Abstract
Mutations in the gene for muscle phosphofructo-1-kinase (PFKM), a key regulatory enzyme of glycolysis, cause Type VII glycogen storage disease (GSDVII). Clinical manifestations of the disease span from the severe infantile form, leading to death during childhood, to the classical form, which presents mainly with exercise intolerance. PFKM deficiency is considered as a skeletal muscle glycogenosis, but the relative contribution of altered glucose metabolism in other tissues to the pathogenesis of the disease is not fully understood. To elucidate this issue, we have generated mice deficient for PFKM (Pfkm−/−). Here, we show that Pfkm−/− mice had high lethality around weaning and reduced lifespan, because of the metabolic alterations. In skeletal muscle, including respiratory muscles, the lack of PFK activity blocked glycolysis and resulted in considerable glycogen storage and low ATP content. Although erythrocytes of Pfkm−/− mice preserved 50% of PFK activity, they showed strong reduction of 2,3-biphosphoglycerate concentrations and hemolysis, which was associated with compensatory reticulocytosis and splenomegaly. As a consequence of these haematological alterations, and of reduced PFK activity in the heart, Pfkm−/− mice developed cardiac hypertrophy with age. Taken together, these alterations resulted in muscle hypoxia and hypervascularization, impaired oxidative metabolism, fiber necrosis, and exercise intolerance. These results indicate that, in GSDVII, marked alterations in muscle bioenergetics and erythrocyte metabolism interact to produce a complex systemic disorder. Therefore, GSDVII is not simply a muscle glycogenosis, and Pfkm−/− mice constitute a unique model of GSDVII which may be useful for the design and assessment of new therapies.
Type VII glycogen storage disease (GSDVII), or Tarui disease, is a rare genetic disorder characterized by glycogen accumulation in skeletal muscle. The molecular cause is loss of activity of the muscle isoform of phosphofructokinase (PFK), which phosphorylates fructose-6-phosphate to fructose-1,6-bisphosphate, commiting glucose to glycolysis. Entry of fructose-6-phosphate into glycolysis is thus blocked, increasing glycogen synthesis and accumulation. Clinical manifestations of the disease are heterogeneous, ranging from exercise intolerance to early childhood death. To further understand the human pathology, we generated mice lacking muscle PFK. As in human patients, these mice showed severe exercise intolerance, hemolysis, and most died young. Lack of glycolysis in skeletal muscle also causes alterations in bioenergetics and compensatory changes in key metabolic genes. Additionally, although erythrocytes retained 50% of normal PFK activity, their overall functionality was impaired, aggravating the muscle dysfunction. Moreover, marked metabolic alterations in the heart lead to chronic hypertrophy, suggesting that cardiac pathology in GSDVII may be underestimated or misdiagnosed. This study indicates that this disease is more complex than a muscle glycogenosis and that symptoms other than those classically described should be taken into consideration. Finally, this animal model will enable us to develop new therapeutic approaches and better diagnostic tools.
Collapse