1
|
Opie GM, Semmler JG. Preferential Activation of Unique Motor Cortical Networks With Transcranial Magnetic Stimulation: A Review of the Physiological, Functional, and Clinical Evidence. Neuromodulation 2020; 24:813-828. [PMID: 33295685 DOI: 10.1111/ner.13314] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/30/2020] [Accepted: 10/19/2020] [Indexed: 12/16/2022]
Abstract
OBJECTIVES The corticospinal volley produced by application of transcranial magnetic stimulation (TMS) over primary motor cortex consists of a number of waves generated by trans-synaptic input from interneuronal circuits. These indirect (I)-waves mediate the sensitivity of TMS to cortical plasticity and intracortical excitability and can be assessed by altering the direction of cortical current induced by TMS. While this methodological approach has been conventionally viewed as preferentially recruiting early or late I-wave inputs from a given populations of neurons, growing evidence suggests recruitment of different neuronal populations, and this would strongly influence interpretation and application of these measures. The aim of this review is therefore to consider the physiological, functional, and clinical evidence for the independence of the neuronal circuits activated by different current directions. MATERIALS AND METHODS To provide the relevant context, we begin with an overview of TMS methodology, focusing on the different techniques used to quantify I-waves. We then comprehensively review the literature that has used variations in coil orientation to investigate the I-wave circuits, grouping studies based on the neurophysiological, functional, and clinical relevance of their outcomes. RESULTS Review of the existing literature reveals significant evidence supporting the idea that varying current direction can recruit different neuronal populations having unique functionally and clinically relevant characteristics. CONCLUSIONS Further research providing greater characterization of the I-wave circuits activated with different current directions is required. This will facilitate the development of interventions that are able to modulate specific intracortical circuits, which will be an important application of TMS.
Collapse
Affiliation(s)
- George M Opie
- Discipline of Physiology, Adelaide Medical School, The University of Adelaide, Adelaide, Australia
| | - John G Semmler
- Discipline of Physiology, Adelaide Medical School, The University of Adelaide, Adelaide, Australia
| |
Collapse
|
2
|
van de Ruit M, Grey MJ. The TMS Map Scales with Increased Stimulation Intensity and Muscle Activation. Brain Topogr 2015; 29:56-66. [PMID: 26337508 PMCID: PMC4703616 DOI: 10.1007/s10548-015-0447-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 08/18/2015] [Indexed: 11/27/2022]
Abstract
One way to study cortical organisation, or its reorganisation, is to use transcranial magnetic stimulation (TMS) to construct a map of corticospinal excitability. TMS maps are reported to be acquired with a wide variety of stimulation intensities and levels of muscle activation. Whilst MEPs are known to increase both with stimulation intensity and muscle activation, it remains to be established what the effect of these factors is on the map’s centre of gravity (COG), area, volume and shape. Therefore, the objective of this study was to systematically examine the effect of stimulation intensity and muscle activation on these four key map outcome measures. In a first experiment, maps were acquired with a stimulation intensity of 110, 120 and 130 % of resting threshold. In a second experiment, maps were acquired at rest and at 5, 10, 20 and 40 % of maximum voluntary contraction. Map area and map volume increased with both stimulation intensity (P < 0.01) and muscle activation (P < 0.01). Neither the COG nor the map shape changed with either stimulation intensity or muscle activation (P > 0.09 in all cases). This result indicates the map simply scales with stimulation intensity and muscle activation.
Collapse
Affiliation(s)
- Mark van de Ruit
- NIHR Surgical Reconstruction and Microbiology Research Centre, School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Edgbaston, B15 2TT, UK.,MRC-ARUK Centre for Musculoskeletal Ageing Research, School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, B15 2TT, UK
| | - Michael J Grey
- NIHR Surgical Reconstruction and Microbiology Research Centre, School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Edgbaston, B15 2TT, UK. .,MRC-ARUK Centre for Musculoskeletal Ageing Research, School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, B15 2TT, UK.
| |
Collapse
|
3
|
Hanna-Boutros B, Sangari S, Giboin LS, El Mendili MM, Lackmy-Vallée A, Marchand-Pauvert V, Knikou M. Corticospinal and reciprocal inhibition actions on human soleus motoneuron activity during standing and walking. Physiol Rep 2015; 3:3/2/e12276. [PMID: 25825912 PMCID: PMC4393188 DOI: 10.14814/phy2.12276] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Reciprocal Ia inhibition constitutes a key segmental neuronal pathway for coordination of antagonist muscles. In this study, we investigated the soleus H-reflex and reciprocal inhibition exerted from flexor group Ia afferents on soleus motoneurons during standing and walking in 15 healthy subjects following transcranial magnetic stimulation (TMS). The effects of separate TMS or deep peroneal nerve (DPN) stimulation and the effects of combined (TMS + DPN) stimuli on the soleus H-reflex were assessed during standing and at mid- and late stance phases of walking. Subthreshold TMS induced short-latency facilitation on the soleus H-reflex that was present during standing and at midstance but not at late stance of walking. Reciprocal inhibition was increased during standing and at late stance but not at the midstance phase of walking. The effects of combined TMS and DPN stimuli on the soleus H-reflex significantly changed between tasks, resulting in an extra facilitation of the soleus H-reflex during standing and not during walking. Our findings indicate that corticospinal inputs and Ia inhibitory interneurons interact at the spinal level in a task-dependent manner, and that corticospinal modulation of reciprocal Ia inhibition is stronger during standing than during walking.
Collapse
Affiliation(s)
- Berthe Hanna-Boutros
- Sorbonne Universités, UPMC Univ Paris 06, UMR 7371, UMR_S 1146, LIB, Paris, France CNRS, UMR 7371, LIB, Paris, France INSERM, UMR_S 1146, LIB, Paris, France
| | - Sina Sangari
- Sorbonne Universités, UPMC Univ Paris 06, UMR 7371, UMR_S 1146, LIB, Paris, France CNRS, UMR 7371, LIB, Paris, France INSERM, UMR_S 1146, LIB, Paris, France
| | - Louis-Solal Giboin
- Sensorimotor Performance Laboratory, Konstanz University, Konstanz, Germany
| | - Mohamed-Mounir El Mendili
- Sorbonne Universités, UPMC Univ Paris 06, UMR 7371, UMR_S 1146, LIB, Paris, France CNRS, UMR 7371, LIB, Paris, France INSERM, UMR_S 1146, LIB, Paris, France
| | - Alexandra Lackmy-Vallée
- Sorbonne Universités, UPMC Univ Paris 06, UMR 7371, UMR_S 1146, LIB, Paris, France CNRS, UMR 7371, LIB, Paris, France INSERM, UMR_S 1146, LIB, Paris, France
| | - Véronique Marchand-Pauvert
- Sorbonne Universités, UPMC Univ Paris 06, UMR 7371, UMR_S 1146, LIB, Paris, France CNRS, UMR 7371, LIB, Paris, France INSERM, UMR_S 1146, LIB, Paris, France
| | - Maria Knikou
- The Graduate Center, City University of New York, New York, New York Sensory Motor Performance Program, Rehabilitation Institute of Chicago, Chicago, Illinois Department of Physical Medicine and Rehabilitation, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| |
Collapse
|
4
|
Knikou M. Transpinal and transcortical stimulation alter corticospinal excitability and increase spinal output. PLoS One 2014; 9:e102313. [PMID: 25007330 PMCID: PMC4090164 DOI: 10.1371/journal.pone.0102313] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 06/16/2014] [Indexed: 12/25/2022] Open
Abstract
The objective of this study was to assess changes in corticospinal excitability and spinal output following noninvasive transpinal and transcortical stimulation in humans. The size of the motor evoked potentials (MEPs), induced by transcranial magnetic stimulation (TMS) and recorded from the right plantar flexor and extensor muscles, was assessed following transcutaneous electric stimulation of the spine (tsESS) over the thoracolumbar region at conditioning-test (C-T) intervals that ranged from negative 50 to positive 50 ms. The size of the transpinal evoked potentials (TEPs), induced by tsESS and recorded from the right and left plantar flexor and extensor muscles, was assessed following TMS over the left primary motor cortex at 0.7 and at 1.1× MEP resting threshold at C-T intervals that ranged from negative 50 to positive 50 ms. The recruitment curves of MEPs and TEPs had a similar shape, and statistically significant differences between the sigmoid function parameters of MEPs and TEPs were not found. Anodal tsESS resulted in early MEP depression followed by long-latency MEP facilitation of both ankle plantar flexors and extensors. TEPs of ankle plantar flexors and extensors were increased regardless TMS intensity level. Subthreshold and suprathreshold TMS induced short-latency TEP facilitation that was larger in the TEPs ipsilateral to TMS. Noninvasive transpinal stimulation affected ipsilateral and contralateral actions of corticospinal neurons, while corticocortical and corticospinal descending volleys increased TEPs in both limbs. Transpinal and transcortical stimulation is a noninvasive neuromodulation method that alters corticospinal excitability and increases motor output of multiple spinal segments in humans.
Collapse
Affiliation(s)
- Maria Knikou
- The Graduate Center, City University of New York, New York, New York, United States of America
- Departments of Physical Therapy & Neuroscience, College of Staten Island/CUNY, Staten Island, New York, United States of America
- Sensory Motor Performance Program, Rehabilitation Institute of Chicago, Chicago, Illinois, United States of America
- Department of Physical Medicine and Rehabilitation, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| |
Collapse
|
5
|
Uehara K, Morishita T, Kubota S, Hirano M, Funase K. Functional difference in short- and long-latency interhemispheric inhibitions from active to resting hemisphere during a unilateral muscle contraction. J Neurophysiol 2014; 111:17-25. [DOI: 10.1152/jn.00494.2013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The aim of the present study was to investigate whether there is a functional difference in short-latency (SIHI) and long-latency (LIHI) interhemispheric inhibition from the active to the resting primary motor cortex (M1) with paired-pulse transcranial magnetic stimulation during a unilateral muscle contraction. In nine healthy right-handed participants, IHI was tested from the dominant to the nondominant M1 and vice versa under resting conditions or during performance of a sustained unilateral muscle contraction with the right or left first dorsal interosseous muscle at 10% and 30% maximum voluntary contraction. To obtain measurements of SIHI and LIHI, a conditioning stimulus (CS) was applied over the M1 contralateral to the muscle contraction, followed by a test stimulus over the M1 ipsilateral to the muscle contraction at short (10 ms) and long (40 ms) interstimulus intervals. We used four CS intensities to investigate SIHI and LIHI from the active to the resting M1 systematically. The amount of IHI during the unilateral muscle contractions showed a significant difference between SIHI and LIHI, but the amount of IHI during the resting condition did not. In particular, SIHI during the muscle contractions, but not LIHI, significantly increased with increase in CS intensity compared with the resting condition. Laterality of IHI was not detected in any of the experimental conditions. The present study provides novel evidence that a functional difference between SIHI and LIHI from the active to the resting M1 exists during unilateral muscle contractions.
Collapse
Affiliation(s)
- Kazumasa Uehara
- Human Motor Control Laboratory, Division of Human Sciences, Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima, Japan
| | - Takuya Morishita
- Human Motor Control Laboratory, Division of Human Sciences, Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima, Japan
| | - Shinji Kubota
- Human Motor Control Laboratory, Division of Human Sciences, Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima, Japan
| | - Masato Hirano
- Human Motor Control Laboratory, Division of Human Sciences, Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima, Japan
| | - Kozo Funase
- Human Motor Control Laboratory, Division of Human Sciences, Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima, Japan
| |
Collapse
|
6
|
Meng F, Tong KY, Chan ST, Wong WW, Lui KH, Tang KW, Gao X, Gao S. Cerebral Plasticity After Subcortical Stroke as Revealed by Cortico-Muscular Coherence. IEEE Trans Neural Syst Rehabil Eng 2009; 17:234-43. [DOI: 10.1109/tnsre.2008.2006209] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
7
|
Locher C, Raux M, Fiamma MN, Morélot-Panzini C, Zelter M, Derenne JP, Similowski T, Straus C. Inspiratory resistances facilitate the diaphragm response to transcranial stimulation in humans. BMC PHYSIOLOGY 2006; 6:7. [PMID: 16875504 PMCID: PMC1555603 DOI: 10.1186/1472-6793-6-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2006] [Accepted: 07/29/2006] [Indexed: 11/12/2022]
Abstract
Background Breathing in humans is dually controlled for metabolic (brainstem commands) and behavioral purposes (suprapontine commands) with reciprocal modulation through spinal integration. Whereas the ventilatory response to chemical stimuli arises from the brainstem, the compensation of mechanical loads in awake humans is thought to involve suprapontine mechanisms. The aim of this study was to test this hypothesis by examining the effects of inspiratory resistive loading on the response of the diaphragm to transcranial magnetic stimulation. Results Six healthy volunteers breathed room air without load (R0) and then against inspiratory resistances (5 and 20 cmH2O/L/s, R5 and R20). Ventilatory variables were recorded. Transcranial magnetic stimulation (TMS) was performed during early inspiration (I) or late expiration (E), giving rise to motor evoked potentials (MEPs) in the diaphragm (Di) and abductor pollicis brevis (APB). Breathing frequency significantly decreased during R20 without any other change. Resistive breathing had no effect on the amplitude of Di MEPs, but shortened their latency (R20: -0.903 ms, p = 0.03) when TMS was superimposed on inspiration. There was no change in APB MEPs. Conclusion Inspiratory resistive breathing facilitates the diaphragm response to TMS while it does not increase the automatic drive to breathe. We interpret these findings as a neurophysiological substratum of the suprapontine nature of inspiratory load compensation in awake humans.
Collapse
Affiliation(s)
- Chrystèle Locher
- Service de Pneumologie, Centre Hospitalier de Meaux, Meaux, France
| | - Mathieu Raux
- Université Pierre et Marie Curie-Paris 6, UPRES EA 2397, Paris, France
| | | | | | - Marc Zelter
- Université Pierre et Marie Curie-Paris 6, UPRES EA 2397, Paris, France
- Service de Pneumologie, Centre Hospitalier de Meaux, Meaux, France
| | - Jean-Philippe Derenne
- Université Pierre et Marie Curie-Paris 6, UPRES EA 2397, Paris, France
- Assistance Publique-Hôpitaux de Paris, Service de Pneumologie, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - Thomas Similowski
- Université Pierre et Marie Curie-Paris 6, UPRES EA 2397, Paris, France
- Assistance Publique-Hôpitaux de Paris, Service de Pneumologie, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
- Assistance Publique-Hôpitaux de Paris, Service Central d'Explorations Fonctionnelles Respiratoires, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - Christian Straus
- Université Pierre et Marie Curie-Paris 6, UPRES EA 2397, Paris, France
- Assistance Publique-Hôpitaux de Paris, Service de Pneumologie, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| |
Collapse
|
8
|
|
9
|
Abstract
The present experiment was undertaken to study the change in motor cortex excitability as a function of muscle contraction speed during ramp and step abduction by the index finger. Motor evoked potentials (MEPs) of the first dorsal interosseous muscle elicited by transcranial magnetic stimulation (TMS) were modulated by different muscle contraction speeds. When TMS was delivered at 10% maximum voluntary contraction (MVC), MEP amplitudes were always significantly larger in step than in ramp contractions. These differences were dependent on the amount of background electromyographic activity (EMG), which was significantly larger in step than in ramp contractions. However, using maximum output of TMS (100%) with a trigger level at 10% MVC, these differences disappeared. With a trigger level at 30% MVC, these differences also disappeared in spite of differences in the amount of background EMG between them. These results are attributed to different central motor commands. Motor evoked potential amplitudes are dependent not only on the level of background EMG activity but also on the nature of descending motor commands.
Collapse
Affiliation(s)
- T Kasai
- Division of Sports & Health Sciences, Graduate School for International Development, 1-5-1 Kagamiyama, Higashihiroshima, Hiroshima, Japan 739-8529, USA
| | | |
Collapse
|
10
|
Taniguchi S, Tani T. Motor-evoked potentials elicited from human erector spinae muscles by transcranial magnetic stimulation. Spine (Phila Pa 1976) 1999; 24:154-6; discussion 157. [PMID: 9926386 DOI: 10.1097/00007632-199901150-00014] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN The compound muscle action potentials elicited from the erector spinae muscles by transcranial magnetic stimulation was studied in 15 healthy adults. OBJECTIVE To describe the recording procedure for consistent compound muscle action potentials elicited from the human erector spinae by transcranial magnetic stimulation and to establish the normal latency ranges of the responses, at respective spinal levels, for the practical use of this test. SUMMARY OF BACKGROUND DATA Although recording of the compound muscle action potentials from limb muscles after transcranial magnetic stimulation has been extensively studied, the use of the erector spinae as the target muscle has not, probably because of the difficulty of consistently evoking compound muscle action potentials. METHODS Compound muscle action potentials from the erector spinae muscles were recorded with the subject prone during tonic voluntary background contraction of the back extensor muscles at approximately 20% of maximum effort. The compound muscle action potentials were recorded concurrently at multiple levels after magnetic stimulation to the brain with a round coil centered over the vertex. RESULTS The onset and peak latencies (mean +/- SD) of the major negative potential increased progressively toward the caudal level from 13.4 +/- 2.2 msec and 17.6 +/- 2.2 msec at T5-T6 to 20.8 +/- 1.5 msec and 26.3 +/- 3.0 msec at L4-L5 in healthy subjects. The latencies changed significantly between two adjacent segments from T5-T6/T6-T7 through T12-L1/L1-L2. CONCLUSIONS The compound muscle action potential was elicited from the voluntarily contracted erector spinae at all spinal levels from T5-T6 through L4-L5 in all subjects tested. This noninvasive test has potential for evaluating the functional integrity of the motor pathway in the thoracic spinal cord, the spinal nerves, or both.
Collapse
Affiliation(s)
- S Taniguchi
- Department of Orthopaedic Surgery, Kochi Medical School, Japan
| | | |
Collapse
|
11
|
Di Lazzaro V, Restuccia D, Oliviero A, Profice P, Ferrara L, Insola A, Mazzone P, Tonali P, Rothwell JC. Effects of voluntary contraction on descending volleys evoked by transcranial stimulation in conscious humans. J Physiol 1998; 508 ( Pt 2):625-33. [PMID: 9508823 PMCID: PMC2230886 DOI: 10.1111/j.1469-7793.1998.625bq.x] [Citation(s) in RCA: 323] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
1. The spinal volleys evoked by single transcranial magnetic or electric stimulation over the cerebral motor cortex were recorded from a bipolar electrode inserted into the cervical epidural space of three conscious human subjects. These volleys were termed direct (D) and indirect (I) waves according to their latency. 2. We measured the size and number of volleys elicited by magnetic stimulation at various intensities with subjects at rest and during 20 or 100 % maximum contraction of the contralateral first dorsal interosseous muscle (FDI). Surface EMG activity was also recorded. 3. Electrical stimulation evoked a D-wave volley. Magnetic stimulation at intensities up to about 15 % of stimulator output above threshold evoked only I-waves. At higher intensities, a D-wave could be seen in two of the three subjects. 4. At all intensities tested, voluntary contraction increased the number and size of the I-waves, particularly during maximum contractions. However, there was only a small effect on the threshold for evoking descending activity. Voluntary contraction produced large changes in the size of EMG responses recorded from FDI. 5. Because the recorded epidural activity is destined for muscles other than the FDI, it is impossible to say to what extent increased activity contributes to voluntary facilitation of EMG responses. Indeed, our results suggest that the main factor responsible for enhancing EMG responses in the transition from rest to activity is likely to be increased excitability of spinal motoneurones, rather than increases in the corticospinal volley. The latter may be more important in producing EMG facilitation at different levels of voluntary contraction.
Collapse
Affiliation(s)
- V Di Lazzaro
- Istituto di Neurologia, Università Cattolica, L.go A. Gemelli 8, 00168 Rome, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Kaneko K, Kawai S, Fuchigami Y, Morita H, Ofuji A. The effect of current direction induced by transcranial magnetic stimulation on the corticospinal excitability in human brain. ACTA ACUST UNITED AC 1996. [DOI: 10.1016/s0921-884x(96)96021-x] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|