1
|
Pandey R, Kumar N, Monteiro GA, Veeranki VD, Prazeres DMF. Re-engineering of an Escherichia coli K-12 strain for the efficient production of recombinant human Interferon Gamma. Enzyme Microb Technol 2018; 117:23-31. [PMID: 30037548 DOI: 10.1016/j.enzmictec.2018.06.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 05/23/2018] [Accepted: 06/03/2018] [Indexed: 01/17/2023]
Abstract
The Escherichia coli phosphoglucose isomerase (pgi) mutant strain GALG20 was developed previously from wild-type K12 strain MG1655 for increased plasmid yield. To investigate the potential effects of the pgi deletion/higher plasmid levels on recombinant human Interferon Gamma (IFN-γ) production, a detailed network of the central metabolic pathway (100 metabolites, 114 reactions) of GALG20 and MG1655 was constructed. Elementary mode analysis (EMA) was then performed to compare the phenotypic spaces of both the strains and to check the effect of the pgi deletion on flux efficiency of each metabolic reaction. The results suggested that pgi deletion increases amino acid biosynthesis and flux efficiency towards IFN-γ synthesis by 11%. To further confirm the qualitative prediction that the pgi mutation favours recombinant human IFN-γ expression, GALG20 and MG1655 were lysogenised, transformed with a plasmid coding for IFN-γ and tested alongside with BL21(DE3) for their expression capabilities in shake flask experiments using complex media. IFN-γ gene expression was analysed by quantifying plasmid and mRNA copy number per cell and IFN-γ protein production level. Specific IFN-γ yields confirmed the in silico metabolic network predictions, with GALG20(DE3) producing 3.0-fold and 1.5-fold more IFN-γ as compared to MG1655(DE3) and BL21(DE3), respectively. Most of the total IFN-γ was expressed as inclusion bodies across the three strains: 95% in GALG20(DE3), 97% in BL21(DE3) and 72% in MG1655(DE3). The copy number of mRNA coding for IFN-γ was found to be higher in GALG20(DE3) as compared to the other two strains. Overall, these findings show that GALG20(DE3) has the potential to become an excellent protein expression strain.
Collapse
Affiliation(s)
- Rajat Pandey
- iBB-Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Lisbon 1049-001, Portugal; Department of Biotechnology, Indian Institute of Technology Guwahati, Guwahati 781039, India.
| | - Nitin Kumar
- iBB-Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Lisbon 1049-001, Portugal; Department of Biotechnology, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Gabriel A Monteiro
- iBB-Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Lisbon 1049-001, Portugal
| | - Venkata Dasu Veeranki
- Department of Biotechnology, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - D M F Prazeres
- iBB-Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Lisbon 1049-001, Portugal
| |
Collapse
|
2
|
Csörgo B, Fehér T, Tímár E, Blattner FR, Pósfai G. Low-mutation-rate, reduced-genome Escherichia coli: an improved host for faithful maintenance of engineered genetic constructs. Microb Cell Fact 2012; 11:11. [PMID: 22264280 PMCID: PMC3280934 DOI: 10.1186/1475-2859-11-11] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Accepted: 01/20/2012] [Indexed: 01/24/2023] Open
Abstract
Background Molecular mechanisms generating genetic variation provide the basis for evolution and long-term survival of a population in a changing environment. In stable, laboratory conditions, the variation-generating mechanisms are dispensable, as there is limited need for the cell to adapt to adverse conditions. In fact, newly emerging, evolved features might be undesirable when working on highly refined, precise molecular and synthetic biological tasks. Results By constructing low-mutation-rate variants, we reduced the evolutionary capacity of MDS42, a reduced-genome E. coli strain engineered to lack most genes irrelevant for laboratory/industrial applications. Elimination of diversity-generating, error-prone DNA polymerase enzymes involved in induced mutagenesis achieved a significant stabilization of the genome. The resulting strain, while retaining normal growth, showed a significant decrease in overall mutation rates, most notably under various stress conditions. Moreover, the error-prone polymerase-free host allowed relatively stable maintenance of a toxic methyltransferase-expressing clone. In contrast, the parental strain produced mutant clones, unable to produce functional methyltransferase, which quickly overgrew the culture to a high ratio (50% of clones in a 24-h induction period lacked functional methyltransferase activity). The surprisingly large stability-difference observed between the strains was due to the combined effects of high stress-induced mutagenesis in the parental strain, growth inhibition by expression of the toxic protein, and selection/outgrowth of mutants no longer producing an active, toxic enzyme. Conclusions By eliminating stress-inducible error-prone DNA-polymerases, the genome of the mobile genetic element-free E. coli strain MDS42 was further stabilized. The resulting strain represents an improved host in various synthetic and molecular biological applications, allowing more stable production of growth-inhibiting biomolecules.
Collapse
Affiliation(s)
- Bálint Csörgo
- Institute of Biochemistry, Biological Research Center of the Hungarian Academy of Sciences, 62 Temesvári krt, H6726 Szeged, Hungary
| | | | | | | | | |
Collapse
|
3
|
Pho regulon promoter-mediated transcription of the key pathway gene aroG Fbr improves the performance of an l-phenylalanine-producing Escherichia coli strain. Appl Microbiol Biotechnol 2010; 88:1287-95. [DOI: 10.1007/s00253-010-2794-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Revised: 07/20/2010] [Accepted: 07/21/2010] [Indexed: 10/19/2022]
|
4
|
Lee JH, Sung BH, Kim MS, Blattner FR, Yoon BH, Kim JH, Kim SC. Metabolic engineering of a reduced-genome strain of Escherichia coli for L-threonine production. Microb Cell Fact 2009; 8:2. [PMID: 19128451 PMCID: PMC2634754 DOI: 10.1186/1475-2859-8-2] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2008] [Accepted: 01/07/2009] [Indexed: 11/29/2022] Open
Abstract
Background Deletion of large blocks of nonessential genes that are not needed for metabolic pathways of interest can reduce the production of unwanted by-products, increase genome stability, and streamline metabolism without physiological compromise. Researchers have recently constructed a reduced-genome Escherichia coli strain MDS42 that lacks 14.3% of its chromosome. Results Here we describe the reengineering of the MDS42 genome to increase the production of the essential amino acid L-threonine. To this end, we over-expressed a feedback-resistant threonine operon (thrA*BC), deleted the genes that encode threonine dehydrogenase (tdh) and threonine transporters (tdcC and sstT), and introduced a mutant threonine exporter (rhtA23) in MDS42. The resulting strain, MDS-205, shows an ~83% increase in L-threonine production when cells are grown by flask fermentation, compared to a wild-type E. coli strain MG1655 engineered with the same threonine-specific modifications described above. And transcriptional analysis revealed the effect of the deletion of non-essential genes on the central metabolism and threonine pathways in MDS-205. Conclusion This result demonstrates that the elimination of genes unnecessary for cell growth can increase the productivity of an industrial strain, most likely by reducing the metabolic burden and improving the metabolic efficiency of cells.
Collapse
Affiliation(s)
- Jun Hyoung Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea.
| | | | | | | | | | | | | |
Collapse
|
5
|
Chou CP. Engineering cell physiology to enhance recombinant protein production in Escherichia coli. Appl Microbiol Biotechnol 2007; 76:521-32. [PMID: 17571257 DOI: 10.1007/s00253-007-1039-0] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2007] [Revised: 05/08/2007] [Accepted: 05/21/2007] [Indexed: 11/26/2022]
Abstract
The advent of recombinant DNA technology has revolutionized the strategies for protein production. Due to the well-characterized genome and a variety of mature tools available for genetic manipulation, Escherichia coli is still the most common workhorse for recombinant protein production. However, the culture for industrial applications often presents E. coli cells with a growth condition that is significantly different from their natural inhabiting environment in the gastrointestinal tract, resulting in deterioration in cell physiology and limitation in cell's productivity. It has been recognized that innovative design of genetically engineered strains can highly increase the bioprocess yield with minimum investment on the capital and operating costs. Nevertheless, most of these genetic manipulations, by which traits are implanted into the workhorse through recombinant DNA technology, for enhancing recombinant protein productivity often translate into the challenges that deteriorate cell physiology or even jeopardize cell survival. An in-depth understanding of these challenges and their corresponding cellular response at the molecular level becomes crucial for developing superior strains that are more physiologically adaptive to the production environment to improve culture productivity. With the accumulated knowledge in cell physiology, whose importance to gene overexpression was to some extent undervalued previously, this review is intended to focus on the recent biotechnological advancement in engineering cell physiology to enhance recombinant protein production in E. coli.
Collapse
Affiliation(s)
- C Perry Chou
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON, Canada, N2L 3G1.
| |
Collapse
|
6
|
Sharma SS, Blattner FR, Harcum SW. Recombinant protein production in an Escherichia coli reduced genome strain. Metab Eng 2006; 9:133-41. [PMID: 17126054 PMCID: PMC3710453 DOI: 10.1016/j.ymben.2006.10.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2006] [Revised: 10/04/2006] [Accepted: 10/11/2006] [Indexed: 10/24/2022]
Abstract
Recently, efforts have been made to improve the properties of Escherichia coli as a recombinant host by 'genomic surgery'-deleting large segments of the E. coli K12 MG1655 genome without scars. These excised segments included K-islands, which contain a high proportion of transposons, insertion sequences, cryptic phage, damaged, and unknown-function genes. The resulting multiple-deletion strain, designated E. coli MDS40, has a 14% (about 700 genes) smaller genome than the parent strain, E. coli MG1655. The multiple-deletion and parent E. coli strains were cultured in fed-batch fermenters to high cell densities on minimal medium to simulate industrial conditions for evaluating growth and recombinant protein production characteristics. Recombinant protein production and by-product levels were quantified at different controlled growth rates. These results indicate that the multiple-deletion strain's growth behavior and recombinant protein productivity closely matched the parent stain. Thus, the multiple-deletion strain E. coli MDS40 provides a suitable foundation for further genomic reduction.
Collapse
Affiliation(s)
- Shamik S. Sharma
- Department of Chemical Engineering, Clemson University, Clemson, SC 29634
| | | | - Sarah W. Harcum
- Department of Bioengineering, Clemson University, Clemson, SC 29634
- To whom correspondence should be addressed: . Phone: (864) 656 6865 Fax: (864) 656 0567
| |
Collapse
|
7
|
Xu Y, Rosenkranz S, Weng CL, Scharer JM, Moo-Young M, Chou CP. Characterization of the T7 promoter system for expressing penicillin acylase in Escherichia coli. Appl Microbiol Biotechnol 2006; 72:529-36. [PMID: 16411086 DOI: 10.1007/s00253-005-0293-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2005] [Revised: 12/04/2005] [Accepted: 12/07/2005] [Indexed: 11/28/2022]
Abstract
The pac gene encoding penicillin acylase (PAC) was overexpressed under the regulation of the T7 promoter in Escherichia coli. PAC, with its complex formation mechanism, serves as a unique target protein for demonstration of several key strategies for enhancing recombinant protein production. The current T7 system for pac overexpression was fraught with various technical hurdles. Upon the induction with a conventional inducer of isopropyl-beta-D-thiogalactopyranoside (IPTG), the production of PAC was limited by the accumulation of PAC precursors (proPAC) as inclusion bodies and various negative cellular responses such as growth inhibition and cell lysis. The expression performance could be improved by the coexpression of degP encoding a periplasmic protein with protease and chaperone activities. In addition to IPTG, arabinose was shown to be another effective inducer. Interestingly, arabinose not only induced the current T7 promoter system for pac expression but also facilitated the posttranslational processing of proPAC for maturation, resulting in significant enhancement for the production of PAC. Glycerol appeared to have an effect similar to, but not as significant as, arabinose for enhancing the production of PAC. The study highlights the importance of developing suitable genetically engineered strains with culture conditions for enhancing recombinant protein production in E. coli.
Collapse
Affiliation(s)
- Yali Xu
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1 Canada
| | | | | | | | | | | |
Collapse
|
8
|
Imaizumi A, Takikawa R, Koseki C, Usuda Y, Yasueda H, Kojima H, Matsui K, Sugimoto SI. Improved production of L-lysine by disruption of stationary phase-specific rmf gene in Escherichia coli. J Biotechnol 2005; 117:111-8. [PMID: 15831252 DOI: 10.1016/j.jbiotec.2004.12.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2004] [Revised: 11/02/2004] [Accepted: 12/08/2004] [Indexed: 11/28/2022]
Abstract
Growth and rate, at which fermentation products are formed in cells, generally decreases during the stationary phase as a result of changes in gene expression. We focused on the rmf gene, which encodes the ribosome modulation factor protein, as a target for strain modification in order to improve the rate of L-lysine production in Escherichia coli. Increased expression of the rmf gene during the stationary phase was confirmed under various cultivation conditions using DNA macroarray analysis. Mutants with disrupted rmf were then generated from an L-lysine-producing E. coli strain. The rates of L-lysine accumulation and production were significantly increased in disruptants that were cultivated with excess phosphate. By contrast, a higher biomass was generated in disruptants that were grown under limited phosphate conditions. These results demonstrate that disruption of the rmf gene significantly affects L-lysine production and growth in E. coli.
Collapse
Affiliation(s)
- Akira Imaizumi
- Advanced Technology Department, Fermentation and Biotechnology Laboratories, Global Foods and Amino Acids Company, Ajinomoto Co., Inc., 1-1, Suzuki-cho, Kawasaki-ku, Kawasaki-shi, Kanagawa 210-8681, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Jeong KJ, Choi JH, Yoo WM, Keum KC, Yoo NC, Lee SY, Sung MH. Constitutive production of human leptin by fed-batch culture of recombinant rpoS- Escherichia coli. Protein Expr Purif 2005; 36:150-6. [PMID: 15177297 DOI: 10.1016/j.pep.2004.04.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2004] [Revised: 04/06/2004] [Indexed: 10/26/2022]
Abstract
High-level production of human leptin by fed-batch culture of recombinant Escherichia coli using constitutive promoter system was investigated. For the constitutive expression of the obese gene encoding human leptin, the strong constitutive HCE promoter cloned from the D-amino acid aminotransferase gene of Geobacillus toebii was used. To develop an optimal host-vector system, several different recombinant E. coli strains were compared for leptin production. In flask cultures, E. coli FMJ123, which is a rpoS mutant strain, showed the highest level of leptin production (41% of total proteins). By comparing the expression levels of leptin in several different rpoS- and rpoS+ strains, it could be concluded that rpoS mutation positively affected constitutive production of leptin. For the large-scale production of human leptin, fed-batch cultures of recombinant E. coli FMJ123 were carried out using three different feeding solutions--chemically defined, yeast extract-containing, and casamino acid-containing feeding solutions. Among these, the use of casamino acid-containing feeding solution allowed production of leptin up to 2.1 g/L, which was 2.1- and 1.8-fold higher than that obtained with chemically defined and yeast extract-contained feeding solutions, respectively. These results suggest that the HCE promoter can be used for the efficient production of leptin, and most likely other recombinant proteins, in a constitutive manner.
Collapse
Affiliation(s)
- Ki Jun Jeong
- Department of Chemical and Biomolecular Engineering and BioProcess Engineering Research Center, Korea Advanced Institute of Science and Technology, 373-1 Guseong-dong, Yuseong-gu, Daejeon 305-701, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
10
|
Corchero JL, Cubarsí R, Vila P, Arís A, Villaverde A. Cell lysis in Escherichia coli cultures stimulates growth and biosynthesis of recombinant proteins in surviving cells. Microbiol Res 2001; 156:13-8. [PMID: 11372648 DOI: 10.1078/0944-5013-00066] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Cell growth and production of recombinant proteins in stationary phase cultures of Escherichia coli recover concomitantly with spontaneous lysis of a fraction of the ageing cell population. Further exploration of this event has indicated that sonic cell disruption stimulates both cell growth and synthesis of plasmid-encoded recombinant proteins, even in exponentially growing cultures. These observations indicate an efficient cell utilisation of released intracellular material and also that this capability is not restricted to extreme nutrient-starving conditions. In addition, the efficient re-conversion of waste cell material can be viewed as a potential strategy for an extreme exploitation of carbon sources and cell metabolites in production processes of both recombinant and non-recombinant microbial products.
Collapse
Affiliation(s)
- J L Corchero
- Institut de Biologia Fonamental and Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | | | | | | | | |
Collapse
|
11
|
Golovleva L, Golovlev E. Microbial cellular biology and current problems of metabolic engineering. ACTA ACUST UNITED AC 2000. [DOI: 10.1016/s1381-1177(00)00104-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
12
|
Golovlev EL, Golovleva LA. Physiology of microbial cells and metabolic engineering. Microbiology (Reading) 2000. [DOI: 10.1007/bf02756185] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
13
|
Richins R, Htay T, Kallio P, Chen W. Elevated Fis expression enhances recombinant protein production inEscherichia coli. Biotechnol Bioeng 1997; 56:138-44. [DOI: 10.1002/(sici)1097-0290(19971020)56:2<138::aid-bit3>3.0.co;2-q] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|