1
|
Chen Y, León-Letelier RA, Abdel Sater AH, Vykoukal J, Dennison JB, Hanash S, Fahrmann JF. c-MYC-Driven Polyamine Metabolism in Ovarian Cancer: From Pathogenesis to Early Detection and Therapy. Cancers (Basel) 2023; 15:623. [PMID: 36765581 PMCID: PMC9913358 DOI: 10.3390/cancers15030623] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 01/14/2023] [Indexed: 01/20/2023] Open
Abstract
c-MYC and its paralogues MYCN and MYCL are among the most frequently amplified and/or overexpressed oncoproteins in ovarian cancer. c-MYC plays a key role in promoting ovarian cancer initiation and progression. The polyamine pathway is a bona fide target of c-MYC signaling, and polyamine metabolism is strongly intertwined with ovarian malignancy. Targeting of the polyamine pathway via small molecule inhibitors has garnered considerable attention as a therapeutic strategy for ovarian cancer. Herein, we discuss the involvement of c-MYC signaling and that of its paralogues in promoting ovarian cancer tumorigenesis. We highlight the potential of targeting c-MYC-driven polyamine metabolism for the treatment of ovarian cancers and the utility of polyamine signatures in biofluids for early detection applications.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Johannes F. Fahrmann
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
2
|
Bae DH, Lane DJR, Jansson PJ, Richardson DR. The old and new biochemistry of polyamines. Biochim Biophys Acta Gen Subj 2018; 1862:2053-2068. [PMID: 29890242 DOI: 10.1016/j.bbagen.2018.06.004] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 06/02/2018] [Accepted: 06/04/2018] [Indexed: 10/14/2022]
Abstract
Polyamines are ubiquitous positively charged amines found in all organisms. These molecules play a crucial role in many biological functions including cell growth, gene regulation and differentiation. The three major polyamines produced in all mammalian cells are putrescine, spermidine and spermine. The intracellular levels of these polyamines depend on the interplay of the biosynthetic and catabolic enzymes of the polyamine and methionine salvage pathway, as well as the involvement of polyamine transporters. Polyamine levels are observed to be high in cancer cells, which contributes to malignant transformation, cell proliferation and poor patient prognosis. Considering the critical roles of polyamines in cancer cell proliferation, numerous anti-polyaminergic compounds have been developed as anti-tumor agents, which seek to suppress polyamine levels by specifically inhibiting polyamine biosynthesis, activating polyamine catabolism, or blocking polyamine transporters. However, in terms of the development of effective anti-cancer therapeutics targeting the polyamine system, these efforts have unfortunately resulted in little success. Recently, several studies using the iron chelators, O-trensox and ICL670A (Deferasirox), have demonstrated a decline in both iron and polyamine levels. Since iron levels are also high in cancer cells, and like polyamines, are required for proliferation, these latter findings suggest a biochemically integrated link between iron and polyamine metabolism.
Collapse
Affiliation(s)
- Dong-Hun Bae
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, The Medical Foundation Building (K25), University of Sydney, Sydney, New South Wales 2006, Australia
| | - Darius J R Lane
- Melbourne Dementia Research Centre, The Florey Institute of Neuroscience and Mental Health, Kenneth Myer Building, The University of Melbourne, Parkville, Victoria 3052, Australia.
| | - Patric J Jansson
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, The Medical Foundation Building (K25), University of Sydney, Sydney, New South Wales 2006, Australia
| | - Des R Richardson
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, The Medical Foundation Building (K25), University of Sydney, Sydney, New South Wales 2006, Australia; Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan.
| |
Collapse
|
3
|
MARVERTI GAETANO, LIGABUE ALESSIO, LOMBARDI PAOLO, FERRARI STEFANIA, MONTI MARIAGIUSEPPINA, FRASSINETI CHIARA, COSTI MARIAPAOLA. Modulation of the expression of folate cycle enzymes and polyamine metabolism by berberine in cisplatin-sensitive and -resistant human ovarian cancer cells. Int J Oncol 2013; 43:1269-80. [DOI: 10.3892/ijo.2013.2045] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 05/30/2013] [Indexed: 11/06/2022] Open
|
4
|
(99m)Tc(N)-DBODC(5), a potential radiolabeled probe for SPECT of multidrug resistance: in vitro study. J Biol Inorg Chem 2013; 18:523-38. [PMID: 23543234 DOI: 10.1007/s00775-013-0997-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 03/10/2013] [Indexed: 12/13/2022]
Abstract
[(99m)Tc(N)(DBODC)(PNP5)](+) [DBODC is bis(N-ethoxyethyl)dithiocarbamato; PNP5 is bis(dimethoxypropylphosphinoethyl)ethoxyethylamine], abbreviated as (99m)Tc(N)-DBODC(5), is a lipophilic cationic mixed compound investigated as a myocardial imaging agent. The findings that this tracer accumulates in mitochondrial structures through a mechanism mediated by the negative mitochondrial membrane potential and that the rapid efflux of (99m)Tc(N)-DBODC(5) from nontarget tissues seems to be associated with the multidrug resistance (MDR) P-glycoprotein (P-gp) transport function open up the possibility to extend its clinical applications to tumor imaging and noninvasive MDR studies. The rate of uptake at 4 and 37 °C of (99m)Tc(N)-DBODC(5) was evaluated in vitro in selected human cancer cell lines and in the corresponding sublines before and after P-gp and/or MDR-associated protein (MRP) modulator/inhibitor treatment using (99m)Tc-sestamibi as a reference. The results indicated that (1) the uptake of both (99m)Tc(N)-DBODC(5) and (99m)Tc-sestamibi is correlated to metabolic activity of the cells and (2) the cellular accumulation is connected to the level of P-gp/MRP expression; in fact, an enhancement of uptake in resistant cells was observed after treatment with opportune MDR inhibitor/modulator, indicating that the selective blockade of P-gp/MRP prevented efflux of the tracers. This study provides a preliminary indication of the applicability of (99m)Tc(N)-DBODC(5) in tumor imaging and in detecting P-gp/MRP-mediated drug resistance in human cancer. In addition, the possibility to control the hydrophobicity and pharmacological activity of this heterocomplex through the variation of the substituents on the ligands backbone without affecting the P2S2 coordinating sphere makes (99m)Tc(N)-DBODC(5) a suitable scaffold for the preparation of a molecular probe for single photon emission computed tomography of MDR.
Collapse
|
5
|
Gamble LD, Hogarty MD, Liu X, Ziegler DS, Marshall G, Norris MD, Haber M. Polyamine pathway inhibition as a novel therapeutic approach to treating neuroblastoma. Front Oncol 2012. [PMID: 23181218 PMCID: PMC3499881 DOI: 10.3389/fonc.2012.00162] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Polyamines are highly regulated essential cations that are elevated in rapidly proliferating tissues, including diverse cancers. Expression analyses in neuroblastomas suggest that up-regulation of polyamine pro-synthetic enzymes and down-regulation of catabolic enzymes is associated with poor prognosis. Polyamine sufficiency may be required for MYCN oncogenicity in MYCN amplified neuroblastoma, and targeting polyamine homeostasis may therefore provide an attractive therapeutic approach. ODC1, an oncogenic MYCN target, is rate-limiting for polyamine synthesis, and is overexpressed in many cancers including neuroblastoma. Inhibition of ODC1 by difluoromethylornithine (DFMO) decreased tumor penetrance in TH-MYCN mice treated pre-emptively, and extended survival and synergized with chemotherapy in treating established tumors in both TH-MYCN and xenograft models. Efforts to augment DFMO activity, or otherwise maximally reduce polyamine levels, are focused on antagonizing polyamine uptake or augmenting polyamine export or catabolism. Since polyamine inhibition appears to be clinically well tolerated, these approaches, particularly when combined with chemotherapy, have great potential for improving neuroblastoma outcome in both MYCN amplified and non-MYCN amplified neuroblastomas.
Collapse
Affiliation(s)
- Laura D Gamble
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre Sydney, NSW, Australia
| | | | | | | | | | | | | |
Collapse
|
6
|
Kjellström J, Oredsson SM, Wennerberg J. Increased toxicity of a trinuclear Pt-compound in a human squamous carcinoma cell line by polyamine depletion. Cancer Cell Int 2012; 12:20. [PMID: 22640800 PMCID: PMC3487936 DOI: 10.1186/1475-2867-12-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 05/28/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Mononuclear platinum anticancer agents hold a pivotal place in the treatment of many forms of cancers, however, there is a potential to improve response to evade resistance development and toxic side effects. BBR3464 is a promising trinuclear platinum anticancer agent, which is a polyamine mimic. The aim was to investigate the influence of polyamine pool reduction on the cytotoxic effects of the trinuclear platinum complex BBR3464 and cisplatin. Polyamine pool reduction was achieved by treating cells with either the polyamine biosynthesis inhibitor α-difluoromethylornithine (DFMO) or the polyamine analogue N1,N11-diethylnorspermine (DENSPM). METHODS A human squamous cell carcinoma cell line, LU-HNSCC-4, established from a primary head and neck tumour was used to evaluate cellular effects of each drug alone or combinations thereof. High-performance liquid-chromatography was used to quantify intracellular polyamine contents. Inductively coupled mass spectroscopy was used to quantify intracellular platinum uptake. Cells were exposed to DFMO or DENSPM during 48 h at concentrations ranging from 0 to 5 mM or 0 to 10 μM, respectively. Thereafter, non-treated and treated cells were exposed to cisplatin or BBR3464 during 1 h at concentrations ranging from 0 to 100 μM. A 96-well assay was used to determine cytotoxicity after five days after treatment. RESULTS The cytotoxic effect of BBR3464 on LU-HNSCC-4 cells was increased after cells were pre-treated with DENSPM or DFMO, and the interaction was found to be synergistic. In contrast, the interaction between cisplatin and DFMO or DENSPM was near-additive to antagonistic. The intracellular levels of the polyamines putrescine and spermidine were decreased after treatment with DFMO, and treatment with DENSPM resulted in an increase in putrescine level and concomitant decrease in spermidine and spermine levels. The uptake of BBR3464 was significantly increased after pre-treatment of the cells with DFMO, and varied dependent on the concentration of DENSPM. The uptake of cisplatin was unchanged. CONCLUSIONS Taken together, these results demonstrate that combinations of polyamine synthesis inhibitors with BBR3464 appear to be a promising approach to enhance the anticancer activity against HSCC.
Collapse
Affiliation(s)
- Johan Kjellström
- Department of Otorhinolaryngology/Head and Neck Surgery, University Hospital, S-221 85, Lund, Sweden.
| | | | | |
Collapse
|
7
|
Marverti G, Guaitoli G, Ligabue A, Frassineti C, Monti MG, Lombardi P, Costi MP. Distamycin A and derivatives as synergic drugs in cisplatin-sensitive and -resistant ovarian cancer cells. Amino Acids 2011; 42:641-53. [PMID: 21814787 DOI: 10.1007/s00726-011-1039-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Accepted: 05/25/2011] [Indexed: 01/13/2023]
Abstract
Acquired resistance to cisplatin (cDDP) is a multifactorial process that represents one of the main problems in ovarian cancer therapy. Distamycin A is a minor groove DNA binder whose toxicity has limited its use and prompted the synthesis of derivatives such as NAX001 and NAX002, which have a carbamoyl moiety and different numbers of pyrrolamidine groups. Their interaction with a B-DNA model and with an extended-TATA box model, [Polyd(AT)], was investigated using isothermal titration calorimetry (ITC) to better understand their mechanism of interaction with DNA and therefore better explain their cellular effects. Distamycin A interactions with Dickerson and Poly[d(AT)(6)] oligonucleotides show a different thermodynamic with respect to NAX002. The bulkier distamycin A analogue shows a non optimal binding to DNA due to its additional pyrrolamidine group. Cellular assays performed on cDDP-sensitive and -resistant cells showed that these compounds, distamycin A in particular, affect the expression of folate cycle enzymes even at cellular level. The optimal interaction of distamycin A with DNA may account for the down-regulation of both dihydrofolate reductase (DHFR) and thymidylate synthase (TS) and the up-regulation of spermidine/spermine N1-acetyltransferase (SSAT) caused by this compound. These effects seem differently modulated by the cDDP-resistance phenotype. NAX002 which presents a lower affinity to DNA and slightly affected these enzymes, showed a synergic inhibition profile in combination with cDDP. In addition, their combination with cDDP or polyamine analogues increased cell sensitivity to the drugs suggesting that these interactions may have potential for development in the treatment of ovarian carcinoma.
Collapse
Affiliation(s)
- Gaetano Marverti
- Dipartimento di Scienze Biomediche, Sezione di Chimica Biologica, University of Modena and Reggio Emilia, Via Campi 287, 41100, Modena, Italy.
| | | | | | | | | | | | | |
Collapse
|
8
|
Combination effects of platinum drugs and N1, N11 diethylnorspermine on spermidine/spermine N1-acetyltransferase, polyamines and growth inhibition in A2780 human ovarian carcinoma cells and their oxaliplatin and cisplatin-resistant variants. Cancer Chemother Pharmacol 2010; 67:401-14. [PMID: 20443003 PMCID: PMC3028085 DOI: 10.1007/s00280-010-1334-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2009] [Accepted: 04/13/2010] [Indexed: 11/20/2022]
Abstract
Purpose To understand the mechanisms behind platinum drug/DENSPM-induced inhibition of cancer cell growth, we compared the effects of oxaliplatin and cisplatin when combined with DENSPM on the induction of SSAT mRNA, activity, polyamines and cell growth in A2780 human ovarian carcinoma cells and their oxaliplatin- and cisplatin-resistant variants A2780/C10B and A2780/CP, respectively. Methods Parental and Pt-resistant cells were treated with platinum agent alone, DENSPM alone or combination (10 μM each, 20 h). QRT–PCR, radioactive product measurement and HPLC were used for mRNA, activity and polyamine pools, respectively; drug interaction on cell growth was by SRB and isobologram analysis. Results Both platinum agents induced SSAT mRNA in parental A2780 cells, but not in resistant cells. Platinum drug/DENSPM combinations produced high levels of SSAT activity in parental cells with significant depletion of spermine and spermidine, but not in resistant cells. Co-treatment with platinum agents increased the levels of DENSPM in all cell lines. Oxaliplatin/DENSPM combination was superior to cisplatin/DENSPM in the inhibition of cell growth in parental cells. No synergy was observed in the resistant cells. Conclusions Increased DENSPM levels following co-treatment with Pt agents enhances the translation and stability of SSAT protein leading to polyamine pool depletion, facilitating more Pt–DNA adduct formation in parental cells. Oxaliplatin/DENSPM combination is superior to cisplatin/DENSPM in cell growth inhibition as DACH-Pt DNA adducts are cytotoxic even at relatively fewer numbers. Reduced platinum uptake in Pt-resistant cells contributes to reduced SSAT mRNA induction and absence of synergy when combined with DENSPM.
Collapse
|
9
|
Pledgie-Tracy A, Billam M, Hacker A, Sobolewski MD, Woster PM, Zhang Z, Casero RA, Davidson NE. The role of the polyamine catabolic enzymes SSAT and SMO in the synergistic effects of standard chemotherapeutic agents with a polyamine analogue in human breast cancer cell lines. Cancer Chemother Pharmacol 2010; 65:1067-81. [PMID: 19727732 PMCID: PMC2840063 DOI: 10.1007/s00280-009-1112-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2009] [Accepted: 08/06/2009] [Indexed: 11/12/2022]
Abstract
INTRODUCTION Polyamine analogues have demonstrated significant activity against human breast cancer cell lines as single agents as well as in combination with other cytotoxic drugs. This study evaluates the ability of a polyamine analogue N (1),N (11)-bis(ethyl)norspermine (BENSpm) to synergize with six standard chemotherapeutic agents, 5-fluorouracil (FU), fluorodeoxyuridine, cis-diaminechloroplatinum(II) (C-DDP), paclitaxel, docetaxel, and vinorelbine. MATERIALS AND METHODS Four human breast cancer cell lines (MDA-MB-231, MCF-7, Hs578t, and T47D) and one immortalized, non-tumorigenic mammary epithelial cell line (MCF-10A) were used for in vitro combination studies with BENSpm and cytotoxic drugs. Xenograft mice models generated with MDA-MB-231 cells were used for in vivo studies with BENSpm and paclitaxel. RESULTS AND CONCLUSION BENSpm exhibited synergistic inhibitory effect on cell proliferation in combination with 5-FU or paclitaxel in human breast cancer cell lines (MDA-MB-231 and MCF-7) and was either antagonistic or less effective in the non-tumorigenic MCF-10A cell line. Synergism was highest with 120 h concomitant treatment or pre-treatment with BENSpm for 24 h followed by concomitant treatment for 96 additional hours. Since the cytotoxic effects of many polyamine analogues and cytotoxic agents are believed to act, in part, through induction of the polyamine catabolic enzymes SSAT and SMO, the role of these enzymes on synergistic response was evaluated in MDA-MB-231 and MCF-7 treated with BENSpm and 5-FU or paclitaxel. Combination treatments of BENSpm with 5-FU or paclitaxel resulted in induction of SSAT mRNA and activity in both cell lines compared to either drug alone, while SMO mRNA and activity were increased only in MDA-MB-231 cells. Induction was greater with BENSpm/paclitaxel combination than BENSpm/5-FU. Further, RNAi studies demonstrated that both SSAT and SMO play a significant role in the response of MDA-MB-231 cells to treatment with BENSpm and 5-FU or paclitaxel. In MCF-7 cells, only SSAT appears to be involved in the response to these treatments. In an effort to translate combination studies from in vitro to in vivo, and to form a basis for clinical setting, the in vivo therapeutic efficacy of BENSpm alone and in combination with paclitaxel on tumor regression was evaluated in xenograft mice models generated with MDA-MB-231 cells. Intraperitoneal exposure to BENSpm or taxol singly and in combination for 4 weeks resulted in significant inhibition in tumor growth. These findings help elucidate the mechanisms involved in synergistic drug response and support combinations of polyamine analogues with chemotherapeutic agents which could potentially be used in the treatment of breast cancer.
Collapse
Affiliation(s)
- Allison Pledgie-Tracy
- The Department of Chemistry & Biochemistry, University of Maryland, Baltimore County, MD 21250
| | - Madhavi Billam
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University, Baltimore, MD 21231
| | - Amy Hacker
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University, Baltimore, MD 21231
| | | | - Patrick M. Woster
- The Department of Pharmaceutical Sciences, College of Pharmacy and Allied Health Professions, Wayne State University, Detroit, MI 48202
| | - Zhe Zhang
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University, Baltimore, MD 21231
| | - Robert A. Casero
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University, Baltimore, MD 21231
| | | |
Collapse
|
10
|
Spermidine/spermine N1-acetyltranferase modulation by novel folate cycle inhibitors in cisplatin-sensitive and -resistant human ovarian cancer cell lines. Gynecol Oncol 2010; 117:202-10. [DOI: 10.1016/j.ygyno.2009.11.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Revised: 10/23/2009] [Accepted: 11/16/2009] [Indexed: 11/19/2022]
|
11
|
Chang X, Monitto CL, Demokan S, Kim MS, Chang SS, Zhong X, Califano JA, Sidransky D. Identification of hypermethylated genes associated with cisplatin resistance in human cancers. Cancer Res 2010; 70:2870-9. [PMID: 20215521 DOI: 10.1158/0008-5472.can-09-3427] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cisplatin is among the most widely used cytotoxic anticancer agents in solid tumors; however, the development of secondary resistance remains a major obstacle to clinical efficacy. Treatment-related DNA hypermethylation may play a role in creating drug-resistant phenotypes by inactivating genes that are required for cytotoxicity. We applied a pharmacologic unmasking approach to detect hypermethylated genes whose inactivation contributes to cisplatin resistance. Using three pairs of isogeneic, cisplatin-sensitive, and cisplatin-resistant cell lines derived from two parental cell lines (KB-3-1 and SCC25), we identified several hundred genes that were downregulated in each resistant cell line and reactivated by the DNA methyltransferase inhibitor 5-aza-2'-deoxycytidine. Among them, 30 genes were common to two or more cell lines and/or reported to be downregulated in previous studies. Bisulfite sequencing confirmed that 14 genes were hypermethylated in resistant cell lines but not in the sensitive parental cell lines. Six of 14 genes (SAT, C8orf4, LAMB3, TUBB, G0S2, and MCAM) were cisplatin inducible in sensitive but not in resistant cell lines. Small interfering RNA knockdown of two genes, SAT and S100P, increased cell viability with cisplatin treatment in sensitive parental cell lines. S100P knockdown significantly decreased the S-phase fraction of parental sensitive cell lines and slowed cell proliferation, which was associated with decreased sensitivity to cisplatin. Based on these findings, we conclude that DNA methylation is a frequent event in cells that are chronically exposed to cisplatin and that methylation-induced gene silencing may play a role in the development of resistance to cytotoxic chemotherapeutic agents.
Collapse
Affiliation(s)
- Xiaofei Chang
- Department of Otolaryngology-Head and Neck Surgery, Head and Neck Cancer Research Division, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Collateral sensitivity to novel thymidylate synthase inhibitors correlates with folate cycle enzymes impairment in cisplatin-resistant human ovarian cancer cells. Eur J Pharmacol 2009; 615:17-26. [DOI: 10.1016/j.ejphar.2009.04.062] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2008] [Revised: 03/20/2009] [Accepted: 04/27/2009] [Indexed: 12/16/2022]
|
13
|
Ferrari E, Grandi R, Lazzari S, Marverti G, Rossi MC, Saladini M. 1H, 13C, 195Pt NMR study on platinum(II) interaction with sulphur containing Amadori compounds. Polyhedron 2007. [DOI: 10.1016/j.poly.2007.05.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
14
|
Allen WL, McLean EG, Boyer J, McCulla A, Wilson PM, Coyle V, Longley DB, Casero RA, Johnston PG. The role of spermidine/spermine N1-acetyltransferase in determining response to chemotherapeutic agents in colorectal cancer cells. Mol Cancer Ther 2007; 6:128-37. [PMID: 17237273 DOI: 10.1158/1535-7163.mct-06-0303] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Polyamines have been shown to play a role in the growth and survival of several solid tumors, including colorectal cancer. We identified the polyamine catabolic enzyme spermidine/spermine N(1)-acetyltransferase (SSAT) as being one of the most highly inducible genes in two DNA microarray screens to identify novel determinants of response to chemotherapeutic agents in colorectal cancer. SSAT was shown to be inducible in response to 5-fluorouracil (5-FU) or oxaliplatin in parental and drug-resistant HCT116 cell lines. It was also shown that SSAT mRNA was up-regulated in response to 5-FU or oxaliplatin in a panel of six colorectal cancer cell lines. The polyamine analogue N(1),N(11)-diethylnorspermine (DENSpm) depletes polyamine pools and potently induces SSAT. We evaluated the effect of combining DENSpm with chemotherapeutic agents in HCT116 p53(+/+) cells and in HCT116 drug-resistant daughter cell lines. Western blot analyses showed that SSAT protein expression was dramatically enhanced when DENSpm was combined with oxaliplatin or 5-FU in HCT116 p53(+/+) cells. Using cell viability assays and flow cytometry, synergistic induction of cell death was observed following cotreatment of HCT116 p53(+/+) cells with DENSpm and each chemotherapeutic agent. Of note, this combined therapy increased the chemosensitivity of cells rendered resistant to each of these chemotherapeutic agents. Small interfering RNA-mediated down-regulation of SSAT resulted in loss of synergy between DENSpm and these agents. These results show that SSAT plays an important role in regulating cell death following combined cytotoxic drug and DENSpm treatment. Furthermore, DENSpm sensitizes both sensitive and resistant cells to chemotherapeutic agents. Taken together, these results suggest that SSAT may be an important target for therapeutic intervention in colorectal cancer.
Collapse
Affiliation(s)
- Wendy L Allen
- Department of Oncology, Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast City Hospital, University Floor, Belfast City Hospital, Lisburn Road, Belfast, BT9 7AB, Northern Ireland
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Marverti G, Giuseppina Monti M, Pegg AE, McCloskey DE, Bettuzzi S, Ligabue A, Caporali A, D'Arca D, Moruzzi MS. Spermidine/spermine N 1 -acetyltransferase transient overexpression restores sensitivity of resistant human ovarian cancer cells to N 1 ,N 12 -bis(ethyl)spermine and to cisplatin. Carcinogenesis 2005; 26:1677-86. [PMID: 15905201 DOI: 10.1093/carcin/bgi129] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The limited induction of spermidine/spermine N1-acetyltransferase (SSAT) activity has been implicated as an important determinant of the reduced response to the spermine analogue N1,N12-bis(ethyl)spermine (BESpm) by the cisplatin or cis-diamminedichloroplatinum(II) (cDDP)-resistant human ovarian carcinoma cell line (C13*). We checked whether or not under conditions of SSAT overexpression, enzyme induction and cell sensitivity to both, BESpm and cDDP, were restored to levels comparable with those of more responsive cDDP-sensitive 2008 cells. We transiently transfected the SSAT repressed C13* cells with two expression vectors driving human SSAT overexpression by diverse promoters. We then analysed their responses in the absence and in the presence of BESpm. SSAT activity was promptly, but briefly, expressed by transfection with both pOP/SSAT and pCMV-SSAT plasmids. However, only in the presence of BESpm, did SSAT activity reach the highest levels of induction for longer duration, with different time-courses for the two vectors, that paralleled the effect on cell growth. Under these conditions, growth sensitivity to BESpm of the less-responsive C13* cells was 25% reverted to cell growth inhibition displayed by 2008 cells. More interestingly, the sensitivity to cDDP cytotoxicity also increased in parallel to SSAT overexpression. BESpm induction of pCMV-SSAT-transfected cells caused a further 20-30% reduction of cell survival induced by cDDP, almost recovering the sensitivity of 2008 cells. The enhanced effectiveness of cDDP was also confirmed by the comet assay, showing an increase in the number and length of tails of damaged DNA. These findings confirm that SSAT overexpression inhibits cell growth and enhances growth sensitivity to BESpm in C13* cells, showing for the first time that restoring high inducibility of SSAT activity subverts the reduced sensitivity to cDDP of SSAT-deficient cells, making them almost indistinguishable from the responsive parental 2008 cells.
Collapse
Affiliation(s)
- Gaetano Marverti
- Dipartimento di Scienze Biomediche, Sezione di Chimica Biologica, Università di Modena e Reggio Emilia, Via Campi 287, I-41100 Modena, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Choi W, Gerner EW, Ramdas L, Dupart J, Carew J, Proctor L, Huang P, Zhang W, Hamilton SR. Combination of 5-fluorouracil and N1,N11-diethylnorspermine markedly activates spermidine/spermine N1-acetyltransferase expression, depletes polyamines, and synergistically induces apoptosis in colon carcinoma cells. J Biol Chem 2004; 280:3295-304. [PMID: 15546879 PMCID: PMC3584635 DOI: 10.1074/jbc.m409930200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The thymidylate synthase inhibitor 5-fluorouracil (5-FU) is used widely for chemotherapy of colorectal carcinoma. Recent studies showed that 5-FU affects polyamine metabolism in colon carcinoma cells. We therefore examined whether combinations of 5-FU with drugs that specifically target polyamine metabolism, i.e. N1,N11-diethylnorspermine (DENSPM) or alpha-difluoromethylornithine (DFMO), have synergistic effects in killing HCT116 colon carcinoma cells with wild-type or absent p53. Our results showed that simultaneous 5-FU and DENSPM, a spermine analogue, synergistically increased transcript levels of the polyamine catabolism enzyme spermidine/spermine N1-acetyltransferase, depleted spermine and spermidine, increased acetylated spermidine, and produced synergistic tumor cell apoptosis in both p53 wild-type and p53-null variants. By contrast, simultaneous combination of 5-FU with DFMO, an inhibitor of the polyamine biosynthetic enzyme ornithine decarboxylase, depleted putrescine but did not produce synergistic cell killing. Some pre-treatment and post-treatment regimens of DENSPM and DFMO were antagonistic to 5-FU depending on cellular p53 status. Protein and transcriptome expression analysis showed that combined 5-FU and DENSPM treatment activated caspase 9, but not caspase 3, and significantly suppressed NADH dehydrogenases and cytochrome c oxidases, consistent with the observed increase in hydrogen peroxide, loss of mitochondrial membrane potential, and release of cytochrome c. Our findings demonstrate the importance of the polyamine pathway in 5-FU effects and suggest that the combination of 5-FU with DENSPM has potential for development as therapy for colorectal carcinoma.
Collapse
Affiliation(s)
- Woonyoung Choi
- Department of Pathology, Division of Pathology and Laboratory Medicine, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030
| | - Eugene W. Gerner
- Department of Biochemistry and Biophysics, Arizona Cancer Center, University of Arizona, Tucson, Arizona 85724
| | - Latha Ramdas
- Department of Pathology, Division of Pathology and Laboratory Medicine, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030
| | - Jheri Dupart
- Department of Pathology, Division of Pathology and Laboratory Medicine, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030
| | - Jennifer Carew
- Department of Molecular Pathology, Division of Pathology and Laboratory Medicine, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030
| | - Lynsey Proctor
- Department of Pathology, Division of Pathology and Laboratory Medicine, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030
| | - Peng Huang
- Department of Molecular Pathology, Division of Pathology and Laboratory Medicine, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030
| | - Wei Zhang
- Department of Pathology, Division of Pathology and Laboratory Medicine, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030
- To whom correspondence may be addressed: Dept. of Pathology, Unit 85, University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030. Tel.: 713-745-1103; Fax: 713-792-5549;
| | - Stanley R. Hamilton
- Department of Pathology, Division of Pathology and Laboratory Medicine, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030
| |
Collapse
|
17
|
Marverti G, Monti MG, Bettuzzi S, Caporali A, Astancolle S, Moruzzi MS. Cisplatin-resistance modulates the effect of protein synthesis inhibitors on spermidine/spermine N(1)-acetyltransferase expression. Int J Biochem Cell Biol 2004; 36:123-37. [PMID: 14592538 DOI: 10.1016/s1357-2725(03)00174-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cisplatin (DDP)-resistance confers a deficient expression of spermidine/spermine N(1)-acetyltransferase (SSAT) gene in response to the spermine analog N(1),N(12)-bis(ethyl)spermine (BESpm) in the DDP-resistant human ovarian carcinoma cell line (C13*), compared with their parental DDP-sensitive 2008 cells. This SSAT gene deficiency is correlated with a reduced growth sensitivity to spermine analogs. This study was performed to determine whether SSAT gene expression of resistant cells was kept suppressed by labile repressor proteins developed during resistance selection. We show here that inhibitory concentrations of cycloheximide (CHX) and anisomycin (ANISO) differentially affect BESpm-induced SSAT activity in 2008 and in C13* cells in a concentration-dependent manner and allow resistant cells to reach activation levels comparable to those of the sensitive cells. Northern blot analysis revealed that both CHX and ANISO in combination with BESpm caused a synergistic BESpm-mediated accumulation of SSAT mRNA in C13* cells, with respect to each drug alone, while in 2008 cells only a slight increase was observed. The more pronounced effect of inhibitors on the SSAT activity induced by BESpm in the resistant cells was also the result of a more prolonged stabilization of SSAT mRNA and enzyme protein. By contrast, sub-inhibitory concentrations of CHX and ANISO did not significantly stimulate BESpm-induced SSAT transcription and activity. These results suggest that labile repressor proteins, related to DDP-resistance phenotype, play a regulatory role in SSAT gene expression, and further indicate that by overcoming this inhibitory control it is possible to recover BESpm response.
Collapse
Affiliation(s)
- Gaetano Marverti
- Dipartimento di Scienze Biomediche, Sezione di Chimica Biologica, Università di Modena e Reggio Emilia, Via Campi 287, 41100, Modena, Italy.
| | | | | | | | | | | |
Collapse
|
18
|
Hector S, Porter CW, Kramer DL, Clark K, Prey J, Kisiel N, Diegelman P, Chen Y, Pendyala L. Polyamine catabolism in platinum drug action: Interactions between oxaliplatin and the polyamine analogue N1, N11-diethylnorspermine at the level of spermidine/spermine N1-acetyltransferase. Mol Cancer Ther 2004. [DOI: 10.1158/1535-7163.813.3.7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
A great deal of experimental evidence connects induction of polyamine catabolism via spermidine/spermine N1-acetyltransferase (SSAT) to antiproliferative activity and apoptosis. Following our initial observation from gene expression profiling that platinum drugs induce SSAT, we undertook this present study to characterize platinum drug induction of SSAT and other polyamine catabolic enzymes and to examine how these responses might be enhanced with the well-known inducer of SSAT and clinically relevant polyamine analogue, N1,N11-diethylnorspermine (DENSPM). The results obtained in A2780 ovarian cancer cells by real-time quantitative RT-PCR and Northern blot analysis show that a 2-hour exposure of A2780 cells to platinum drugs induces expression of SSAT, a second SSAT (SSAT-2), spermine oxidase, and polyamine oxidase in a dose-dependent manner. At equitoxic doses, oxaliplatin is more effective than cisplatin in SSAT induction. The most affected enzyme, SSAT, increased 15-fold in mRNA expression and 2-fold in enzyme activity. When combined with DENSPM to further induce SSAT and to enhance conversion of mRNA to activity, oxaliplatin increased SSAT mRNA 50-fold and activity, 210-fold. Polyamine pools declined in rough proportion to levels of SSAT induction. At pharmacologically relevant oxaliplatin exposure times (20 hours) and drug concentrations (5 to 15 μmol/L), these responses were increased even further. Combining low-dose DENSPM with oxaliplatin produced a greater than additive inhibition of cell growth based on the sulforhodamine-B assay. Taken together, the findings confirm potent induction of polyamine catabolic enzymes, such as SSAT by platinum drugs, and demonstrate that these biochemical responses as well as growth inhibition can be potentiated by co-treatment with the polyamine analogue DENSPM. With appropriate in vitro and in vivo optimization, these findings could lead to clinically relevant therapeutic strategies.
Collapse
Affiliation(s)
| | - Carl W. Porter
- 2Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, New York
| | - Debora L. Kramer
- 2Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, New York
| | | | | | | | | | - Ying Chen
- 2Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, New York
| | | |
Collapse
|
19
|
Khuhawar MY, Qureshi GA. Polyamines as cancer markers: applicable separation methods. JOURNAL OF CHROMATOGRAPHY. B, BIOMEDICAL SCIENCES AND APPLICATIONS 2001; 764:385-407. [PMID: 11817039 DOI: 10.1016/s0378-4347(01)00395-4] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Spermine, spermidine, putrescine and cadaverine are aliphatic amines widely spread in the human body. Their concentrations together with their acetyl conjugates increase significantly in the biological fluids and the affected tissues of cancer patients. Their concentrations decrease with the improvement in the patient's condition on multiple therapy. Various chromatographic techniques are frequently used in monitoring concentrations of di- and polyamines in cancer. Among these techniques, thin-layer chromatography and liquid chromatography using pre- or postcolumn derivatization, separating on a reversed-phase or an ion-exchange column are the most commonly used. Besides, high-resolution capillary column gas chromatography (GC) is increasingly used over packed column GC, and in recent years, capillary zone electrophoresis has also gained some importance in polyamine determinations. The review examines the prospects and the limitations of polyamines as cancer markers using chromatographic and electrophoretic techniques.
Collapse
Affiliation(s)
- M Y Khuhawar
- Dr. M.A. Kazi Institute of Chemistry, University of Sindh, Jamshoro, Pakistan
| | | |
Collapse
|
20
|
Marverti G, Bettuzzi S, Astancolle S, Pinna C, Monti MG, Moruzzi MS. Differential induction of spermidine/spermine N1-acetyltransferase activity in cisplatin-sensitive and -resistant ovarian cancer cells in response to N1,N12-bis(ethyl)spermine involves transcriptional and post-transcriptional regulation. Eur J Cancer 2001; 37:281-9. [PMID: 11166157 DOI: 10.1016/s0959-8049(00)00389-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The growth inhibition that occurs in cisplatin-sensitive 2008 human ovarian cancer cells in response to the spermine analogue, N1,N12-bis(ethyl)spermine (BESpm), is associated with a potent induction of spermidine/spermine N1-acetyltransferase (SSAT), the rate-limiting enzyme in polyamine catabolism. Conversely, in cisplatin-resistant C13* cells, which are less responsive to BESpm, enzyme induction does not occur at comparable levels after exposure to the bis(ethyl)-derivative. In this study, we investigated the molecular mechanisms underlying the differential induction of SSAT activity in cisplatin-sensitive and -resistant cells. Northern blot analysis revealed a difference in the level of SSAT mRNA expression in the two cell lines; in particular, 2008 cells treated with 10 microM BESpm for progressively increasing periods of time accumulated more heteronuclear (3.5 kb) and mature (1.3/1.5 kb) SSAT mRNAs than its resistant variant. SSAT mRNA accumulation paralleled enzyme activity and both were almost completely prevented in the two lines by co-treatment with 5 microg/ml actinomycin-D (Act-D), suggesting that transcription plays a major role in the analogue-mediated induction of SSAT. Moreover, when Act-D was added 48 h after BESpm exposure, SSAT mRNA and enzyme activity were stabilised in both cell lines. Therefore, the marked difference in the induction of SSAT activity seems to be related to increased enzyme synthesis, particularly in sensitive cells, whose SSAT protein turnover was also greatly reduced (half-life >12 h in 2008 cells versus 5 h in C13* cells) in the presence of BESpm. These findings suggest that cisplatin-resistance modulates the SSAT response to BESpm at transcriptional and post-transcriptional levels.
Collapse
Affiliation(s)
- G Marverti
- Department of Biomedical Sciences, Section of Biological Chemistry, Via Campi 287, 41100, Modena, Italy.
| | | | | | | | | | | |
Collapse
|
21
|
McCloskey DE, Pegg AE. Altered spermidine/spermine N1-acetyltransferase activity as a mechanism of cellular resistance to bis(ethyl)polyamine analogues. J Biol Chem 2000; 275:28708-14. [PMID: 10887189 DOI: 10.1074/jbc.m004120200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To develop a model system to investigate mechanisms of antiproliferative action of bis(ethyl)polyamine analogues, intermittent analogue treatments followed by recovery periods in drug-free medium were used to select an N(1), N(12)-bis(ethyl)spermine-resistant derivative of the Chinese hamster ovary cell line C55.7. The resulting C55.7Res line was at least 10-fold resistant to N(1),N(12)-bis(ethyl)spermine and N(1), N(11)-bis(ethyl)norspermine. The stability of the resistance in the absence of selection pressure was >/=9 months, indicating that a heritable genotypic change was responsible for the resistance phenotype. Polyamine transport alterations and multi-drug resistance were eliminated as causes of the resistance. Spermidine/spermine N(1)-acetyltransferase (SSAT) activity and regulation were altered in C55.7Res cells as basal activity was decreased, and no activity induction resulted from exposure to analogue concentrations, which caused 300-fold enzyme induction in parental cells. SSAT mRNA levels in the absence and presence of analogue were unchanged, but no SSAT protein was detected in C55.7Res cells. A point mutation, which results in the change leucine156 (a fully conserved residue) to phenylalanine, was identified in the C55.7Res SSAT cDNA. Expression of wtSSAT activity in C55.7Res cells restored sensitivity to bis(ethyl)polyamines. These results provided definitive evidence that SSAT activity is a critical target of the cytotoxic action of these analogues.
Collapse
Affiliation(s)
- D E McCloskey
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, USA.
| | | |
Collapse
|