1
|
Amin M, Bhatti HN, Nawaz S, Bilal M. Penicillium fellutanum lipase as a green and ecofriendly biocatalyst for depolymerization of poly (ɛ-caprolactone): Biochemical, kinetic, and thermodynamic investigations. Biotechnol Appl Biochem 2021; 69:410-419. [PMID: 33559904 DOI: 10.1002/bab.2118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 01/06/2021] [Indexed: 11/07/2022]
Abstract
Microbial lipases hold a prominent position in biocatalysis by their capability to mediate reactions in aqueous and nonaqueous media. Herein, a lipase from Penicillium fellutanum was biochemically characterized and investigated its potential to degrade poly (ɛ-caprolactone) (PCL). The lipase exhibited stability over a broad pH spectrum and performed best at pH 8.5 and 45 °C. The activation energy was determined to be 66.37 kJ/mol by Arrhenius plot, whereas Km and Vmax for pNPP hydrolysis were 0.75 mM and 83.33 μmol/mL/Min, respectively. A rise in temperature reduced the Gibbs free energy, whereas the enthalpy of thermal unfolding (∆H*) remains the same up to 54 °C following a modest decline at 61 °C. The entropy (∆S*) of the enzyme demonstrated an increasing trend up to 54 °C and dropped at 61 °C. Lipase retained stability by incubation with various industrially relevant organic solvents (benzene, hexanol, ether, and acetone). However, exposure to urea and guanidine hydrochloride influenced its catalytic activity to different extents. Under optimal operating conditions, lipase catalyzed the excellent degradation of PCL film degradation leading to 66% weight loss, increased surface erosion, and crystallinity. Fourier-transform infrared spectrometry, differential scanning calorimetry, and scanning electron microscopy studies monitored the weight loss after enzymatic hydrolysis. The findings indicate that P. fellutanum lipase would be a prospective biocatalytic system for polyesters depolymerization and environmental remediation.
Collapse
Affiliation(s)
- Misbah Amin
- Department of Chemistry, University of Agriculture, Faisalabad, Pakistan
| | - Haq Nawaz Bhatti
- Department of Chemistry, University of Agriculture, Faisalabad, Pakistan
| | - Sadia Nawaz
- Institute of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, People's Republic of China
| |
Collapse
|
2
|
Aris MH, Annuar MSM, Ling TC. Lipase-mediated degradation of poly-ε-caprolactone in toluene: Behavior and its action mechanism. Polym Degrad Stab 2016. [DOI: 10.1016/j.polymdegradstab.2016.08.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
3
|
Sharma S, Kanwar SS. Organic solvent tolerant lipases and applications. ScientificWorldJournal 2014; 2014:625258. [PMID: 24672342 PMCID: PMC3929378 DOI: 10.1155/2014/625258] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 10/31/2013] [Indexed: 11/23/2022] Open
Abstract
Lipases are a group of enzymes naturally endowed with the property of performing reactions in aqueous as well as organic solvents. The esterification reactions using lipase(s) could be performed in water-restricted organic media as organic solvent(s) not only improve(s) the solubility of substrate and reactant in reaction mixture but also permit(s) the reaction in the reverse direction, and often it is easy to recover the product in organic phase in two-phase equilibrium systems. The use of organic solvent tolerant lipase in organic media has exhibited many advantages: increased activity and stability, regiospecificity and stereoselectivity, higher solubility of substrate, ease of products recovery, and ability to shift the reaction equilibrium toward synthetic direction. Therefore the search for organic solvent tolerant enzymes has been an extensive area of research. A variety of fatty acid esters are now being produced commercially using immobilized lipase in nonaqueous solvents. This review describes the organic tolerance and industrial application of lipases. The main emphasis is to study the nature of organic solvent tolerant lipases. Also, the potential industrial applications that make lipases the biocatalysts of choice for the present and future have been presented.
Collapse
Affiliation(s)
- Shivika Sharma
- Department of Biotechnology, Himachal Pradesh University, Summer Hill, Shimla 171 005, India
| | - Shamsher S. Kanwar
- Department of Biotechnology, Himachal Pradesh University, Summer Hill, Shimla 171 005, India
| |
Collapse
|
4
|
Benaiges MD, Alarcón M, Fuciños P, Ferrer P, Rua M, Valero F. Recombinant Candida rugosa lipase 2 from Pichia pastoris: Immobilization and use as biocatalyst in a stereoselective reaction. Biotechnol Prog 2010; 26:1252-8. [DOI: 10.1002/btpr.444] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
5
|
Wang PY, Tsai SW, Chen TL. Improvements of enzyme activity and enantioselectivity via combined substrate engineering and covalent immobilization. Biotechnol Bioeng 2008; 101:460-9. [PMID: 18435484 DOI: 10.1002/bit.21916] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Esterases, lipases, and serine proteases have been applied as versatile biocatalysts for preparing a variety of chiral compounds in industry via the kinetic resolution of their racemates. In order to meet this requirement, three approaches of enzyme engineering, medium engineering, and substrate engineering are exploited to improve the enzyme activity and enantioselectivity. With the hydrolysis of (R,S)-mandelates in biphasic media consisting of isooctane and pH 6 buffer at 55 degrees C as the model system, the strategy of combined substrate engineering and covalent immobilization leads to an increase of enzyme activity and enantioselectivity from V(S)/(E(t)) = 1.62 mmol/h g and V(S)/V(R) = 43.6 of (R,S)-ethyl mandelate (1) for a Klebsiella oxytoca esterase (named as SNSM-87 from the producer) to 16.7 mmol/h g and 867 of (R,S)-2-methoxyethyl mandelate (4) for the enzyme immobilized on Eupergit C 250L. The analysis is then extended to other (R,S)-2-hydroxycarboxylic acid esters, giving improvements of the enzyme performance from V(S)/(E(t)) = 1.56 mmol/h g and V(S)/V(R) = 41.9 of (R,S)-ethyl 3-chloromandelate (9) for the free esterase to 39.4 mmol/h g and 401 of (R,S)-2-methoxyethyl 3-chloromandelate (16) for the immobilized enzyme, V(S)/(E(t)) = 5.46 mmol/h g and V(S)/V(R) = 8.27 of (R,S)-ethyl 4-chloromandelate (10) for free SNSM-87 to 33.5 mmol/h g and 123 of (R,S)-methyl 4-chloromandelate (14) for the immobilized enzyme, as well as V(S)/(E(t)) = 3.0 mmol/h g and V(S)/V(R) = 7.94 of (R,S)-ethyl 3-phenyllactate (11) for the free esterase to 40.7 mmol/h g and 158 of (R,S)-2-methoxyethyl 3-phenyllactate (18) for the immobilized enzyme. The great enantioselectivty enhancement is rationalized from the alteration of ionization constants of imidazolium moiety of catalytic histidine for both enantiomers and conformation distortion of active site after the covalent immobilization, as well as the selection of leaving alcohol moiety via substrate engineering approach.
Collapse
Affiliation(s)
- Pei-Yun Wang
- Institute of Biochemical and Biomedical Engineering, Chang Gung University, Kwei-Shan, Tao-Yuan 33302, Taiwan
| | | | | |
Collapse
|
6
|
Shipovskov S. Homogeneous esterification by lipase fromBurkholderia cepaciain the fluorinated solvent. Biotechnol Prog 2008; 24:1262-6. [DOI: 10.1002/btpr.37] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
7
|
López N, Pernas MA, Pastrana LM, Sánchez A, Valero F, Rúa ML. Reactivity of Pure Candida rugosa Lipase Isoenzymes (Lip1, Lip2, and Lip3) in Aqueous and Organic Media. Influence of the Isoenzymatic Profile on the Lipase Performance in Organic Media. Biotechnol Prog 2008; 20:65-73. [PMID: 14763825 DOI: 10.1021/bp034188c] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Three pure isoenzymes from Candida rugosa lipase (CRL: Lip1, Lip2, and Lip3) were compared in terms of their stability and reactivity in both aqueous and organic media. The combined effect of temperature and pH on their stability was studied applying a factorial design. The analysis of the response surfaces indicated that Lip1 and Lip3 have a similar stability, lower than that of Lip2. In aqueous media, Lip3 was the most active enzyme on the hydrolysis of p-nitrophenyl esters, whereas Lip1 showed the highest activity on the hydrolysis of most assayed triacylglycerides. The highest differences among isoenzymes were found in the hydrolysis of triacylglycerides. Thus, a short, medium, and long acyl chain triacylglyceride was the preferred substrate for Lip3, Lip1, and Lip2, respectively. In organic medium, Lip3 and Lip1 provided excellent results in terms of enantioselectivity in the resolution of ibuprofen (EF value over 0.90) and conversion, whereas initial esterification rate was higher for Lip3. However, the use of Lip2 resulted in lower values of conversion, enantiomeric excess, and enantioselectivity. In the case of trans-2-phenyl-1-cyclohexanol (TPCH) resolution, initial esterification rates were high except for Lip3, which also produced poor results in conversion and enantiomeric excess. The performance of the pure isoenzymes in the enantioselectivity esterification of these substrates was compared with different CRL crude preparations with known isoenzymatic content and the different results could not be explained by their isoenzymatic profile. Therefore, it can be concluded that other factors can also affect the catalysis of CRL and only the reproducibility between powders can ensure the reproducibility in synthesis reactions.
Collapse
Affiliation(s)
- Neus López
- Departament d'Enginyeria Química, ETSE, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
8
|
Verma ML, Azmi W, Kanwar SS. Microbial lipases: at the interface of aqueous and non-aqueous media. A review. Acta Microbiol Immunol Hung 2008; 55:265-94. [PMID: 18800594 DOI: 10.1556/amicr.55.2008.3.1] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In recent times, biotechnological applications of microbial lipases in synthesis of many organic molecules have rapidly increased in non-aqueous media. Microbial lipases are the 'working horses' in biocatalysis and have been extensively studied when their exceptionally high stability in non-aqueous media has been discovered. Stability of lipases in organic solvents makes them commercially feasibile in the enzymatic esterification reactions. Their stability is affected by temperature, reaction medium, water concentration and by the biocatalyst's preparation. An optimization process for ester synthesis from pilot scale to industrial scale in the reaction medium is discussed. The water released during the esterification process can be controlled over a wide range and has a profound effect on the activity of the lipases. Approaches to lipase catalysis like protein engineering, directed evolution and metagenome approach were studied. This review reports the recent development in the field ofnon-aqueous microbial lipase catalysis and factors controlling the esterification/transesterification processes in organic media.
Collapse
Affiliation(s)
- M L Verma
- Department of Biotechnology, Himachal Pradesh University, Summer-Hill, Shimla 171 005, India
| | | | | |
Collapse
|
9
|
Kazlauskas RJ, Bornscheuer UT. Biotransformations with Lipases. BIOTECHNOLOGY 2008:36-191. [PMID: 0 DOI: 10.1002/9783527620906.ch3] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
|
10
|
Chandrasekaran SM, Bhartiya S, Wangikar PP. Substrate specificity of lipases in alkoxycarbonylation reaction: QSAR model development and experimental validation. Biotechnol Bioeng 2006; 94:554-64. [PMID: 16528758 DOI: 10.1002/bit.20879] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Although lipases are known to catalyze alkoxycarbonylation reactions in organic solvents, the existing knowledge base on their substrate specificity in alkoxycarbonylation reaction is sparse. Moreover, models to predict substrate specificity have not been reported. Here, we report the experimentally measured rate constants for 180 acyl donor-alcohol pairs and demonstrate the two-step synthesis of over 70 disubstituted carbonate products from simple precursors such as diphenyl carbonate and alcohols. The efficiency of synthesis was found to be dependent on the order of alcohol addition. This motivated the need to develop a model to predict lipase specificity in alkoxycarbonylation reactions. A partial least square model has been developed to correlate the reaction rate with (i) descriptors of alcohol for a fixed acyl donor, (ii) descriptors of acyl donor for a fixed alcohol, (iii) descriptors of both the acyl donor and the alcohol. The number of descriptors being far greater than the number of observations was a potential limitation in the model development. This was addressed by selecting a subset of descriptors using a systematic procedure based on (a) correlation among the descriptors and step-wise regression methodology, and (b) variable influence on projection methodology. The model was able to accurately predict the reaction rate and the optimal order of addition of alcohols in the two-step synthesis of disubstituted carbonates using the enzyme mixture. The descriptor subset and the relevant model would benefit the users of lipases in synthetic applications while the modeling strategy presented here can have applications in predicting specificity of other enzymes.
Collapse
Affiliation(s)
- Sangeetha M Chandrasekaran
- Department of Chemical Engineering, Indian Institute of Technology, Bombay, Powai, Mumbai 400 076, India
| | | | | |
Collapse
|
11
|
Won K, Lee SB. Effects of water and silica gel on enzyme agglomeration in organic solvents. BIOTECHNOL BIOPROC E 2001. [DOI: 10.1007/bf02931962] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Chamorro S, Alcántara AR, de la Casa RM, Sinisterra JV, Sánchez-Montero JM. Small water amounts increase the catalytic behaviour of polar organic solvents pre-treated Candida rugosa lipase. ACTA ACUST UNITED AC 2001. [DOI: 10.1016/s1381-1177(00)00164-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
13
|
|
14
|
|
15
|
Xie YC, Liu HZ, Chen JY. Effect of water content on enzyme activity and enantioselectivity of lipase-catalyzed esterification of racemic ibuprofen in organic solvents. Ann N Y Acad Sci 1998; 864:570-5. [PMID: 9928141 DOI: 10.1111/j.1749-6632.1998.tb10383.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Y C Xie
- Young Scientist Laboratory of Separation Science and Engineering, Institute of Chemical Metallurgy, Chinese Academy of Sciences, Beijing, China
| | | | | |
Collapse
|
16
|
Gordillo MA, Sanz A, Sánchez A, Valero F, Montesinos JL, Lafuente J, Solà C. Enhancement ofCandida rugosa lipase production by using different control fed-batch operational strategies. Biotechnol Bioeng 1998. [DOI: 10.1002/(sici)1097-0290(19981020)60:2<156::aid-bit3>3.0.co;2-m] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
17
|
Morgan B, Stockwell BR, Dodds DR, Andrews DR, Sudhakar AR, Nielsen CM, Mergelsberg I, Zumbach A. Chemoenzymatic approaches to SCH 56592, a new azole antifungal. J AM OIL CHEM SOC 1997. [DOI: 10.1007/s11746-997-0238-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Brian Morgan
- ; Schering-Plough Research Institute, Biotransformations Group; K-15-1/1800, 2015 Galloping Hill Road Kenilworth NJ 07033-0539
| | - Brent R. Stockwell
- ; Schering-Plough Research Institute, Biotransformations Group; K-15-1/1800, 2015 Galloping Hill Road Kenilworth NJ 07033-0539
| | - David R. Dodds
- ; Schering-Plough Research Institute, Biotransformations Group; K-15-1/1800, 2015 Galloping Hill Road Kenilworth NJ 07033-0539
| | | | | | | | | | - Arne Zumbach
- Werthenstein Chemie AG; Schachen CH-6105 Switzerland
| |
Collapse
|