Robb KA, Melady HD, Perry SD. Fine-wire electromyography of the transverse head of adductor hallucis during locomotion.
Gait Posture 2021;
85:7-13. [PMID:
33497968 DOI:
10.1016/j.gaitpost.2020.12.020]
[Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 12/11/2020] [Accepted: 12/19/2020] [Indexed: 02/02/2023]
Abstract
BACKGROUND
Previous literature on the transverse head of adductor hallucis (AddH-T) has largely focused on muscle morphology. This data provides insight into muscle architecture, yet fails to inform it's functional implication during walking. The role of the AddH-T, which runs parallel to the distal transverse metatarsal arch, has never been studied using fine-wire EMG during locomotion.
RESEARCH QUESTION
The purpose of this study is to explain a novel method of recording fine-wire EMG of the adductor hallucis muscle of the foot, and secondly, to report phasic AddH-T muscle activity during level walking on hard and soft surfaces.
METHODS
Ultrasound-guided fine-wire EMG was recorded from the AddH-T of each foot, in ten asymptomatic young adults. Participants completed ten walking trials per experimental conditions (hard and soft surface). Ensemble averages were calculated from the time normalized linear-envelopes of each participant, and represented from 0 to 100 percent of the gait cycle.
RESULTS
Using the described ultrasound-guided fine-wire protocol, successful EMG signals were generated in 19 of 20 feet. When walking over hard or soft flooring, the AddH-T muscle has two bursts in EMG, occurring between 0-20 % and 50-65 % of the gait cycle. The magnitude of peak activity was often reduced at initial contact when walking over foam. 45 % of participants experienced a third burst in EMG activity at midstance, corresponding to 30-40 % of the gait cycle.
SIGNIFICANCE
This study has successfully explained a novel method of recording finewire electromyography (EMG) of the adductor hallucis (transverse head) muscle of the foot. Results suggest that the AddH-T stabilizes the forefoot at initial contact and toeoff, while further anchoring the hallux during propulsion. These results provide preliminary insight into the functional role of the AddH-T during human locomotion.
Collapse