1
|
Renner J, Rasia-Filho AA. Morphological Features of Human Dendritic Spines. ADVANCES IN NEUROBIOLOGY 2023; 34:367-496. [PMID: 37962801 DOI: 10.1007/978-3-031-36159-3_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Dendritic spine features in human neurons follow the up-to-date knowledge presented in the previous chapters of this book. Human dendrites are notable for their heterogeneity in branching patterns and spatial distribution. These data relate to circuits and specialized functions. Spines enhance neuronal connectivity, modulate and integrate synaptic inputs, and provide additional plastic functions to microcircuits and large-scale networks. Spines present a continuum of shapes and sizes, whose number and distribution along the dendritic length are diverse in neurons and different areas. Indeed, human neurons vary from aspiny or "relatively aspiny" cells to neurons covered with a high density of intermingled pleomorphic spines on very long dendrites. In this chapter, we discuss the phylogenetic and ontogenetic development of human spines and describe the heterogeneous features of human spiny neurons along the spinal cord, brainstem, cerebellum, thalamus, basal ganglia, amygdala, hippocampal regions, and neocortical areas. Three-dimensional reconstructions of Golgi-impregnated dendritic spines and data from fluorescence microscopy are reviewed with ultrastructural findings to address the complex possibilities for synaptic processing and integration in humans. Pathological changes are also presented, for example, in Alzheimer's disease and schizophrenia. Basic morphological data can be linked to current techniques, and perspectives in this research field include the characterization of spines in human neurons with specific transcriptome features, molecular classification of cellular diversity, and electrophysiological identification of coexisting subpopulations of cells. These data would enlighten how cellular attributes determine neuron type-specific connectivity and brain wiring for our diverse aptitudes and behavior.
Collapse
Affiliation(s)
- Josué Renner
- Department of Basic Sciences/Physiology and Graduate Program in Biosciences, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| | - Alberto A Rasia-Filho
- Department of Basic Sciences/Physiology and Graduate Program in Biosciences, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
- Graduate Program in Neuroscience, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
2
|
Jespersen SN, Leigland LA, Cornea A, Kroenke CD. Determination of axonal and dendritic orientation distributions within the developing cerebral cortex by diffusion tensor imaging. IEEE TRANSACTIONS ON MEDICAL IMAGING 2012; 31:16-32. [PMID: 21768045 PMCID: PMC3271123 DOI: 10.1109/tmi.2011.2162099] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
As neurons of the developing brain form functional circuits, they undergo morphological differentiation. In immature cerebral cortex, radially-oriented cellular processes of undifferentiated neurons impede water diffusion parallel, but not perpendicular, to the pial surface, as measured via diffusion-weighted magnetic resonance imaging, and give rise to water diffusion anisotropy. As the cerebral cortex matures, the loss of water diffusion anisotropy accompanies cellular morphological differentiation. A quantitative relationship is proposed here to relate water diffusion anisotropy measurements directly to characteristics of neuronal morphology. This expression incorporates the effects of local diffusion anisotropy within cellular processes, as well as the effects of anisotropy in the orientations of cellular processes. To obtain experimental support for the proposed relationship, tissue from 13 and 31 day-old ferrets was stained using the rapid Golgi technique, and the 3-D orientation distribution of neuronal processes was characterized using confocal microscopic examination of reflected visible light images. Coregistration of the MRI and Golgi data enables a quantitative evaluation of the proposed theory, and excellent agreement with the theoretical results, as well as agreement with previously published values for locally-induced water diffusion anisotropy and volume fraction of the neuropil, is observed.
Collapse
Affiliation(s)
- Sune Nørhøj Jespersen
- Center of Functionally Integrative Neuroscience, Aarhus University Hospital, 8000 Aarhus, Denmark ()
| | - Lindsey A. Leigland
- Department of Behavioral Neuroscience and Advanced Imaging Research Center, Oregon Health & Science University, Portland, OR 97239 USA ()
| | - Anda Cornea
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR 97006 USA ()
| | - Christopher D. Kroenke
- Division of Neuroscience, Oregon National Primate Research Center, and the Department of Behavioral Neuroscience and Advanced Imaging Research Center, Oregon Health & Science University, Portland, OR 97239 USA ()
| |
Collapse
|
3
|
Berlanga ML, Price DL, Phung BS, Giuly R, Terada M, Yamada N, Cyr M, Caron MG, Laakso A, Martone ME, Ellisman MH. Multiscale imaging characterization of dopamine transporter knockout mice reveals regional alterations in spine density of medium spiny neurons. Brain Res 2011; 1390:41-9. [PMID: 21439946 DOI: 10.1016/j.brainres.2011.03.044] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Revised: 03/16/2011] [Accepted: 03/17/2011] [Indexed: 11/26/2022]
Abstract
The dopamine transporter knockout (DAT KO) mouse is a model of chronic hyperdopaminergia used to study a wide range of neuropsychiatric disorders such as schizophrenia, attention deficit hyperactivity disorder (ADHD), drug abuse, depression, and Parkinson's disease (PD). Early studies characterizing this mouse model revealed a subtle, but significant, decrease in the anterior striatal volume of DAT KO mice accompanied by a decrease in neuronal cell body numbers (Cyr et al., 2005). The present studies were conducted to examine medium spiny neuron (MSN) morphology by extending these earlier reports to include multiscale imaging studies using correlated light microscopy (LM) and electron microscopy (EM) techniques. Specifically, we set out to determine if chronic hyperdopaminergia results in quantifiable or qualitative changes in DAT KO mouse MSNs relative to wild-type (WT) littermates. Using Neurolucida Explorer's morphometric analysis, we measured spine density, dendritic length and synapse number at ages that correspond with the previously reported changes in striatal volume and progressive cell loss. Light microscopic analysis using Neurolucida tracings of photoconverted striatal MSNs revealed a highly localized loss of dendritic spines on the proximal portion of the dendrite (30 μm from the soma) in the DAT KO group. Next, thick sections containing MSN dendritic segments located at a distance of 20-60 μm from the cell soma, a region of the dendrite where spine density is reported to be the highest, were analyzed using electron microscope tomography (EMT). Because of the resolution limits of LM, the EM analysis was an extra measure taken to assure that our analysis included nearly all spines. Spine density measurements collected from the EMT data revealed only a modest decrease in the DAT KO group (n=3 mice) compared to age-matched WT controls (n=3 mice), a trend that supports the LM findings. Finally, a synaptic quantification using unbiased stereology did not detect a difference between DAT KO mice (n=6 mice) and WT controls (n=7 mice) at the EM level, supporting the focal nature of the early synaptic loss. These findings suggest that DAT KO mice have MSNs with highly localized spine loss and not an overall morphologically distinct cell shape. The characterization of morphological changes in DAT KO mice may provide information about the neural substrates underlying altered behaviors in these mice, with relevance for human neurological disorders thought to involve altered dopaminergic homeostasis. Results from this study also indicate the difficulty in correlating structural changes across scales, as the results on fine structure revealed thus far are subtle and non-uniform across striatal MSNs. The complexities associated with multiscale studies are driving the development of shared online informatics resources by gaining access to data where it is being analyzed.
Collapse
Affiliation(s)
- M L Berlanga
- National Center for Microscopy and Imaging Research, Center for Research in Biological Systems, University of California, San Diego, La Jolla, CA 92093-0608, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Abstract
Chronic cocaine treatment is associated with changes in dendritic spines in the nucleus accumbens, but it is unknown whether this neuroplasticity alters the effect of a subsequent cocaine injection on spine morphology and protein content. Three weeks after daily cocaine or saline administration, neurons in the accumbens were filled with the lipophilic dye, DiI. Although daily cocaine pretreatment did not alter spine density compared with daily saline, there was a shift from smaller to larger diameter spines. During the first 2 h after an acute cocaine challenge, a bidirectional change in spine head diameter and increase in spine density was measured in daily cocaine-pretreated animals. In contrast, no change in spine diameter or density was elicited by a cocaine challenge in daily saline animals during the first 2 h after injection. However, spine density was elevated at 6 h after a cocaine challenge in daily saline-pretreated animals. The time-dependent profile of proteins in the postsynaptic density subfraction elicited by a cocaine challenge in daily cocaine-pretreated subjects indicated that the changes in spine diameter and density were associated with a deteriorating actin cytoskeleton and a reduction in glutamate signaling-related proteins. Correspondingly, the amplitude of field potentials in accumbens evoked by stimulating prefrontal cortex was reduced for up to 6 h after acute cocaine in daily cocaine-withdrawn animals. These data indicate that daily cocaine pretreatment dysregulates dendritic spine plasticity elicited by a subsequent cocaine injection.
Collapse
|
5
|
Shen H, Sesack SR, Toda S, Kalivas PW. Automated quantification of dendritic spine density and spine head diameter in medium spiny neurons of the nucleus accumbens. Brain Struct Funct 2008; 213:149-57. [PMID: 18535839 DOI: 10.1007/s00429-008-0184-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2008] [Accepted: 05/15/2008] [Indexed: 10/22/2022]
Abstract
Dendritic spines are postsynaptic specializations thought to regulate the strength of synaptic transmission and play a critical role in neuronal plasticity. While changes in dendritic spine density can be pharmacologically- or environmentally-induced, the widespread utility of this important measure of synaptic plasticity in vivo has been hampered by the labor-intensive nature, and potential for bias and inconsistency inherent in manual spine counting. Here we report a method for obtaining high-resolution, three-dimensional confocal images of accumbens spiny neurons labeled with a diolistically delivered lipophilic fluorescence dye (DiI) that permits automated analysis of spine density and spine head diameter. The automated quantification was verified by manual counts of spine density and electron microscopic measures of spine head diameter. The density of spines was relatively constant over 2nd to 4th order dendrites within a neuron, and spine density was normally distributed. The mean spine density (2.68 spines/microm; N = 45 neurons) was higher than previous reports, due in part to analysis in three rather than two dimensions and the capacity of lipophilic dyes to fill very thin spines. The distribution of spine head diameters was continuous and skewed to the right (mean = 0.43 microm; N = 8,891), and approximately 25% of all spines were thin and filopodia-like (< or = 0.20 microm diameter). The density of spines was not correlated with average spine head diameter or with the number of filopodia-like spines. The capacity to rapidly assess spine density and spine head diameter will facilitate quantifying spine plasticity induced by pharmacological and environmental manipulations.
Collapse
Affiliation(s)
- Haowei Shen
- Department of Neurosciences, Medical University of South Carolina, 173 Ashley Avenue, BSB 403, Charleston, SC 29425, USA.
| | | | | | | |
Collapse
|
6
|
Barbaresi P. GABA-immunoreactive neurons and terminals in the cat periaqueductal gray matter: a light and electron microscopic study. ACTA ACUST UNITED AC 2006; 34:471-87. [PMID: 16902767 DOI: 10.1007/s11068-006-9440-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2005] [Revised: 02/13/2006] [Accepted: 06/08/2006] [Indexed: 10/24/2022]
Abstract
Immunocytochemical and electron microscopic methods were used to study the GABAergic innervation in adult cat periaqueductal gray matter (PAG). A mouse monoclonal antibody against gamma -aminobutyric acid (GABA) was used to visualize the inhibitory neuronal system of PAG. At light microscopy, GABA-immunopositive (GABA(IP)) neurons formed two longitudinally oriented columns in the dorsolateral and ventrolateral PAG that accounted for 36% of the neuronal population of both PAG columns; their perikaryal cross-sectional area was smaller than that of unlabeled (UNL) neurons found in the same PAG subdivisions. At electron microscopic level, patches of GABA immunoreactivity were readily detected in neuronal cell bodies, proximal and distal dendrites, axons and axon terminals. Approximately 35-36% of all terminals were GABA(IP); they established symmetric synapses with dendrites (84.72% of the sample in the dorsolateral PAG and 86.09% of the sample in the ventrolateral PAG) or with cell bodies (7-10% of the sample). Moreover, 49.15% of GABA(IP) axon terminals in the dorsolateral and 52.16% in the ventrolateral PAG established symmetric synapses with GABA(IP) dendrites. Immunopositive axon terminals and unlabeled terminals were also involved in the formation of a complex synaptic arrangment, i.e. clusters of synaptic terminals in close contact between them that were often observed in the PAG neuropil. Moreover, a fair number of axo-axonic synapses between GABA(IP) and/or UNL axon terminals were present in both PAG subdivisions. Several dendro-dendritic synapses between labeled and unlabeled dendrites were also observed in both PAG subdivisions. These results suggest that in the cat PAG there exist at least two classes of GABArgic neurons. The first class could exert a tonic control on PAG projecting neurons, the second could act on those GABAergic neurons that in turn keep PAG projecting neurons under tonic inhibition. The functional implications of this type of GABAergic synapse organization are discussed in relation to the dishinibitory processes that take place in the PAG.
Collapse
Affiliation(s)
- Paolo Barbaresi
- Department of Neurosciences, Section of Human Physiology, Marche Polytechnic University, Via Tronto 10/A-Torrette di Ancona, I-60020, Ancona, Italy
| |
Collapse
|
7
|
Buckmaster PS, Alonso A, Canfield DR, Amaral DG. Dendritic morphology, local circuitry, and intrinsic electrophysiology of principal neurons in the entorhinal cortex of macaque monkeys. J Comp Neurol 2004; 470:317-29. [PMID: 14755519 DOI: 10.1002/cne.20014] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Little is known about the neuroanatomical or electrophysiological properties of individual neurons in the primate entorhinal cortex. We have used intracellular recording and biocytin-labeling techniques in the entorhinal slice preparation from macaque monkeys to investigate the morphology and intrinsic electrophysiology of principal neurons. These neurons have previously been studied most extensively in rats. In monkeys, layer II neurons are usually stellate cells, as in rats, but they occasionally have a pyramidal shape. They tend to discharge trains, not bursts, of action potentials, and some display subthreshold membrane potential oscillations. Layer III neurons are pyramidal, and they do not appear to display membrane potential oscillations. The distribution of dendrites and of axon collaterals suggests that neurons in layers II and III are interconnected by a network of associational fibers. Layer V and VI neurons are pyramidal and tend to discharge trains of action potentials. The distribution of dendrites and axon collaterals suggests that there is an associative network of principal neurons in layers V and VI, and they also project axon collaterals toward superficial layers. Importantly, entorhinal cortical neurons in monkeys appear to exhibit significant differences from those in rats. Morphologically, neurons in monkey entorhinal layers II and III have more primary dendrites, more dendritic branches, and greater total dendritic length than in rats. Electrophysiologically, layer II neurons in monkeys exhibit less sag, and subthreshold oscillations are less robust and slower. Some monkey layer III neurons discharge bursts of action potentials that are not found in rats. The interspecies differences revealed by this study may influence information processing and pathophysiological processes in the primate entorhinal cortex. J. Comp. Neurol. 470:317-329, 2004.
Collapse
Affiliation(s)
- Paul S Buckmaster
- Department of Comparative Medicine, Stanford University, Stanford, California 94305, USA.
| | | | | | | |
Collapse
|
8
|
Casatti CA, Elias CF, Sita LV, Frigo L, Furlani VCG, Bauer JA, Bittencourt JC. Distribution of melanin-concentrating hormone neurons projecting to the medial mammillary nucleus. Neuroscience 2003; 115:899-915. [PMID: 12435428 DOI: 10.1016/s0306-4522(02)00508-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The melanin-concentrating hormone and neuropeptide glutamic acid-isoleucine are expressed in neurons located mainly in the hypothalamus that project widely throughout the CNS. One of the melanin-concentrating hormone main targets is the medial mammillary nucleus, but the exact origin of these fibers is unknown. We observed melanin-concentrating hormone and neuropeptide glutamic acid-isoleucine immunoreactive fibers coursing throughout the mammillary complex, showing higher density in the pars lateralis of the medial mammillary nucleus, while the lateral mammillary nucleus showed sparse melanin-concentrating hormone innervation. The origins of these afferents were determined by using implant of the retrograde tracer True Blue in the medial mammillary nucleus. Double-labeled neurons were observed in the lateral hypothalamic area, rostromedial zona incerta and dorsal tuberomammillary nucleus. A considerable population of retrogradely labeled melanin-concentrating hormone perikaryal profiles was also immunoreactive to neuropeptide glutamic acid-isoleucine (74+/-15% to 85+/-15%). The afferents from the lateral hypothalamic area, rostromedial zona incerta and dorsal tuberomammillary nucleus to the medial mammillary nucleus were confirmed using implant of the anterograde tracer Phaseolus vulgaris leucoagglutinin. In addition, using double-labeled immunohistochemistry, we found no co-localization between neurons expressing melanin-concentrating hormone and adenosine deaminase (histaminergic marker) in the dorsal tuberomammillary nucleus. We hypothesize that these melanin-concentrating hormone projections participate in spatial memory process mediated by the medial mammillary nucleus. These pathways would enable the animal to look for food during the initial moments of appetite stimulation.
Collapse
Affiliation(s)
- C A Casatti
- Department of Basic Sciences, School of Dentistry of Araçatuba, University of Sao Paulo State - UNESP, 16015-050, Sao Paulo, Araçatuba, Brazil
| | | | | | | | | | | | | |
Collapse
|