cyclic AMP (cAMP) wave was analyzed by using computer-assisted two-dimensional and three-dimensional motion analysis systems. These quantitative studies revealed that rasC- cells translocate at the same velocity and exhibit chemotaxis up spatial gradients of cAMP with the same efficiency as control cells. However, rasC- cells exhibit defects in maintaining anterior-posterior polarity along the substratum and a single anterior pseudopod when translocating in buffer in the absence of an attractant. rasC- cells also exhibit defects in their responses to both the increasing and decreasing temporal gradients of cAMP in the front and the back of a wave. These defects result in the inability of rasC- cells to exhibit chemotaxis in a natural wave of cAMP. The inability to respond normally to temporal gradients of cAMP results in defects in the organization of the cytoskeleton, most notably in the failure of both F actin and myosin II to exit the cortex in response to the decreasing temporal gradient of cAMP in the back of the wave. While the behavioral defect in the front of the wave is similar to that of the myoA-/myoF- myosin I double mutant, the behavioral and cytoskeletal defects in the back of the wave are similar to those of the S13A myosin II regulatory light-chain phosphorylation mutant. Expression array data support the premise that the behavioral defects exhibited by the rasC- mutant are the immediate result of the absence of RasC function.
Collapse
Affiliation(s)
- Deborah Wessels
- W. M. Keck Dynamic Image Analysis Facility, Department of Biological Sciences, The University of Iowa, Iowa City, IA 52242, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Johnson BF, Yoo BY, Calleja GB, Kozela CP. Second thoughts on septation by the fission yeast, Schizosaccharomyces pombe: pull vs. push mechanisms with an appendix--dimensional modelling of the flat and variable septa. Antonie van Leeuwenhoek 2005; 88:1-12. [PMID: 15928972 DOI: 10.1007/s10482-004-7074-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2004] [Accepted: 12/02/2004] [Indexed: 10/25/2022]
Abstract
The correlation of contraction by an actomyosin band with the closing of the septum of dividing cells of the fission yeast, Schizosaccharomyces pombe, cannot suggest cause-and-effect because contraction would be apparent whether the membrane enveloping the centripetally closing septum were pulled or were pushed. Thus the common observation of contraction is not critical. Diagrams of published electron micrographs of dividing wild-type fission yeasts illustrate variable (tilted) septal images that are counterintuitive to a pull model. Circumference calculations based on those images suggest that some variable forms might be only 6% closed even though their two-dimensional profiles would be 50% closed, if they were not tilted. Development of multiseptate forms of cdc4-8 and cdc4-377 temperature sensitive mutants incubated at their restrictive temperature was followed. These multiseptate forms are shown to have functional (functional in terms of generating divided uninucleate cytoplasts) but grotesque septa which are formed in the absence of actomyosin bands. By contrast, the myosin of the plant phragmoplast is not properly oriented for contractility, and Dictyostelium (attached cells) and Saccharomyces (mutants) have been shown to divide in the absence of myosin II, just as S. pombe does (above). Hence contractility, the essence of a pull model for septum closure, would seem to be non-essential. Other, non-contractile mechanisms of myosin are emphasized, and a push model becomes a rational default hypothesis. The essence of push models is that their synthesis/assembly mechanisms are driving force sufficient for septum closure.
Collapse
Affiliation(s)
- Byron F Johnson
- Department of Biology, Carleton University, Ottawa, Ontario, Canada K1S 5B6.
| | | | | | | |
Collapse
|
14
|
Zhou Y, Doerschuk CM, Anderson JM, Marchant RE. Biomaterial surface-dependent neutrophil mobility. J Biomed Mater Res A 2004; 69:611-20. [PMID: 15162402 DOI: 10.1002/jbm.a.30015] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Compromised neutrophil function in the presence of an implanted biomaterial may represent an important mechanism that allows for the development of implant-associated infections. Here, human neutrophil mobility has been investigated on a polyurethane (ChronoFlex AR), a hydrophobic surface consisting of an octadecyltrichlorosilane (OTS) self-assembled monolayer, and a glass reference material. Neutrophil mobility was quantified, based on cell movement speed and persistence time obtained from time-lapse optical microscopy, while neutrophil cytoskeletal structures and morphology were visualized using confocal microscopy and atomic force microscopy. Our results show that material surface properties affect neutrophil-surface interactions, as reflected by morphological changes, and the mobility of neutrophils stimulated by N-formylmethionyl-leucyl-phenylalanine (fMLP). In the absence of adsorbed plasma proteins, the mobility of stimulated neutrophils increased with increasing material hydrophobicity from glass, to polyurethane, to OTS. The opposite trend was observed in the presence of adsorbed plasma proteins, such that neutrophil mobility increased with decreasing material hydrophobicity. Analysis of the results showed that the mobility of fMLP-stimulated neutrophils cells was inversely related to the extent of cell spreading on the materials.
Collapse
Affiliation(s)
- Yue Zhou
- Department of Biomedical Engineering, Case Western Reserve University, Wickenden Building, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | | | | | | |
Collapse
|
15
|
Heid PJ, Wessels D, Daniels KJ, Gibson DP, Zhang H, Voss E, Soll DR. The role of myosin heavy chain phosphorylation in Dictyostelium motility, chemotaxis and F-actin localization. J Cell Sci 2004; 117:4819-35. [PMID: 15340009 DOI: 10.1242/jcs.01358] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To assess the role of myosin II heavy chain (MHC) phosphorylation in basic motility and natural chemotaxis, the Dictyostelium mhcA null mutant mhcA(-), mhcA(-) cells rescued with a myosin II gene that mimics the constitutively unphosphorylated state (3XALA) and mhcA(-) cells rescued with a myosin II gene that mimics the constitutively phosphorylated state (3XASP), were analyzed in buffer and in response to the individual spatial, temporal and concentration components of a cAMP wave using computer-assisted methods. Each mutant strain exhibited unique defects in cell motility and chemotaxis. Although mhcA(-) cells could crawl with some polarity and showed chemotaxis with highly reduced efficiency in a spatial gradient of cAMP, they were very slow, far less polar and more three-dimensional than control cells. They were also incapable of responding to temporal gradients of cAMP, of chemotaxis in a natural wave of cAMP or streaming late in aggregation. 3XASP cells were faster and chemotactically more efficient than mhcA(-) cells, but still incapable of responding to temporal gradients of cAMP, chemotaxis in natural waves of cAMP or streaming late in aggregation. 3XALA cells were fast, were able to respond to temporal gradients of cAMP, and responded to natural waves of cAMP. However, they exhibited a 50% reduction in chemotactic efficiency, could not stream late in aggregation and could not enter the streams of control cells in mixed cultures. F-actin staining further revealed that while the presence of unphosphorylated MHC was essential for the increase in F-actin in the cytoplasm in response to the increasing temporal gradient of cAMP in the front of a natural wave, the actual dephosphorylation event was essential for the associated increase in cortical F-actin. The results of these studies indicate that MHC phosphorylation-dephosphorylation, like myosin II regulatory light chain phosphorylation-dephosphorylation, represents a potential downstream target of the regulatory cascades emanating from the different phases of the wave.
Collapse
Affiliation(s)
- Paul J Heid
- W. M. Keck Dynamic Image Analysis Facility, Department of Biological Sciences, The University of Iowa, Iowa City, IA 52242, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Laevsky G, Knecht DA. Cross-linking of actin filaments by myosin II is a major contributor to cortical integrity and cell motility in restrictive environments. J Cell Sci 2003; 116:3761-70. [PMID: 12890752 DOI: 10.1242/jcs.00684] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cells are frequently required to move in a local environment that physically restricts locomotion, such as during extravasation or metastatic invasion. In order to model these events, we have developed an assay in which vegetative Dictyostelium amoebae undergo chemotaxis under a layer of agarose toward a source of folic acid [Laevsky, G. and Knecht, D. A. (2001). Biotechniques 31, 1140-1149]. As the concentration of agarose is increased from 0.5% to 3% the cells are increasingly inhibited in their ability to move under the agarose. The contribution of myosin II and actin cross-linking proteins to the movement of cells in this restrictive environment has now been examined. Cells lacking myosin II heavy chain (mhcA-) are unable to migrate under agarose overlays of greater than 0.5%, and even at this concentration they move only a short distance from the trough. While attempting to move, the cells become stretched and fragmented due to their inability to retract their uropods. At higher agarose concentrations, the mhcA- cells protrude pseudopods under the agarose, but are unable to pull the cell body underneath. Consistent with a role for myosin II in general cortical stability, GFP-myosin dynamically localizes to the lateral and posterior cortex of cells moving under agarose. Cells lacking the essential light chain of myosin II (mlcE-), have no measurable myosin II motor activity, yet were able to move normally under all agarose concentrations. Mutants lacking either ABP-120 or alpha-actinin were also able to move under agarose at rates similar to wild-type cells. We hypothesize that myosin stabilizes the actin cortex through its cross-linking activity rather than its motor function and this activity is necessary and sufficient for the maintenance of cortical integrity of cells undergoing movement in a restrictive environment. The actin cross-linkers alpha-actinin and ABP-120 do not appear to play as major a role as myosin II in providing this cortical integrity.
Collapse
Affiliation(s)
- Gary Laevsky
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA
| | | |
Collapse
|
17
|
Furukawa R, Maselli A, Thomson SAM, Lim RWL, Stokes JV, Fechheimer M. Calcium regulation of actin crosslinking is important for function of the actin cytoskeleton in Dictyostelium. J Cell Sci 2003; 116:187-96. [PMID: 12456728 DOI: 10.1242/jcs.00220] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The actin cytoskeleton is sensitive to changes in calcium, which affect contractility, actin-severing proteins, actin-crosslinking proteins and calmodulin-regulated enzymes. To dissect the role of calcium control on the activity of individual proteins from effects of calcium on other processes, calcium-insensitive forms of these proteins were prepared and introduced into living cells to replace a calcium-sensitive form of the same protein. Crosslinking and bundling of actin filaments by the Dictyostelium 34 kDa protein is inhibited in the presence of micromolar free calcium. A modified form of the 34 kDa protein with mutations in the calcium binding EF hand (34 kDa deltaEF2) was prepared using site-directed mutagenesis and expressed in E. coli. Equilibrium dialysis using [(45)Ca]CaCl(2) revealed that the wild-type protein is able to bind one calcium ion with a Kd of 2.4 microM. This calcium binding is absent in the 34 kDa deltaEF2 protein. The actin-binding activity of the 34 kDa deltaEF2 protein was equivalent to wildtype but calcium insensitive in vitro. The wild-type and 34 kDa deltaEF2 proteins were expressed in 34-kDa-null and 34 kDa/alpha-actinin double null mutant Dictyostelium strains to test the hypothesis that calcium regulation of actin crosslinking is important in vivo. The 34 kDa deltaEF2 failed to supply function of the 34 kDa protein important for control of cell size and for normal growth to either of these 34-kDa-null strains. Furthermore, the distribution of the 34 kDa protein and actin were abnormal in cells expressing 34 kDa deltaEF2. Thus, calcium regulation of the formation and/or dissolution of crosslinked actin structures is required for dynamic behavior of the actin cytoskeleton important for cell structure and growth.
Collapse
Affiliation(s)
- Ruth Furukawa
- Department of Cellular Biology, University of Georgia, Athens, Georgia 30602, USA
| | | | | | | | | | | |
Collapse
|
18
|
Heid PJ, Voss E, Soll DR. 3D-DIASemb: a computer-assisted system for reconstructing and motion analyzing in 4D every cell and nucleus in a developing embryo. Dev Biol 2002; 245:329-47. [PMID: 11977985 DOI: 10.1006/dbio.2002.0631] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A computer-assisted three-dimensional (3D) system, 3D-DIASemb, has been developed that allows reconstruction and motion analysis of cells and nuclei in a developing embryo. In the system, 75 optical sections through a live embryo are collected in the z axis by using differential interference contrast microscopy. Optical sections for one reconstruction are collected in a 2.5-s period, and this process is repeated every 5 s. The outer perimeter and nuclear perimeter of each cell in the embryo are outlined in each optical section, converted into beta-spline models, and then used to construct 3D faceted images of the surface and nucleus of every cell in the developing embryo. Because all individual components of the embryo (i.e., each cell surface and each nuclear surface) are individually reconstructed, 3D-DIASemb allows isolation and analysis of (1) all or select nuclei in the absence of cell surfaces, (2) any single cell lineage, and (3) any single nuclear lineage through embryogenesis. Because all reconstructions represent mathematical models, 3D-DIASemb computes over 100 motility and dynamic morphology parameters for every cell, nucleus, or group of cells in the developing embryo at time intervals as short as 5 s. Finally, 3D-DIASemb reconstructs and motion analyzes cytoplasmic flow through the generation and analysis of "vector flow plots." To demonstrate the unique capabilities of this new technology, a Caenorhabditis elegans embryo is reconstructed and motion analyzed through the 28-cell stage. Although 3D-DIASemb was developed by using the C. elegans embryo as the experimental model, it can be applied to other embryonic systems. 3D-DIASemb therefore provides a new method for reconstructing and motion analyzing in 4D every cell and nucleus in a live, developing embryo, and should provide a powerful tool for assessing the effects of drugs, environmental perturbations, and mutations on the cellular and nuclear dynamics accompanying embryogenesis.
Collapse
Affiliation(s)
- Paul J Heid
- W. M. Keck Dynamic Image Analysis Facility, University of Iowa, Iowa City, Iowa 52242, USA
| | | | | |
Collapse
|
19
|
Zhang H, Wessels D, Fey P, Daniels K, Chisholm RL, Soll DR. Phosphorylation of the myosin regulatory light chain plays a role in motility and polarity duringDictyosteliumchemotaxis. J Cell Sci 2002; 115:1733-47. [PMID: 11950890 DOI: 10.1242/jcs.115.8.1733] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The myosin regulatory light chain (RLC) of Dictyostelium discoideum is phosphorylated at a single serine site in response to chemoattractant. To investigate the role of the phosphorylation of RLC in both motility and chemotaxis, mutants were generated in which the single phosphorylatable serine was replaced with a nonphosphorylatable alanine. Several independent clones expressing the mutant RLC in the RLC null mutant, mlcR-, were obtained. These S13A mutants were subjected to high resolution computer-assisted motion analysis to assess the basic motile behavior of cells in the absence of a chemotatic signal, and the chemotactic responsiveness of cells to the spatial, temporal and concentration components of natural cAMP waves. In the absence of a cAMP signal, mutant cells formed lateral pseudopods less frequently and crawled faster than wild-type cells. In a spatial gradient of cAMP, mutant cells chemotaxed more efficiently than wild-type cells. In the front of simulated temporal and natural waves of cAMP,mutant cells responded normally by suppressing lateral pseudopod formation. However, unlike wild-type cells, mutant cells did not lose cellular polarity at the peak and in the back of either wave. Since depolarization at the peak and in the descending phase of the natural wave is necessary for efficient chemotaxis, this deficiency resulted in a decrease in the capacity of S13A mutant cells to track natural cAMP waves relayed by wild-type cells, and in the fragmentation of streams late in mutant cell aggregation. These results reveal a regulatory pathway induced by the peak and back of the chemotactic wave that alters RLC phosphorylation and leads to cellular depolarization. We suggest that depolarization requires myosin II rearrangement in the cortex facilitated by RLC phosphorylation, which increases myosin motor function.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Biological Sciences, University of Iowa, Iowa City, Iowa 52242, USA
| | | | | | | | | | | |
Collapse
|
20
|
Abstract
This review focuses on selected papers that illustrate an historical perspective and the current knowledge of myosin structure and function in protists. The review contains a general description of myosin structure, a phylogenetic tree of the myosin classes, and descriptions of myosin isoforms identified in protists. Each myosin is discussed within the context of the taxonomic group of the organism in which the myosin has been identified. Domain structure, cellular location, function, and regulation are described for each myosin.
Collapse
Affiliation(s)
- R H Gavin
- Department of Biology, Brooklyn College, City University of New York, New York 11210, USA
| |
Collapse
|
21
|
Lee E, Knecht DA. Cytoskeletal alterations in Dictyostelium induced by expression of human cdc42. Eur J Cell Biol 2001; 80:399-409. [PMID: 11484931 DOI: 10.1078/0171-9335-00177] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The rho family of small G proteins has been shown to be involved in controlling actin filament dynamics in cells. To evaluate the functional overlap between human and Dictyostelium G proteins, we conditionally expressed constitutively active human cdc42 (V12-cdc42) in Dictyostelium cells. Upon induction, cells adopted a unique morphology: a flattened shape with wrinkles running from the cell edge toward the center. The appearance of these wrinkles is highly dynamic so that the cells cycle between the wrinkled and relatively normal morphologies. Phalloidin staining indicates that the stellate wrinkles contain dense actin structures and also that numerous filopods project vertically from the center of these cells. Consistent with the hypothesis that cdc42 induces actin polymerization in vivo, cells expressing V12-cdc42 show an increase in the amount of F-actin associated with the cytoskeleton. This is accompanied by an increase in the association of the actin-binding proteins 34-kDa bundler, ABP-120 and alpha-actinin with the cytoskeleton. In conclusion, human cdc42 has various effects on the Dictyostelium actin cytoskeleton consistent with a conserved role of small GTPases in control of the cytoskeleton.
Collapse
Affiliation(s)
- E Lee
- Department of Molecular and Cell Biology, University of Connecticut, Storrs 06260, USA
| | | |
Collapse
|
22
|
Xu XS, Lee E, Chen T, Kuczmarski E, Chisholm RL, Knecht DA. During multicellular migration, myosin ii serves a structural role independent of its motor function. Dev Biol 2001; 232:255-64. [PMID: 11254362 DOI: 10.1006/dbio.2000.0132] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have shown previously that cells lacking myosin II are impaired in multicellular motility. We now extend these results by determining whether myosin contractile function is necessary for normal multicellular motility and shape control. Myosin from mutants lacking the essential (mlcE(-)) myosin light chain retains the ability to form bipolar filaments that bind actin, but shows no measurable in vitro or in vivo contractile function. The contractile function is necessary for cell shape control since mlcE(-) cells, like myosin heavy-chain null mutants (mhcA(-)), were defective in their ability to control their three-dimensional shape. When mixed with wild-type cells in chimeric aggregation streams, the mlcE(-) cells were able to move normally, unlike mhcA(-) cells which accumulated at the edges of the stream and became distorted by their interactions with wild-type cells. When mhcA(-) cells were mixed with mlcE(-) streams, the mhcA(-) cells were excluded. The normal behavior of the mlcE(-) cells in this assay suggests that myosin II, in the absence of motor function, is sufficient to allow movement in this constrained, multicellular environment. We hypothesize that myosin II is a major contributor to cortical integrity even in the absence of contractile function.
Collapse
Affiliation(s)
- X S Xu
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, 06269, USA
| | | | | | | | | | | |
Collapse
|
23
|
Lee E, Pang K, Knecht D. The regulation of actin polymerization and cross-linking in Dictyostelium. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1525:217-27. [PMID: 11257435 DOI: 10.1016/s0304-4165(01)00107-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
It is clear that the polymerization and organization of actin filament networks plays a critical role in numerous cellular processes. Inhibition of actin polymerization by pharmacological agents will completely prevent chemotactic motility, macropinocytosis, endocytosis, and phagocytosis. Recently there has been great progress in understanding the mechanisms that control the assembly and structure of the actin cytoskeleton. Members of the Rho family of GTPases have been identified as major players in the signal transduction pathway leading from a cell surface signal to actin polymerization. The Arp2/3 complex has been added to the list of means by which new actin filaments can be nucleated. However, it is clear that actin polymerization by Arp2/3 complex is not the whole story. In principle, the final structures formed by actin filaments will depend on factors such as: the length of actin filaments, the degree of branching, how they are cross-linked and the tensions imparted on them. In addition, the means by which actin polymerization generates protrusion of membranes is still controversial. A phagosome, filopodium and a lamellipodium all require polymerization of new actin filaments, but each has a characteristic morphology and cytoskeletal structure. In the following chapter, we will discuss actin polymerization and filament organization, especially as it relates to the machinery of phagocytosis in Dictyostelium.
Collapse
Affiliation(s)
- E Lee
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA
| | | | | |
Collapse
|
24
|
van Es S, Wessels D, Soll DR, Borleis J, Devreotes PN. Tortoise, a novel mitochondrial protein, is required for directional responses of Dictyostelium in chemotactic gradients. J Cell Biol 2001; 152:621-32. [PMID: 11157987 PMCID: PMC2196008 DOI: 10.1083/jcb.152.3.621] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2000] [Accepted: 12/08/2000] [Indexed: 01/14/2023] Open
Abstract
We have identified a novel gene, Tortoise (TorA), that is required for the efficient chemotaxis of Dictyostelium discoideum cells. Cells lacking TorA sense chemoattractant gradients as indicated by the presence of periodic waves of cell shape changes and the localized translocation of cytosolic PH domains to the membrane. However, they are unable to migrate directionally up spatial gradients of cAMP. Cells lacking Mek1 display a similar phenotype. Overexpression of Mek1 in torA- partially restores chemotaxis, whereas overexpression of TorA in mek1- does not rescue the chemotactic phenotype. Regardless of the genetic background, TorA overexpressing cells stop growing when separated from a substrate. Surprisingly, TorA-green fluorescent protein (GFP) is clustered near one end of mitochondria. Deletion analysis of the TorA protein reveals distinct regions for chemotactic function, mitochondrial localization, and the formation of clusters. TorA is associated with a round structure within the mitochondrion that shows enhanced staining with the mitochondrial dye Mitotracker. Cells overexpressing TorA contain many more of these structures than do wild-type cells. These TorA-containing structures resist extraction with Triton X-100, which dissolves the mitochondria. The characterization of TorA demonstrates an unexpected link between mitochondrial function, the chemotactic response, and the capacity to grow in suspension.
Collapse
Affiliation(s)
- Saskia van Es
- Department of Cell Biology and Anatomy, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Deborah Wessels
- Department of Biological Sciences, University of Iowa, Iowa City, Iowa 52242
| | - David R. Soll
- Department of Biological Sciences, University of Iowa, Iowa City, Iowa 52242
| | - Jane Borleis
- Department of Cell Biology and Anatomy, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Peter N. Devreotes
- Department of Cell Biology and Anatomy, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| |
Collapse
|
25
|
Halsell SR, Chu BI, Kiehart DP. Genetic analysis demonstrates a direct link between rho signaling and nonmuscle myosin function during Drosophila morphogenesis. Genetics 2000; 155:1253-65. [PMID: 10880486 PMCID: PMC1461166 DOI: 10.1093/genetics/155.3.1253] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
A dynamic actomyosin cytoskeleton drives many morphogenetic events. Conventional nonmuscle myosin-II (myosin) is a key chemomechanical motor that drives contraction of the actin cytoskeleton. We have explored the regulation of myosin activity by performing genetic screens to identify gene products that collaborate with myosin during Drosophila morphogenesis. Specifically, we screened for second-site noncomplementors of a mutation in the zipper gene that encodes the nonmuscle myosin-II heavy chain. We determined that a single missense mutation in the zipper(Ebr) allele gives rise to its sensitivity to second-site noncomplementation. We then identify the Rho signal transduction pathway as necessary for proper myosin function. First we show that a lethal P-element insertion interacts genetically with zipper. Subsequently we show that this second-site noncomplementing mutation disrupts the RhoGEF2 locus. Next, we show that two EMS-induced mutations, previously shown to interact genetically with zipper(Ebr), disrupt the RhoA locus. Further, we have identified their molecular lesions and determined that disruption of the carboxyl-terminal CaaX box gives rise to their mutant phenotype. Finally, we show that RhoA mutations themselves can be utilized in genetic screens. Biochemical and cell culture analyses suggest that Rho signal transduction regulates the activity of myosin. Our studies provide direct genetic proof of the biological relevance of regulation of myosin by Rho signal transduction in an intact metazoan.
Collapse
Affiliation(s)
- S R Halsell
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | |
Collapse
|
26
|
Abstract
Chemotaxis plays a central role in various biological processes, such as the movement of neutrophils and macrophage during wound healing and in the aggregation of Dictyostelium cells. During the past few years, new understanding of the mechanisms controlling chemotaxis has been obtained through molecular genetic and biochemical studies of Dictyostelium and other experimental systems. This review outlines our present understanding of the signaling pathways that allow a cell to sense and respond to a chemoattractant gradient. In response to chemoattractants, cells either become polarized in the direction of the chemoattractant source, which results in the formation of a leading edge, or they reorient their polarity in the direction of the chemoattractant gradient and move with a stronger persistence up the gradient. Models are presented here to explain such directional responses. They include a localized activation of pathways at the leading edge and an "inhibition" of these pathways along the lateral edges of the cell. One of the primary pathways that may be responsible for such localized responses is the activation of phosphatidyl inositol-3 kinase (PI3K). Evidence suggests that a localized formation of binding sites for PH (pleckstrin homology) domain-containing proteins produced by PI3K leads to the formation of "activation domains" at the leading edge, producing a localized response.
Collapse
Affiliation(s)
- R A Firtel
- Section of Cell and Developmental Biology, Division of Biology, Center for Molecular Genetics, University of California, San Diego, La Jolla 92093-0634, USA.
| | | |
Collapse
|
27
|
Stites J, Wessels D, Uhl A, Egelhoff T, Shutt D, Soll DR. Phosphorylation of the Dictyostelium myosin II heavy chain is necessary for maintaining cellular polarity and suppressing turning during chemotaxis. CELL MOTILITY AND THE CYTOSKELETON 2000; 39:31-51. [PMID: 9453712 DOI: 10.1002/(sici)1097-0169(1998)39:1<31::aid-cm4>3.0.co;2-j] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Conversion of the three mapped threonine phosphorylation sites in the myosin II heavy chain tail to alanines results in a mutant (3XALA) in Dictyostelium discoideum, which displays constitutive myosin overassembly in the cytoskeleton and increased cortical tension. To assess the importance of myosin phosphorylation in cellular translocation and chemotaxis, 3XALA mutant cells have been analyzed by 2D and 3D computer-assisted methods in buffer, in a spatial gradient of cAMP, and after the rapid addition of cAMP. 3XALA cells crawling in buffer exhibit distinct abnormalities in cellular shape, the maintenance of polarity and the complexity of the pseudopod perimeter. 3XALA cells crawling in buffer also exhibit a decrease in directionality. In a spatial gradient of cAMP, the behavioral defects are accentuated. In a spatial gradient, 3XALA cells exhibit a repeating 1- to 2-min behavior cycle in which the shape of each cell changes abnormally from elongate to extremely wide with lateral, opposing pseudopods. At the end of each cycle, 3XALA cells turn 90 degrees into the left or right lateral pseudopod, resulting in a dramatic depression in chemotactic efficiency, even though 3XALA cells are chemotactically responsive to cAMP. These results demonstrate that the phosphorylation of myosin II heavy chain plays a critical role in the maintenance of cell shape and in persistent translocation in a spatial gradient of chemoattractant.
Collapse
Affiliation(s)
- J Stites
- Department of Biological Sciences, University of Iowa, Iowa City 52242, USA
| | | | | | | | | | | |
Collapse
|
28
|
Wessels D, Voss E, Von Bergen N, Burns R, Stites J, Soll DR. A computer-assisted system for reconstructing and interpreting the dynamic three-dimensional relationships of the outer surface, nucleus and pseudopods of crawling cells. CELL MOTILITY AND THE CYTOSKELETON 2000; 41:225-46. [PMID: 9829777 DOI: 10.1002/(sici)1097-0169(1998)41:3<225::aid-cm4>3.0.co;2-i] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Newly developed software additions to the three-dimensional dynamic image analysis system, 3D-DIAS, are described for simultaneously reconstructing and motion analyzing in three dimensions the outer surface, nucleus and pseudopods of living, crawling cells. This new system is then used to describe for the first time a nuclear behavior cycle in translocating Dictyostelium discoideum amoebae and to investigate the role of pseudopod extension in this process. The nuclear behavior cycle is tuned to the two phases of the general cell behavior cycle [Wessels et al., 1994], and includes nuclear migration both in the z- and in the x,y-axes from the proximal border of the prior anterior pseudopod to the proximal border of a newly expanding anterior pseudopod. Nuclear migration is cued by pseudopod-substratum contact, achieves velocities in excess of 50 microm/min, and is accompanied by characteristic changes in nuclear shape. The rules and characteristics of nuclear behavior are demonstrated to be intact in two mutants affecting pseudopod formation, a myosin IB null mutant (myoB-) and a myosin II heavy chain phosphorylation mutant (3XALA). The rules and characteristics of nuclear migration, however, are disrupted upon dissolution of microtubules by colcemid. Together the above results demonstrate that the newly developed 3D-DIAS system can be used to gain new insights into the dynamic changes in the intracellular 3D architecture associated with cellular translocation.
Collapse
Affiliation(s)
- D Wessels
- Department of Biological Sciences, University of Iowa, Iowa City 52442, USA
| | | | | | | | | | | |
Collapse
|
29
|
Wessels D, Reynolds J, Johnson O, Voss E, Burns R, Daniels K, Garrard E, O'Halloran TJ, Soll DR. Clathrin plays a novel role in the regulation of cell polarity, pseudopod formation, uropod stability and motility in Dictyostelium. J Cell Sci 2000; 113 ( Pt 1):21-36. [PMID: 10591622 DOI: 10.1242/jcs.113.1.21] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although the traditional role of clathrin has been in vesicle trafficking and the internalization of receptors, a novel role in cytokinesis was recently revealed in an analysis of a clathrin-minus Dictyostelium mutant (chc(-)). chc(-) cells grown in suspension were demonstrated to be defective in assembling myosin II into a normal contractile ring. To test whether this defect reflected a more general one of cytoskeletal dysfunction, chc(-) cells were analyzed for cell polarity, pseudopod formation, uropod stability, cell locomotion, chemotaxis, cytoskeletal organization and vesicle movement. chc(-) cells crawled, chemotaxed, localized F-actin in pseudopods, organized their microtubule cytoskeleton in a relatively normal fashion and exhibited normal vesicle dynamics. Although chc(-) cells extended pseudopods from the anterior half of the cell with the same frequency as normal chc(+) cells, they extended pseudopods at twice the normal frequency from the posterior half of the cell. The uropods of chc(-) cells also exhibited spatial instability. These defects resulted in an increase in roundness, a reduction in polarity, a reduction in velocity, a dramatic increase in turning, a high frequency of 180 degrees direction reversals and a decrease in the efficiency of chemotaxis. All defects were reversed in a rescued strain. These results are the first to suggest a novel role for clathrin in cell polarity, pseudopod formation, uropod stability and locomotion. It is hypothesized that clathrin functions to suppress pseudopod formation and to stabilize the uropod in the posterior half of a crawling cell, two behavioral characteristics that are essential for the maintenance of cellular polarity, efficient locomotion and efficient chemotaxis.
Collapse
Affiliation(s)
- D Wessels
- Department of Biological Sciences, University of Iowa, Iowa City, Iowa 52242, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
After Dictyostelium cells were settled on a coverslip and allowed to migrate freely on the surface, they were stained with fluorescently labeled Concanavalin A. Tracks with distinct patterns that consist of dots and short fibers were observed behind the cells. In this study, we refer to these tracks as "cellular tracks", CTs for short. We characterized the biological effect of CTs on cell behavior and development. CTs decreased the strength of cell-substratum adhesion, increased the velocity of cell migration, but did not affect growth of cells. CTs also promoted cell aggregation. When pre-aggregation cells touched the CTs of other cells, they avoided or orthogonally crossed them, but did not migrate along them. These observations suggest that the CTs of pre-aggregation cells prompts cells to disperse uniformly on substratum and may enable cells to sense cell density. On the other hand, when aggregation-competent cells touched the CTs of other aggregation-competent cells, a half of them migrated along the CTs. Pre-aggregation cells did not migrate along the CTs of aggregation-competent cells. The CTs of aggregation-competent cells may help the cells to aggregate toward the aggregation center.
Collapse
Affiliation(s)
- K Uchida
- Department of Biology, Faculty of Science, Yamaguchi University, Japan
| | | |
Collapse
|
31
|
Clow PA, McNally JG. In vivo observations of myosin II dynamics support a role in rear retraction. Mol Biol Cell 1999; 10:1309-23. [PMID: 10233146 PMCID: PMC25267 DOI: 10.1091/mbc.10.5.1309] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/1998] [Accepted: 02/08/1999] [Indexed: 11/11/2022] Open
Abstract
To investigate myosin II function in cell movement within a cell mass, we imaged green fluorescent protein-myosin heavy chain (GFP-MHC) cells moving within the tight mound of Dictyostelium discoideum. In the posterior cortex of cells undergoing rotational motion around the center of the mound, GFP-MHC cyclically formed a "C," which converted to a spot as the cell retracted its rear. Consistent with an important role for myosin in rotation, cells failed to rotate when they lacked the myosin II heavy chain (MHC-) or when they contained predominantly monomeric myosin II (3xAsp). In cells lacking the myosin II regulatory light chain (RLC-), rotation was impaired and eventually ceased. These rotational defects reflect a mechanical problem in the 3xAsp and RLC- cells, because these mutants exhibited proper rotational guidance cues. MHC- cells exhibited disorganized and erratic rotational guidance cues, suggesting a requirement for the MHC in organizing these signals. However, the MHC- cells also exhibited mechanical defects in rotation, because they still moved aberrantly when seeded into wild-type mounds with proper rotational guidance cues. The mechanical defects in rotation may be mediated by the C-to-spot, because RLC- cells exhibited a defective C-to-spot, including a slower C-to-spot transition, consistent with this mutant's slower rotational velocity.
Collapse
Affiliation(s)
- P A Clow
- Department of Biology and Institute for Biomedical Computing, Washington University, Box 1229, St. Louis, Missouri 63130, USA
| | | |
Collapse
|
32
|
Esnault K, el Moudni B, Bouchara JP, Chabasse D, Tronchin G. Association of a myosin immunoanalogue with cell envelopes of Aspergillus fumigatus conidia and its participation in swelling and germination. Infect Immun 1999; 67:1238-44. [PMID: 10024566 PMCID: PMC96452 DOI: 10.1128/iai.67.3.1238-1244.1999] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A myosin immunoanalogue was identified in conidia of Aspergillus fumigatus by Western blotting, indirect immunofluorescence assay, and gold immunoelectron microscopy with two different antimyosin antibodies. The distribution pattern of this protein was followed during the early stages of germination. A single 180-kDa polypeptide, detected predominantly in a cell envelope extract, was found to cross-react with monoclonal and polyclonal antibodies raised against vertebrate muscle myosin. Immunoelectron microscopy permitted precise localization of this polypeptide, indicating that myosin analogue was mainly distributed along the plasma membrane of resting and swollen conidia. In germinating conidia, indirect immunofluorescence microscopy revealed myosin analogue at the periphery of germ tubes, whereas actin appeared as dispersed punctate structures in the cytoplasm that were more concentrated at the site of germ tube emergence. A myosin ATPase inhibitor, butanedione monoxime, greatly reduced swelling and blocked germination. In contrast, when conidia were treated with cytochalasin B, an inhibitor of actin polymerization, swelling was not affected and germination was only partially reduced. Butanedione monoxime-treated conidia showed accumulation of cytoplasmic vesicles and did not achieve cell wall reorganization, unlike swollen conidia. Collectively, these results suggest an essential role for this myosin analogue in the deposition of cell wall components during germination of A. fumigatus conidia and therefore in host tissue colonization.
Collapse
Affiliation(s)
- K Esnault
- Groupe d'Etude des Interactions Hôte-Parasite, Laboratoire de Parasitologie-Mycologie, Centre Hospitalier Universitaire, 49033 Angers, France
| | | | | | | | | |
Collapse
|
33
|
Pettit EJ, Fay FS. Cytosolic free calcium and the cytoskeleton in the control of leukocyte chemotaxis. Physiol Rev 1998; 78:949-67. [PMID: 9790567 DOI: 10.1152/physrev.1998.78.4.949] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
In response to a chemotactic gradient, leukocytes extravasate and chemotax toward the site of pathogen invasion. Although fundamental in the control of many leukocyte functions, the role of cytosolic free Ca2+ in chemotaxis is unclear and has been the subject of debate. Before becoming motile, the cell assumes a polarized morphology, as a result of modulation of the cytoskeleton by G protein and kinase activation. This morphology may be reinforced during chemotaxis by the intracellular redistribution of Ca2+ stores, cytoskeletal constituents, and chemoattractant receptors. Restricted subcellular distributions of signaling molecules, such as Ca2+, Ca2+/calmodulin, diacylglycerol, and protein kinase C, may also play a role in some types of leukocyte. Chemotaxis is an essential function of most cells at some stage during their development, and a deeper understanding of the molecular signaling and structural components involved will enable rational design of therapeutic strategies in a wide variety of diseases.
Collapse
Affiliation(s)
- E J Pettit
- Biomedical Imaging Group, University of Massachusetts Medical Center, Worcester, USA
| | | |
Collapse
|
34
|
Hellsten M, Roos UP. The actomyosin cytoskeleton of amoebae of the cellular slime molds acrasis rosea and protostelium mycophaga: structure, biochemical properties, and function. Fungal Genet Biol 1998; 24:123-45. [PMID: 9742198 DOI: 10.1006/fgbi.1998.1048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In amoebae of the cellular slime molds (mycetozoans) Acrasis rosea and Protostelium mycophaga, bundles of F-actin radiate from the endoplasm-ectoplasm interface into the pseudopodia, where G-actin is also located. We conclude that these actin bundles form a core scaffold driving pseudopod extension which is subsequently completed by filling with a more loosely organized meshwork of F-actin. Some bipolar, elongate amoebae of A. rosea also contained long bundles of F-actin that traverse the cells lengthwise and remotely resemble stress fibers. Rodlets of F-actin were scattered in the body of amoebae of A. rosea or formed star-shaped or polygonal complexes near or around contractile vacuoles, where they may play a role in contraction. In total protein extracts analyzed by SDS-PAGE and immunoblots the actins migrated like the rabbit skeletal muscle control. The relative proportion of actin in total protein extracts was 7.9% for A. rosea and 34.5% for P. mycophaga. We detected four or five isoactins in extracts of both species and we determined that the genome of each species contains approximately six actin genes. Whether they are all expressed or if posttranslational modifications occur remains to be determined. Myosin II was enriched in actomyosin extracts; its Mr was 187.8 kDa for A. rosea and 220.7 kDa for P. mycophaga. Cell models ("ghosts") contracted upon the addition of ATP. We conclude that amoebae of A. rosea and P. mycophaga, although behaving differently from those of Dictyostelium discoideum, contain the basic repertoire of molecules that enable pseudopod extension by actin polymerization and ATP-induced contraction of the cell cortex. Copyright 1998 Academic Press.
Collapse
Affiliation(s)
- M Hellsten
- Institut fur Pflanzenbiologie, Universitat Zurich, Zollikerstrasse 107, Zurich, CH-8008, Switzerland
| | | |
Collapse
|
35
|
Arhets P, Olivo JC, Gounon P, Sansonetti P, Guillén N. Virulence and functions of myosin II are inhibited by overexpression of light meromyosin in Entamoeba histolytica. Mol Biol Cell 1998; 9:1537-47. [PMID: 9614192 PMCID: PMC25380 DOI: 10.1091/mbc.9.6.1537] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Several changes in cell morphology take place during the capping of surface receptors in Entamoeba histolytica. The amoebae develop the uroid, an appendage formed by membrane invaginations, which accumulates ligand-receptor complexes resulting from the capping process. Membrane shedding is particularly active in the uroid region and leads to the elimination of accumulated ligands. This appendage has been postulated to participate in parasitic defense mechanisms against the host immune response, because it eliminates complement and specific antibodies bound to the amoeba surface. The involvement of myosin II in the capping process of surface receptors has been suggested by experiments showing that drugs that affect myosin II heavy-chain phosphorylation prevent this activity. To understand the role of this mechanoenzyme in surface receptor capping, a myosin II dominant negative strain was constructed. This mutant is the first genetically engineered cytoskeleton-deficient strain of E. histolytica. It was obtained by overexpressing the light meromyosin domain, which is essential for myosin II filament formation. E. histolytica overexpressing light meromyosin domain displayed a myosin II null phenotype characterized by abnormal movement, failure to form the uroid, and failure to undergo the capping process after treatment with concanavalin A. In addition, the amoebic cytotoxic capacities of the transfectants on human colon cells was dramatically reduced, indicating a role for cytoskeleton in parasite pathogenicity.
Collapse
Affiliation(s)
- P Arhets
- Unité de Pathogénie Microbienne Moléculaire, Institut National de la Santé et de la Recherche Médicale U389, 75724 Paris Cédex 15, France
| | | | | | | | | |
Collapse
|
36
|
Halsell SR, Kiehart DP. Second-site noncomplementation identifies genomic regions required for Drosophila nonmuscle myosin function during morphogenesis. Genetics 1998; 148:1845-63. [PMID: 9560399 PMCID: PMC1460088 DOI: 10.1093/genetics/148.4.1845] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Drosophila is an ideal metazoan model system for analyzing the role of nonmuscle myosin-II (henceforth, myosin) during development. In Drosophila, myosin function is required for cytokinesis and morphogenesis driven by cell migration and/or cell shape changes during oogenesis, embryogenesis, larval development and pupal metamorphosis. The mechanisms that regulate myosin function and the supramolecular structures into which myosin incorporates have not been systematically characterized. The genetic screens described here identify genomic regions that uncover loci that facilitate myosin function. The nonmuscle myosin heavy chain is encoded by a single locus, zipper. Contiguous chromosomal deficiencies that represent approximately 70% of the euchromatic genome were screened for genetic interactions with two recessive lethal alleles of zipper in a second-site noncomplementation assay for the malformed phenotype. Malformation in the adult leg reflects aberrations in cell shape changes driven by myosin-based contraction during leg morphogenesis. Of the 158 deficiencies tested, 47 behaved as second-site noncomplementors of zipper. Two of the deficiencies are strong interactors, 17 are intermediate and 28 are weak. Finer genetic mapping reveals that mutations in cytoplasmic tropomyosin and viking (collagen IV) behave as second-site noncomplementors of zipper during leg morphogenesis and that zipper function requires a previously uncharacterized locus, E3.10/J3.8, for leg morphogenesis and viability.
Collapse
Affiliation(s)
- S R Halsell
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | |
Collapse
|
37
|
Pang KM, Lee E, Knecht DA. Use of a fusion protein between GFP and an actin-binding domain to visualize transient filamentous-actin structures. Curr Biol 1998; 8:405-8. [PMID: 9545201 DOI: 10.1016/s0960-9822(98)70159-9] [Citation(s) in RCA: 105] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Many important processes in eukaryotic cells involve changes in the quantity, location and the organization of actin filaments [1] [2] [3]. We have been able to visualize these changes in live cells using a fusion protein (GFP-ABD) comprising the green fluorescent protein (GFP) of Aequorea victoria and the 25 kDa highly conserved actin-binding domain (ABD) from the amino terminus of the actin cross-linking protein ABP-120 [4]. In live cells of the soil amoeba Dictyostelium that were expressing GFP-ABD, the three-dimensional architecture of the actin cortex was clearly visualized. The pattern of GFP-ABD fluorescence in these cells coincided with that of rhodamine-phalloidin, indicating that GFP-ABD specifically binds filamentous (F) actin. On the ventral surface of non-polarized vegetative cells, a broad ring of F actin periodically assembled and contracted, whereas in polarized cells there were transient punctate F-actin structures; cells cycled between the polarized and non-polarized morphologies. During the formation of pseudopods, an increase in fluorescence intensity coincided with the initial outward deformation of the membrane. This is consistent with the models of pseudopod extension that predict an increase in the local density of actin filaments. In conclusion, GFP-ABD specifically binds F actin and allows the visualization of F-actin dynamics and cellular behavior simultaneously.
Collapse
Affiliation(s)
- K M Pang
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut 06269, USA
| | | | | |
Collapse
|
38
|
Aguado-Velasco C, Bretscher MS. Dictyostelium myosin II null mutant can still cap Con A receptors. Proc Natl Acad Sci U S A 1997; 94:9684-6. [PMID: 9275184 PMCID: PMC23250 DOI: 10.1073/pnas.94.18.9684] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Cross-linked antigens on the surface of a motile cell cap at the trailing end of the cell. In Dictyostelium discoideum, myosin II null mutants have previously been reported to be unable to cap Con A receptors, although they are able to locomote. This finding implicated myosin II as an essential component of the capping mechanism, although not of the machinery for locomotion. Here we show that myosin II null mutants do cap Con A receptors, albeit less efficiently than does wild type. This shows that cap formation is not absolutely dependent on myosin II and that a close mechanistic relationship between capping, particle movement, and cell migration may still exist.
Collapse
Affiliation(s)
- C Aguado-Velasco
- Division of Cell Biology, Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, United Kingdom
| | | |
Collapse
|