1
|
Tanja Mierke C. Physical role of nuclear and cytoskeletal confinements in cell migration mode selection and switching. AIMS BIOPHYSICS 2017. [DOI: 10.3934/biophy.2017.4.615] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
2
|
Kim DH, Cho S, Wirtz D. Tight coupling between nucleus and cell migration through the perinuclear actin cap. J Cell Sci 2014; 127:2528-41. [PMID: 24639463 DOI: 10.1242/jcs.144345] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Although eukaryotic cells are known to alternate between 'advancing' episodes of fast and persistent movement and 'hesitation' episodes of low speed and low persistence, the molecular mechanism that controls the dynamic changes in morphology, speed and persistence of eukaryotic migratory cells remains unclear. Here, we show that the movement of the interphase nucleus during random cell migration switches intermittently between two distinct modes - rotation and translocation - that follow with high fidelity the sequential rounded and elongated morphologies of the nucleus and cell body, respectively. Nuclear rotation and translocation mediate the stop-and-go motion of the cell through the dynamic formation and dissolution, respectively, of the contractile perinuclear actin cap, which is dynamically coupled to the nuclear lamina and the nuclear envelope through LINC complexes. A persistent cell movement and nuclear translocation driven by the actin cap are halted following the disruption of the actin cap, which in turn allows the cell to repolarize for its next persistent move owing to nuclear rotation mediated by cytoplasmic dynein light intermediate chain 2.
Collapse
Affiliation(s)
- Dong-Hwee Kim
- Johns Hopkins Physical Sciences - Oncology Center, The Johns Hopkins University, Baltimore, MD 21218, USA Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Sangkyun Cho
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Denis Wirtz
- Johns Hopkins Physical Sciences - Oncology Center, The Johns Hopkins University, Baltimore, MD 21218, USA Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA Departments of Pathology and Oncology and Sydney Kimmel Comprehensive Cancer Center, The Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
3
|
Capoccia BJ, Jin RU, Kong YY, Peek RM, Fassan M, Rugge M, Mills JC. The ubiquitin ligase Mindbomb 1 coordinates gastrointestinal secretory cell maturation. J Clin Invest 2013; 123:1475-91. [PMID: 23478405 DOI: 10.1172/jci65703] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Accepted: 01/17/2013] [Indexed: 01/04/2023] Open
Abstract
After cell fate specification, differentiating cells must amplify the specific subcellular features required for their specialized function. How cells regulate such subcellular scaling is a fundamental unanswered question. Here, we show that the E3 ubiquitin ligase Mindbomb 1 (MIB1) is required for the apical secretory apparatus established by gastric zymogenic cells as they differentiate from their progenitors. When Mib1 was deleted, death-associated protein kinase-1 (DAPK1) was rerouted to the cell base, microtubule-associated protein 1B (MAP1B) was dephosphorylated, and the apical vesicles that normally support mature secretory granules were dispersed. Consequently, secretory granules did not mature. The transcription factor MIST1 bound the first intron of Mib1 and regulated its expression. We further showed that loss of MIB1 and dismantling of the apical secretory apparatus was the earliest quantifiable aberration in zymogenic cells undergoing transition to a precancerous metaplastic state in mouse and human stomach. Our results reveal a mechanistic pathway by which cells can scale up a specific, specialized subcellular compartment to alter function during differentiation and scale it down during disease.
Collapse
Affiliation(s)
- Benjamin J Capoccia
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | | | | | |
Collapse
|
4
|
Szabó B, Ünnep R, Markó K, Környei Z, Méhes E, Czirók A. Inhibition of myosin II triggers morphological transition and increased nuclear motility. Cytoskeleton (Hoboken) 2011; 68:325-39. [PMID: 21634026 DOI: 10.1002/cm.20515] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
We investigate the effect of myosin II inhibition on cell shape and nuclear motility in cultures of mouse radial glia-like neural progenitor and rat glioma C6 cells. Instead of reducing nucleokinesis, the myosin II inhibitor blebbistatin provokes an elongated bipolar morphology and increased nuclear motility in both cell types. When myosin II is active, time-resolved traction force measurements indicate a pulling force between the leading edge and the nucleus of C6 cells. In the absence of myosin II activity, traction forces during nucleokinesis are diminished below the sensitivity threshold of our assay. By visualizing the centrosome position in C6 cells with GFP-centrin, we show that in the presence or absence of myosin II activity, the nucleus tends to overtake or lag behind the centrosome, respectively. We interpret these findings with the help of a simple viscoelastic model of the cytoskeleton consisting active contractile and passive compressed elements.
Collapse
Affiliation(s)
- Bálint Szabó
- Department of Biological Physics, Eötvös University, 1117 Budapest, Pa´zma´ny P stny 1A, Hungary
| | | | | | | | | | | |
Collapse
|
5
|
Gao Y, Niu Y, Wang X, Wei L, Zhang R, Lv S, Yu Q, Yang X. Chromosome aberrations associated with centrosome defects: a study of comparative genomic hybridization in breast cancer. Hum Pathol 2011; 42:1693-701. [PMID: 21531002 DOI: 10.1016/j.humpath.2010.12.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2010] [Revised: 12/11/2010] [Accepted: 12/21/2010] [Indexed: 10/18/2022]
Abstract
Centrosome abnormalities occur frequently in various tumors and can cause chromosomal instability and eventually promote cancer development. We investigated the chromosome aberrations associated with centrosome abnormalities in 30 cases of breast cancer, combining immunohistochemical staining and comparative genomic hybridization. Except for some common chromosome alterations (including gains of 1q, 8q, 17q, 20q, and Xq and losses of 8p, 11q, 13q, 14q, 16q, 17p, 22q, and Xp) that have also been seen more frequently in other studies, we discovered some new changes that have rarely been reported, including gains at 2p, 5p, 10p, 15q, 16p, 18q, 21q, and 22q and losses at 6p, 8p23, 11p13-pter, 13q34, and 14q32-qter. We also identified some changes (such as gains of 17q, 20q, and Xq and losses of 17p, 13q, and 14q) harboring candidate genes. We also explored the expression of centrosome protein in different molecular subtypes of breast cancer. Our findings provide a new way to explore the molecular mechanisms of breast tumorigenesis and accordingly potential new targets for therapy for this disease.
Collapse
Affiliation(s)
- Yuxia Gao
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education and Key Laboratory of Cancer Prevention and Therapy, Tianjin, Medical University Cancer Institute and Hospital, He Xi District, Tianjin, 300060 China
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Jamil MMA, Denyer MCT, Youseffi M, Britland ST, Liu S, See CW, Somekh MG, Zhang J. Imaging of the cell surface interface using objective coupled widefield surface plasmon microscopy. J Struct Biol 2008; 164:75-80. [PMID: 18611441 DOI: 10.1016/j.jsb.2008.06.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2007] [Revised: 06/11/2008] [Accepted: 06/12/2008] [Indexed: 10/21/2022]
Abstract
We report on the development and on the first use of the widefield surface plasmon (WSPR) microscope in the examination of the cell surface interface at submicron lateral resolutions. The microscope is Kohler illuminated and uses either a 1.45 numerical aperture (NA) oil immersion lens, or a 1.65 NA oil immersion lens to excite surface plasmons at the interface between a thin gold layer and a glass or sapphire cover slip. Like all surface plasmon microscope systems the WSPR has been proven in previous studies to also be capable of nanometric z-scale resolutions. In this study we used the system to image the interface between HaCaT cells and the gold layer. Imaging was performed in air using fixed samples and the 1.45 NA objective based system and also using live cells in culture media using the 1.65 NA based system. Imaging in air enabled the visualisation of high resolution and high-contrast submicron features identified by vinculin immunostaining as component of focal contacts and focal adhesions. In comparison, imaging in fluid enabled cell surface interfacial interactions to be tracked by time-lapse video WSPR microscopy. Our results indicate that the cell surface interface and thus cell signalling mechanisms may be readily interrogated in live cells without the use of labelling techniques.
Collapse
Affiliation(s)
- M Mahadi Abdul Jamil
- Bradford University, School of Life Sciences, School of Engineering, Design & Technology and Institute of Pharmaceutical Innovation, Bradford, West Yorkshire, UK
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Abstract
Recent developments have highlighted the important role centrosomal defects play in the cellular changes associated with tumorigenesis. This article reviews recent developments addressing the impact of numerical centrosomal amplification on chromosomal segregational defects in the cancer cell. Probably, the most significant is the change to the structure of the spindle that leads to increased numbers of spindle poles and abnormal partitioning of the chromosomes in mitosis. I address how centrosomal changes are initiated and how they may lead to spindle multipolarity.
Collapse
Affiliation(s)
- William Saunders
- Department of Biological Sciences, 258 Crawford Hall, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| |
Collapse
|
8
|
Danowski BA, Khodjakov A, Wadsworth P. Centrosome behavior in motile HGF-treated PtK2 cells expressing GFP-gamma tubulin. CELL MOTILITY AND THE CYTOSKELETON 2001; 50:59-68. [PMID: 11746672 DOI: 10.1002/cm.1041] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
In response to locomotory cues, many motile cells have been shown to reposition their centrosome to a location in front of the nucleus, towards the direction of cell migration. We examined centrosome position in PtK(2) epithelial cells treated with hepatocyte growth factor (HGF), which stimulates motility but, unlike chemotactic agents or wounding of a monolayer, provides no directional cues. To observe centrosome movement directly, a plasmid encoding human gamma tubulin fused to the green fluorescent protein was expressed in HGF-treated cells. In cells whose movements were unconstrained by neighboring cells, we found that the position of the centrosome was not correlated with the direction of cell locomotion. Further, in cells where the direction of locomotion changed during the observation period, the centrosome did not reorient toward the new direction of locomotion. Analysis of centrosome and nuclear movement showed that motion of the centrosome often lagged behind that of the nucleus. Analysis of 249 fixed cells stained with an antibody to gamma tubulin confirmed our observations in live cells: 69% of the cells had centrosomes behind the nucleus, away from the direction of locomotion. Of these, 41% had their centrosome in the retraction tail. Confocal microscopy showed that the microtubule array in HGF treated PtK(2) cells was predominantly non-centrosomal. Because microtubules are required for efficient cellular locomotion, we propose that non-centrosomal microtubules stabilize the direction of locomotion without a requirement for reorientation of the centrosome.
Collapse
Affiliation(s)
- B A Danowski
- Department of Biology, Union College, Schnectady, New York 12308, USA.
| | | | | |
Collapse
|
9
|
Alexandrova AY, Dugina VB, Ivanova OY, Kaverina IN, Vasiliev JM. Scatter factor induces segregation of multinuclear cells into several discrete motile domains. CELL MOTILITY AND THE CYTOSKELETON 2000; 39:147-58. [PMID: 9484956 DOI: 10.1002/(sici)1097-0169(1998)39:2<147::aid-cm5>3.0.co;2-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The effects of scatter factor, HGF/SF, on multinuclear MDCK epitheliocytes were examined. Multinuclear cells were obtained by blocking cytokinesis by low concentration of cytochalasin D; these large cells had discoid shape and did not move much on the substrate. Incubation of these cells with HGF/SF induced their profound reorganization: their cytoplasm was reversibly segregated into several individually moving motile flattened domains, termed lamelloplasts and connected with one another by cylindrical domains termed cables. One or several nuclei were present in many lamelloplasts, but some lamelloplasts were anuclear. Nuclei were absent from the cables. Lamelloplasts continuously formed actin-rich ruffles at their edges; their cytoplasm contained small actin bundles and numerous focal adhesions. In contrast, cable, had no ruffles or focal adhesions. Dense networks of vimentin and keratin intermediate filaments were present in lamelloplasts; bundles of filaments of both types were seen in the cables. Segregation was accompanied by redistribution of centrosomes from perinuclear zone into lamelloplasts. As a result each lamelloplast in segregated cell acquired individual complex of centrosome and radiating microtubules. The cables contained numerous parallel microtubules but never had centrosomes. This reorganization of microtubular system was essential for segregation as alterations of shape and actin cytoskeleton were prevented by microtubule specific drugs: colcemid and Taxol (paclitaxel). It is suggested that mechanism of segregation is based on activation of two types of opposite actin reorganization: formation of actin networks in lamelloplasts and their dismantlement in the cables. Spatial distribution of the domains in which these opposite types of reorganizations occur may be regulated by microtubular system. It is also suggested that mechanisms of HGF/SF-induced segregation may be closely related to the mechanisms of important physiological reorganizations of cells, such as polarization of pseudopodial activities in motile cells and cytokinesis.
Collapse
Affiliation(s)
- A Y Alexandrova
- Belozersky Institute of Physical and Chemical Biology, Moscow State University, Russia
| | | | | | | | | |
Collapse
|
10
|
Pettit EJ, Fay FS. Cytosolic free calcium and the cytoskeleton in the control of leukocyte chemotaxis. Physiol Rev 1998; 78:949-67. [PMID: 9790567 DOI: 10.1152/physrev.1998.78.4.949] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
In response to a chemotactic gradient, leukocytes extravasate and chemotax toward the site of pathogen invasion. Although fundamental in the control of many leukocyte functions, the role of cytosolic free Ca2+ in chemotaxis is unclear and has been the subject of debate. Before becoming motile, the cell assumes a polarized morphology, as a result of modulation of the cytoskeleton by G protein and kinase activation. This morphology may be reinforced during chemotaxis by the intracellular redistribution of Ca2+ stores, cytoskeletal constituents, and chemoattractant receptors. Restricted subcellular distributions of signaling molecules, such as Ca2+, Ca2+/calmodulin, diacylglycerol, and protein kinase C, may also play a role in some types of leukocyte. Chemotaxis is an essential function of most cells at some stage during their development, and a deeper understanding of the molecular signaling and structural components involved will enable rational design of therapeutic strategies in a wide variety of diseases.
Collapse
Affiliation(s)
- E J Pettit
- Biomedical Imaging Group, University of Massachusetts Medical Center, Worcester, USA
| | | |
Collapse
|
11
|
Ueda M, Gräf R, MacWilliams HK, Schliwa M, Euteneuer U. Centrosome positioning and directionality of cell movements. Proc Natl Acad Sci U S A 1997; 94:9674-8. [PMID: 9275182 PMCID: PMC23248 DOI: 10.1073/pnas.94.18.9674] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/1997] [Indexed: 02/05/2023] Open
Abstract
In several cell types, an intriguing correlation exists between the position of the centrosome and the direction of cell movement: the centrosome is located behind the leading edge, suggesting that it serves as a steering device for directional movement. A logical extension of this suggestion is that a change in the direction of cell movement is preceded by a reorientation, or shift, of the centrosome in the intended direction of movement. We have used a fusion protein of green fluorescent protein (GFP) and gamma-tubulin to label the centrosome in migrating amoebae of Dictyostelium discoideum, allowing us to determine the relationship of centrosome positioning and the direction of cell movement with high spatial and temporal resolution in living cells. We find that the extension of a new pseudopod in a migrating cell precedes centrosome repositioning. An average of 12 sec elapses between the initiation of pseudopod extension and reorientation of the centrosome. If no reorientation occurs within approximately 30 sec, the pseudopod is retracted. Thus the centrosome does not direct a cell's migration. However, its repositioning stabilizes a chosen direction of movement, most probably by means of the microtubule system.
Collapse
Affiliation(s)
- M Ueda
- Adolf Butenandt Institute, Cell Biology, University of Munich, Munich, Germany.
| | | | | | | | | |
Collapse
|