1
|
Schimper CB, Pachschwöll P, Maitz MF, Werner C, Rosenau T, Liebner F. Hemocompatibility of cellulose phosphate aerogel membranes with potential use in bone tissue engineering. Front Bioeng Biotechnol 2023; 11:1152577. [PMID: 37152648 PMCID: PMC10154571 DOI: 10.3389/fbioe.2023.1152577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/05/2023] [Indexed: 05/09/2023] Open
Abstract
Cellulose is an appealing material for tissue engineering. In an attempt to overcome some obstacles with cellulose II cell scaffolding materials related to insufficient biomineralization, lack of micron-size porosity, and deficiency in surface charge, respective solutions have been proposed. These included covalent phosphorylation of different cellulose materials targeting relatively low degrees of substitution (DS 0.18-0.23) and processing these cellulose derivatives into scaffolding materials by a dissolution/coagulation approach employing the hitherto rarely used TBAF/DMSO/H2O system for cellulose dissolution. Here, we report bioactivity and preliminary hemocompatibility testing of dual-porous cellulose phosphate aerogels (contrasted with the phosphate-free reference) obtained via coagulation (water/ethanol), solvent exchange and scCO2 drying. Deposition of hydroxyapatite from simulated body fluid (7 days of immersion) revealed good bioactivity (1.5-2.2 mg Ca2+ per mg scaffold). Incubation of the scCO2-dried and rehydrated scaffolding materials in heparin anticoagulated human whole blood was conducted to study selected parameters of hemostasis (prothrombin F1+2 fragment, PF4, count of thrombocyte-leukocyte conjugates) and inflammatory response (C5a fragment, leukocyte activation marker CD11b). Adhesion of leukocytes on the surface of the incubated substrates was assessed by scanning electron and fluorescence microscopy (DAPI staining). The results suggest that phosphorylation at low DS does not increase platelet activation. However, a significant increase in platelet activation and thrombin formation was observed after a certain fraction of the negative surface charges had been compensated by Ca2+ ions. The combination of both phosphorylation and calcification turned out to be a potent means for controlling the inflammatory response, which was close to baseline level for some of the studied samples.
Collapse
Affiliation(s)
- Christian B. Schimper
- Department of Chemistry, Institute of Chemistry of Renewable Resources, University of Natural Resources and Life Sciences Vienna, Vienna, Austria
| | - Paul Pachschwöll
- Department of Chemistry, Institute of Chemistry of Renewable Resources, University of Natural Resources and Life Sciences Vienna, Vienna, Austria
| | - Manfred F. Maitz
- Leibniz Institute of Polymer Research, Max Bergmann Center of Biomaterials, Dresden, Germany
| | - Carsten Werner
- Leibniz Institute of Polymer Research, Max Bergmann Center of Biomaterials, Dresden, Germany
| | - Thomas Rosenau
- Department of Chemistry, Institute of Chemistry of Renewable Resources, University of Natural Resources and Life Sciences Vienna, Vienna, Austria
| | - Falk Liebner
- Department of Chemistry, Institute of Chemistry of Renewable Resources, University of Natural Resources and Life Sciences Vienna, Vienna, Austria
- *Correspondence: Falk Liebner,
| |
Collapse
|
2
|
Pall E, Roman A. Lactoferrin Functionalized Biomaterials: Tools for Prevention of Implant-Associated Infections. Antibiotics (Basel) 2020; 9:E522. [PMID: 32824241 PMCID: PMC7459815 DOI: 10.3390/antibiotics9080522] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/12/2020] [Accepted: 08/13/2020] [Indexed: 12/15/2022] Open
Abstract
Tissue engineering is one of the most important biotechnologies in the biomedical field. It requires the application of the principles of scientific engineering in order to design and build natural or synthetic biomaterials feasible for the maintenance of tissues and organs. Depending on the specific applications, the selection of the proper material remains a significant clinical concern. Implant-associated infection is one of the most severe complications in orthopedic implant surgeries. The treatment of these infections is difficult because the surface of the implant serves not only as a substrate for the formation of the biofilm, but also for the selection of multidrug-resistant bacterial strains. Therefore, a promising new approach for prevention of implant-related infection involves development of new implantable, non-antibiotic-based biomaterials. This review provides a brief overview of antimicrobial peptide-based biomaterials-especially those coated with lactoferrin.
Collapse
Affiliation(s)
- Emoke Pall
- Life Science Institute, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca 400372, Romania
| | - Alexandra Roman
- Department of Periodontology, Faculty of Dental Medicine, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca 400012, Romania;
| |
Collapse
|
3
|
Hidzir NM, Hill DJ, Martin D, Grøndahl L. In vitro mineralisation of grafted ePTFE membranes carrying carboxylate groups. Bioact Mater 2017; 2:27-34. [PMID: 29744408 PMCID: PMC5935022 DOI: 10.1016/j.bioactmat.2017.02.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 02/17/2017] [Accepted: 02/19/2017] [Indexed: 11/19/2022] Open
Abstract
In vitro mineralisation in simulated body fluid (SBF) of synthetic polymers continues to be an important area of research as the outcomes cannot be predicted. This study evaluates a series of ePTFE membranes grafted with carboxylate-containing copolymers, specifically using acrylic acid and itaconic acid for grafting. The samples differ with regards to graft density, carboxylate density and polymer topology. The type and amount of mineral produced in 1.5 × SBF was dependent on the sample characteristics as evident from XPS, SEM/EDX, and FTIR spectroscopy. It was found that the graft density affects the mineral phases that form and that low graft density appear to cause co-precipitation of calcium carbonate and calcium phosphate. Linear and branched graft copolymer topology led to hydroxyapatite mineralisation whereas crosslinked graft copolymers resulted in formation of a mixture of calcium-phosphate phases. This study demonstrates that in vitro mineralisation outcomes for carboxylate-containing graft copolymers are complex. The findings of this study have implications for the design of bioactive coatings and are important for understanding the bone-biomaterial interface.
Collapse
Affiliation(s)
- Norsyahidah Mohd Hidzir
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, QLD, 4072, Australia
| | - David J.T. Hill
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, QLD, 4072, Australia
| | - Darren Martin
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, QLD, 4072, Australia
| | - Lisbeth Grøndahl
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, QLD, 4072, Australia
| |
Collapse
|
4
|
Wang W, Liu Y, Liu A, Zhao Y, Chen X. Effect ofin situapatite on performance of collagen fiber film for food packaging applications. J Appl Polym Sci 2016. [DOI: 10.1002/app.44154] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Wenhang Wang
- Key Laboratory of Food Nutrition and Safety; Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology; Tianjin 300457 China
- Tianjin Food Safety & Low Carbon Manufacturing Collaborative Innovation Center; 300457 Tianjin China
| | - Yaowei Liu
- Key Laboratory of Food Nutrition and Safety; Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology; Tianjin 300457 China
- Tianjin Food Safety & Low Carbon Manufacturing Collaborative Innovation Center; 300457 Tianjin China
| | - Anjun Liu
- Key Laboratory of Food Nutrition and Safety; Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology; Tianjin 300457 China
- Tianjin Food Safety & Low Carbon Manufacturing Collaborative Innovation Center; 300457 Tianjin China
| | - Yana Zhao
- Key Laboratory of Food Nutrition and Safety; Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology; Tianjin 300457 China
- Tianjin Food Safety & Low Carbon Manufacturing Collaborative Innovation Center; 300457 Tianjin China
| | - Xin Chen
- Key Laboratory of Food Nutrition and Safety; Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology; Tianjin 300457 China
- Tianjin Food Safety & Low Carbon Manufacturing Collaborative Innovation Center; 300457 Tianjin China
| |
Collapse
|
5
|
Kepa K, Coleman R, Grøndahl L. In vitro mineralization of functional polymers. BIOSURFACE AND BIOTRIBOLOGY 2015. [DOI: 10.1016/j.bsbt.2015.09.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
6
|
Pati F, Kalita H, Adhikari B, Dhara S. Osteoblastic cellular responses on ionically crosslinked chitosan-tripolyphosphate fibrous 3-D mesh scaffolds. J Biomed Mater Res A 2013; 101:2526-37. [DOI: 10.1002/jbm.a.34559] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 11/21/2012] [Accepted: 11/27/2012] [Indexed: 01/05/2023]
Affiliation(s)
- Falguni Pati
- School of Medical Science and Technology; Indian Institute of Technology; Kharagpur 721302; India
| | - Hemjyoti Kalita
- School of Medical Science and Technology; Indian Institute of Technology; Kharagpur 721302; India
| | - Basudam Adhikari
- Materials Science Centre; Indian Institute of Technology; Kharagpur 721302; India
| | - Santanu Dhara
- School of Medical Science and Technology; Indian Institute of Technology; Kharagpur 721302; India
| |
Collapse
|
7
|
Seo YH, Oh TH, Han SS, Joo SW, Khil MS. Preparation of Coil-Embolic Material Using Syndiotactic Poly(vinyl alcohol) Gel Spun Fibers. POLYMER-KOREA 2013. [DOI: 10.7317/pk.2013.37.4.486] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
8
|
Kyomoto M, Moro T, Saiga K, Hashimoto M, Ito H, Kawaguchi H, Takatori Y, Ishihara K. Biomimetic hydration lubrication with various polyelectrolyte layers on cross-linked polyethylene orthopedic bearing materials. Biomaterials 2012; 33:4451-9. [PMID: 22465336 DOI: 10.1016/j.biomaterials.2012.03.028] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Accepted: 03/07/2012] [Indexed: 12/01/2022]
Abstract
Natural joints rely on fluid thin-film lubrication by the hydrated polyelectrolyte layer of cartilage. However, current artificial joints with polyethylene (PE) surfaces have considerably less efficient lubrication and thus much greater wear, leading to osteolysis and aseptic loosening. This is considered a common factor limiting prosthetic longevity in total hip arthroplasty (THA). However, such wear could be mitigated by surface modification to mimic the role of cartilage. Here we report the development of nanometer-scale hydrophilic layers with varying charge (nonionic, cationic, anionic, or zwitterionic) on cross-linked PE (CLPE) surfaces, which could fully mimic the hydrophilicity and lubricity of the natural joint surface. We present evidence to support two lubrication mechanisms: the primary mechanism is due to the high level of hydration in the grafted layer, where water molecules act as very efficient lubricants; and the secondary mechanism is repulsion of protein molecules and positively charged inorganic ions by the grafted polyelectrolyte layer. Thus, such nanometer-scaled hydrophilic polymers or polyelectrolyte layers on the CLPE surface of acetabular cup bearings could confer high durability to THA prosthetics.
Collapse
Affiliation(s)
- Masayuki Kyomoto
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Mizuta N, Hattori K, Suzawa Y, Iwai S, Matsumoto T, Tadokoro M, Nakano T, Akashi M, Ohgushi H, Yura Y. Mesenchymal stromal cells improve the osteogenic capabilities of mineralized agarose gels in a rat full-thickness cranial defect model. J Tissue Eng Regen Med 2012; 7:51-60. [DOI: 10.1002/term.495] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Revised: 03/29/2011] [Accepted: 07/12/2011] [Indexed: 11/10/2022]
Affiliation(s)
| | - Koji Hattori
- Research Institute for Cell Engineering; National Institute of Advanced Industrial Science and Technology; Amagasaki Site, 3-11-46 Nakoji; Amagasaki; Hyogo; 661-0974; Japan
| | - Yoshika Suzawa
- Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry; Osaka University; 1-8 Yamadaoka, Suita; Osaka; 565-0871; Japan
| | - Soichi Iwai
- Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry; Osaka University; 1-8 Yamadaoka, Suita; Osaka; 565-0871; Japan
| | - Tomohiro Matsumoto
- Research Institute for Cell Engineering; National Institute of Advanced Industrial Science and Technology; Amagasaki Site, 3-11-46 Nakoji; Amagasaki; Hyogo; 661-0974; Japan
| | - Mika Tadokoro
- Research Institute for Cell Engineering; National Institute of Advanced Industrial Science and Technology; Amagasaki Site, 3-11-46 Nakoji; Amagasaki; Hyogo; 661-0974; Japan
| | - Takayoshi Nakano
- Division of Materials and Manufacturing Science, Graduate School of Engineering; Osaka University; 2-1 Yamadaoka; Suita; Osaka; 565-0871; Japan
| | - Mitsuru Akashi
- Division of Applied Chemistry, Graduate School of Engineering; Osaka University; 2-1 Yamadaoka; Suita; Osaka; 565-0871; Japan
| | - Hajime Ohgushi
- Research Institute for Cell Engineering; National Institute of Advanced Industrial Science and Technology; Amagasaki Site, 3-11-46 Nakoji; Amagasaki; Hyogo; 661-0974; Japan
| | - Yoshiaki Yura
- Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry; Osaka University; 1-8 Yamadaoka, Suita; Osaka; 565-0871; Japan
| |
Collapse
|
10
|
Dehestani M, Ilver L, Adolfsson E. Enhancing the bioactivity of zirconia and zirconia composites by surface modification. J Biomed Mater Res B Appl Biomater 2012; 100:832-40. [DOI: 10.1002/jbm.b.32647] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Revised: 10/14/2011] [Accepted: 10/16/2011] [Indexed: 11/09/2022]
|
11
|
Raquez JM, Barone DJ, Luklinska Z, Persenaire O, Belayew A, Eyckmans J, Schrooten J, Dubois P. Osteoconductive and Bioresorbable Composites Based on Poly(l,l-lactide) and Pseudowollastonite: From Synthesis and Interfacial Compatibilization to In Vitro Bioactivity and In Vivo Osseointegration Studies. Biomacromolecules 2011; 12:692-700. [DOI: 10.1021/bm101327r] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | | | - Z. Luklinska
- Department of Materials, Queen Mary University of London, E.M.Unit, Mile End Road, London E14NS, United Kingdom
| | | | | | | | - J. Schrooten
- Department of Metallurgy and Materials Engineering, Katholieke Universiteit Leuven, Kasteelpark Arenberg 44, PB 2450, 3001 Leuven, Belgium
| | | |
Collapse
|
12
|
Wentrup-Byrne E, Suzuki S, Suwanasilp JJ, Grøndahl L. Novel phosphate-grafted ePTFE copolymers for optimum
in vitro
mineralization. Biomed Mater 2010; 5:045010. [DOI: 10.1088/1748-6041/5/4/045010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
13
|
Huang X, Cao H, Shi Z, Xu H, Fang J, Yin J, Pan Q. A study on mineralization behavior of amino-terminated hyperbranched polybenzimidazole membranes. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2010; 21:1829-1835. [PMID: 20372986 DOI: 10.1007/s10856-010-4059-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2009] [Accepted: 03/15/2010] [Indexed: 05/29/2023]
Abstract
Amino-bearing polymers, coated with apatite or similar minerals, have attracted significant attention for their potential in medical applications. In this study, an amino-terminated hyperbranched polybenzimidazole (HBPBI) membrane was used as a substrate for apatite growth. The membrane was soaked in solutions of CaCl2, Na2HPO4 and SBF to yield an apatite coating. The structure and morphology of the layers were characterized by FTIR-ATR, XRD and FESEM. The results indicate that the high densities of amino, imide and imidazole groups on the amino-terminated HBPBI membrane provide active sites for the growth of apatite.
Collapse
Affiliation(s)
- Xiayun Huang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
14
|
Haroun AA, Migonney V. Synthesis and in vitro evaluation of gelatin/hydroxyapatite graft copolymers to form bionanocomposites. Int J Biol Macromol 2010; 46:310-6. [DOI: 10.1016/j.ijbiomac.2010.01.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2009] [Revised: 01/10/2010] [Accepted: 01/11/2010] [Indexed: 10/20/2022]
|
15
|
Haroun AA, Beherei HH, El-Ghaffar MAA. Preparation, characterization, and in vitroapplication of composite films based on gelatin and collagen from natural resources. J Appl Polym Sci 2010. [DOI: 10.1002/app.31714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
16
|
Kim EJ, Yeo GD, Pai CM, Kang IK. Preparation of surface-modified poly(butylene terephthalate) nonwovens and their application as leukocyte removal filters. J Biomed Mater Res B Appl Biomater 2009; 90:849-56. [DOI: 10.1002/jbm.b.31354] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
17
|
Surface modification of P(EMA-co-HEA)/SiO2 nanohybrids for faster hydroxyapatite deposition in simulated body fluid? Colloids Surf B Biointerfaces 2008; 70:218-25. [PMID: 19185471 DOI: 10.1016/j.colsurfb.2008.12.027] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2008] [Revised: 12/17/2008] [Accepted: 12/17/2008] [Indexed: 11/20/2022]
Abstract
P(EMA-co-HEA)/SiO(2) nanocomposites with 0, 15 and 30 wt% of silica were obtained by copolymerization of ethyl methacrylate, EMA, and hydroxyethyl acrylate, HEA, during the simultaneous acid-catalyzed sol-gel polymerization of tetraethoxysilane, TEOS. A surface modification treatment was applied in order to reduce the induction time for hydroxyapatite (HAp) nucleation, combining a previous NaOH attack to increase the number of surface nucleating sites, and an alternate soaking process in Ca and P solutions to form apatite precursors, prior to the immersion in a simulated body fluid (SBF). The NaOH treatment was not effective by itself in shortening the HAp induction time. It introduced sodium carboxylates in the copolymer but hydrolyzed the silica network excessively, thus reducing the surface nucleating potential of its boundary silanols. Therefore, bioactivity was only due to the surface carboxylate groups of the organic phase. Maybe a controlled dissolution extent of the silica network so as to improve bioactivity could be attained by reducing the duration of the NaOH-treatment. This would be interesting in the hybrid with 30wt% of silica, because its dense silica network is not able to hydrolyze in SBF without any previous treatment, whereas the silica network in the hybrid with 15wt% of silica hydrolyzes at the surface promoting the deposition of HAp. The CaP treatment was able to coat the surfaces of the samples with a calcium phosphate layer within minutes. This amorphous calcium phosphate acted as HAp precursor, skipping the induction period in SBF.
Collapse
|
18
|
Abstract
At present, strong requirements in orthopaedics are still to be met, both in bone and joint substitution and in the repair and regeneration of bone defects. In this framework, tremendous advances in the biomaterials field have been made in the last 50 years where materials intended for biomedical purposes have evolved through three different generations, namely first generation (bioinert materials), second generation (bioactive and biodegradable materials) and third generation (materials designed to stimulate specific responses at the molecular level). In this review, the evolution of different metals, ceramics and polymers most commonly used in orthopaedic applications is discussed, as well as the different approaches used to fulfil the challenges faced by this medical field.
Collapse
Affiliation(s)
- M Navarro
- Biomaterials, Implants and Tissue Engineering, Institute for Bioengineering of Catalonia (IBEC), CIBER-BBN, 08028 Barcelona, Spain.
| | | | | | | |
Collapse
|
19
|
Góes JC, Figueiró SD, Oliveira AM, Macedo AAM, Silva CC, Ricardo NMPS, Sombra ASB. Apatite coating on anionic and native collagen films by an alternate soaking process. Acta Biomater 2007; 3:773-8. [PMID: 17468060 DOI: 10.1016/j.actbio.2007.02.008] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2006] [Revised: 02/01/2007] [Accepted: 02/14/2007] [Indexed: 11/25/2022]
Abstract
The present study focuses on apatite coating on collagen films, with various different densities of carboxyl groups, using an alternate soaking process. Anionic collagen (AC), which has different densities of carboxylic groups compared to native collagen (NC), was obtained by hydrolysis of carboxyamides of asparagine and glutamine residues. From X-ray diffraction analysis, apatite was found to be coated on AC and NC films. Peaks ascribed to apatite were observed at 26 degrees and 32 degrees in the diffraction patterns of hydroxyapatite crystals. The amount of apatite coated on both AC and NC collagen films continued to increase up to 100 reaction cycles. However, there is a significant difference in apatite coating between the two films. The amount of apatite formed on the surface of AC film increased 1.24 times faster than on NC film. The scanning electron photomicrograph images of the mineralized NC and the AC film coatings formed after 100cycles show that regular porous apatite coating had formed within the collagen fibrils. These results suggest that the higher content of carboxyl groups in AC plays an effective role in the heterogeneous nucleation of apatite in the body environment.
Collapse
Affiliation(s)
- J C Góes
- Laboratório de Telecomunicações e Ciência dos Materiais (LOCEM), Departamento de Física, Universidade Federal do Ceará, Caixa Postal 6030, CEP 60455-760, Fortaleza, Ceará, Brazil.
| | | | | | | | | | | | | |
Collapse
|
20
|
Chung YS, Kang SI, Kwon OW, Shin DS, Lee SG, Shin EJ, Min BG, Bae HJ, Han SS, Jeon HY, Noh SK, Lyoo WS. Preparation of hydroxyapatite/poly(vinyl alcohol) composite fibers by wet spinning and their characterization. J Appl Polym Sci 2007. [DOI: 10.1002/app.26557] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
21
|
Calcification of synthetic polymers functionalized with negatively ionizable groups: A critical review. REACT FUNCT POLYM 2007. [DOI: 10.1016/j.reactfunctpolym.2006.10.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
22
|
Chirila TV, Hill DJT, Whittaker AK, Kemp A. Effect of phosphate functional groups on the calcification capacity of acrylic hydrogels. Acta Biomater 2007; 3:95-102. [PMID: 17071146 DOI: 10.1016/j.actbio.2006.07.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2006] [Revised: 07/14/2006] [Accepted: 07/26/2006] [Indexed: 10/24/2022]
Abstract
The incorporation of negatively charged groups into the structure of synthetic polymers is frequently advocated as a method for enhancing their calcification capacity required in orthopedic and dental applications. However, the results reported by various research groups are rather contentious, since inhibitory effects have also been observed in some studies. In the present study, phosphate groups were introduced in poly(2-hydroxyethyl methacrylate) (PHEMA) by copolymerization with 10% mol of either mono(2-acryloyloxyethyl) phosphate (MAEP) or mono(2-methacryloyloxyethyl) phosphate (MMEP). Incubation of these hydrogels for determined durations (1-9 weeks) in a simulated body fluid (SBF) solution induced deposition of calcium phosphate (CaP) deposits of whitlockite type. After 9 weeks, the amount of calcium deposited on the phosphate-containing polymers was four times lower than that found on PHEMA, as determined by X-ray photoelectron spectroscopy (XPS). Samples of copolymer HEMA-MAEP were implanted subcutaneously in rats and evaluated after 9 weeks. No CaP deposits could be detected on the copolymer by XPS or energy dispersive X-ray spectroscopy, while PHEMA samples were massively calcified. It was concluded that the presence of phosphate groups decreased the calcification capacity of the hydrogels, and that in the conditions of this study, the phosphate groups had an inhibitory effect on the deposition of CaP phases on HEMA-based hydrogels.
Collapse
Affiliation(s)
- Traian V Chirila
- Queensland Eye Institute, University of Queensland, 41 Annerley Road, South Brisbane, Queensland 4101, Australia.
| | | | | | | |
Collapse
|
23
|
Chung YS, Kang SI, Kwon OW, Lee SG, Lee YR, Min BG, Han SS, Noh SK, Lyoo WS. Preparation of hydroxyapatite/poly(vinyl alcohol) composite film with uniformly dispersed hydroxyapatite particles using citric acid. J Appl Polym Sci 2007. [DOI: 10.1002/app.25949] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
24
|
Rusen E, Zaharia C, Zecheru T, Mărculescu B, Filmon R, Chappard D, Bădulescu R, Cincu C. Synthesis and characterisation of core–shell structures for orthopaedic surgery. J Biomech 2007; 40:3349-53. [PMID: 17568590 DOI: 10.1016/j.jbiomech.2007.05.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2007] [Revised: 05/03/2007] [Accepted: 05/03/2007] [Indexed: 11/23/2022]
Abstract
This paperwork deals with the obtaining and characterisation of new acrylic cements for bone surgery. The final mixture of cement contains derivatives of methacryloyloxyethyl phosphate, methacrylic acid or 2-acrylamido-2-methyl-1-propane sulphonic acid. The idea of using these monomers is sustained by their ability to form ionic bonds with barium, which is responsible for X-ray reflection and by the biocompatibility of these structures. The strategy consists in the obtaining of core-shell structures through heterogeneous polymerisation, which are used for final cement's manufacture. The orthopaedic cements were characterised by SEM, EDX, compression resistance and cytotoxicity assays.
Collapse
Affiliation(s)
- Edina Rusen
- Department of Macromolecular Compounds, University Politehnica of Bucharest, 010072 Bucharest, Romania
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Gemeinhart RA, Bare CM, Haasch RT, Gemeinhart EJ. Osteoblast-like cell attachment to and calcification of novel phosphonate-containing polymeric substrates. J Biomed Mater Res A 2006; 78:433-40. [PMID: 16955553 DOI: 10.1002/jbm.a.30788] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In an attempt to interact natural bone and bone cells with biomaterials and to begin to develop modular tissue engineering scaffolds, substrates containing phosphonate groups were identified to mimic mineral-protein and natural polymer-protein interactions. In this study, we investigated poly(vinyl phosphonic acid) copolymer integration with existing materials as a graft-copolymer surface modification. Phosphonate-containing copolymer-modified surfaces were created and shown to have varying phosphate content within different polymeric surfaces. As the phosphonate content in the monomer feed approached 30% vinyl phosphonic acid, increased osteoblast-like cell adhesion (3- to 8-fold increase in adhesion) and proliferation (2- to 10-fold increase in proliferation rate) was observed. Since surfaces modified with 30% vinyl phosphonic acid in the feed exhibited a maximal cell adhesion and proliferation (9.4 x 10(4) cells/cm(2)/day), it was hypothesized that this copolymer composition was optimal for protein-polymer interactions. Osteoblast-like cells formed confluent layers and were able to differentiate on all surfaces that contained vinyl phosphonic acid. Most importantly, cells interacting with these surfaces were able to significantly mineralize the surface. These results suggest that phosphonate-containing polymers can be used to integrate biomaterials with natural bone and could be used for tissue engineering applications.
Collapse
|
26
|
Wentrup-Byrne E, Grøndahl L, Suzuki S. Methacryloxyethyl phosphate-grafted expanded polytetrafluoroethylene membranes for biomedical applications. POLYM INT 2005. [DOI: 10.1002/pi.1902] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
27
|
Wan ACA, Mao HQ, Wang S, Phua SH, Lee GP, Pan J, Lu S, Wang J, Leong KW. Poly(phosphoester) ionomers as tissue-engineering scaffolds. J Biomed Mater Res B Appl Biomater 2005; 70:91-102. [PMID: 15199588 DOI: 10.1002/jbm.b.30022] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Regenerative medicine requires scaffolds of divergent physicochemical properties for different tissue-engineering applications. To this end, a series of biodegradable poly(phosphoester) ionomers of the general composition [p(BHET-EOP-HOP/TC)] was synthesized, with BHET(bis-hydroxyl ethylene phosphate):EOP(ethylene phosphate):HOP(free phosphate) ratios of 60:20:20, 70:10:20, and 75:5:20, respectively. The 60/20/20 ionomer possessed the best tensile properties, exhibiting an average tensile modulus of 68 MPa and strain at break of 31%. Calcium treatment of the ionomer films led to significantly higher hardness and elastic moduli as measured by indentation. Calcium binding was evident from the increase in glass transition and melting temperatures, and a shift in the P-->O absorption in the FTIR spectrum. Stable N-hydroxysuccinimide ester (NHS) of the ionomers could be synthesized to facilitate derivatization, as demonstrated by conjugation of GRGDS in this study. The polymers conjugated with NHS were hydrolyzed in a biphasic mode, with a fast initial phase occurring in the first few hours, followed by a slower phase in the next few days. These ionomers represent a novel class of biomaterials with readily controllable physical and chemical attributes for tissue engineering.
Collapse
Affiliation(s)
- Andrew C A Wan
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Toworfe GK, Composto RJ, Shapiro IM, Ducheyne P. Nucleation and growth of calcium phosphate on amine-, carboxyl- and hydroxyl-silane self-assembled monolayers. Biomaterials 2005; 27:631-42. [PMID: 16081155 DOI: 10.1016/j.biomaterials.2005.06.017] [Citation(s) in RCA: 248] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2005] [Accepted: 06/20/2005] [Indexed: 11/24/2022]
Abstract
Upon implantation, calcium phosphate (Ca-P) surfaces form on materials that are bone bioactive. In this study, the evolving surface characteristics associated with calcium phosphate precipitation are modeled using self-assembled monolayers (SAMs), in a one-step nucleation process. SAMs were used to create amine (-NH2), carboxyl (-COOH) and hydroxyl (-OH) functionalized surfaces by grafting 3-aminopropyltriethoxysilane, 3-triethoxysilylpropyl succinic anhydride and glycidoxypropyl tri-methoxysilane, respectively, onto oxidized silicon wafers. The SAM surfaces were characterized using ellipsometry to establish the presence of grafted molecules. On the surfaces incubated in simulated physiological fluids for 7 days, the thickness of Ca-P layer grew slowly over the first few hours, increasing strongly between 1 and 5 days and then slowed down again. FTIR showed the dependence of calcium phosphate morphology on the type of surface groups, with stronger P-O bands seen on the OH-terminated surface. SEM analysis showed dispersed Ca-P precipitates on the -COOH and -OH terminated surfaces after 1 day immersion. After 7 days, all SAM surfaces were covered with uniformly dispersed and denser Ca-P precipitates. The underlying Ca-P layer showed cracks on the -NH2-terminated surface. Rutherford backscattering spectrometry (RBS) data analysis confirmed that Ca/P ratio is in excellent agreement with the theoretical value of 1.67 for hydroxyapatite. X-ray diffraction (XRD) analysis also showed evidence of apatite formation on all the surfaces, with stronger evidence on the -OH-terminated surface. Highly porous Ca-P precipitates were observed on the SAM surfaces portrayed by the AFM scans with nanoscale RMS roughness. Thus, using highly controlled surface chemistry, under physiological conditions, in vitro, this study demonstrates that a hydroxylated surface enhances Ca-P nucleation and growth relative to other surfaces, thereby supporting the concept of its beneficial effect on bone tissue formation and growth.
Collapse
Affiliation(s)
- G K Toworfe
- Center for Bioactive Materials and Tissue Engineering, Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, 120 Hayden Hall, 3320 Smith Walk, Philadelphia, PA 19104, USA.
| | | | | | | |
Collapse
|
29
|
Hayakawa T, Yoshinari M, Sakae T, Nemoto K. Calcium phosphate formation on the phosphorylated dental bonding agent in electrolyte solution. J Oral Rehabil 2004; 31:67-73. [PMID: 15125600 DOI: 10.1111/j.1365-2842.2004.01135.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The aim of the present study was to study the mineral formation on a phosphorylated dental bonding agent using a mineralization inductive solution. Clearfil Photobond, which contained phosphate monomer, was cured by photo-irradiation and heat treated, and was then immersed in Hanks' balanced salt solution (HBSS) with pH = 7.4 for 1, 3, 5, 7, 14, and 28 days at 37 degrees C. The white substances were deposited on the phosphorylated polymer, i.e. cured Photobond disk, after the immersion in HBSS. The white substances become visible after 3 days immersion. After 7 days immersion, surface of the phosphorylated polymer disk was almost covered with white substance layers. The measurement of white substances by means of X-ray diffraction, Fourier-transform infrared and electron probe microanalysis revealed that their main component was carbonate-containing hydroxyapatite. Scanning electron microscopy pictures showed that a large number of globules of hydroxyapatite were fused together, and that each globule was composed of a group of numerous thin-film form flakes uniting and/or clustering together. The results obtained in this study concluded that the presence of phosphonic acid and phosphate group of phosphorylated dental bonding agent enhanced the nucleation and growth of hydroxyapatite crystals on its surface.
Collapse
Affiliation(s)
- T Hayakawa
- Department of Dental Materials, Research Institute of Oral Science, Nihon University School of Dentistry at Matsudo, Matsudo, Chiba, Japan.
| | | | | | | |
Collapse
|
30
|
Stancu IC, Filmon R, Cincu C, Marculescu B, Zaharia C, Tourmen Y, Baslé MF, Chappard D. Synthesis of methacryloyloxyethyl phosphate copolymers and in vitro calcification capacity. Biomaterials 2004; 25:205-13. [PMID: 14585708 DOI: 10.1016/s0142-9612(03)00485-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Methacryloyloxyethyl phosphate is a methacrylic monomer used to modify different substrates by copolymerisation, in order to enhance hydroxyapatite deposition onto their surfaces. We report the synthesis of two copolymers series using increasing concentrations of methacryloyloxyethyl phosphate with (diethylamino) ethyl methacrylate and 1-vinyl-2-pyrrolidinone. Reactivity ratios were evaluated for the two copolymer systems. The influence of phosphate content and distribution on the capacity to form a calcium-rich layer was evaluated after immersion for 15 days in a synthetic body fluid. Corresponding homopolymers were synthesised as controls. Calcium-phosphorus globules were developed only on samples containing (diethylamino) ethyl methacrylate, and presenting a low density of phosphate groups. The amounts of calcium increased when higher concentrations of methacryloyloxyethyl phosphate were used. The use of 1-vinyl-2-pyrrolidinone was associated with greater calcium amounts, (compared to (diethylamino) ethyl methacrylate). The amine groups may favour the attraction of phosphorus, thus creating another way for the nucleation of calcium/phosphate crystals.
Collapse
Affiliation(s)
- I C Stancu
- Department of Macromolecular Chemistry, Faculty of Industrial Chemistry, University Politehnica, Buchares 71101, Romania
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Ogomi D, Serizawa T, Akashi M. Bioinspired organic‐inorganic composite materials prepared by an alternate soaking process as a tissue reconstitution matrix. J Biomed Mater Res A 2003; 67:1360-6. [PMID: 14624523 DOI: 10.1002/jbm.a.20053] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Poly(acrylic acid) (PAAc) grafted poly(ethylene) (PE) (PAAc-g-PE) film-apatite or calcium carbonate (CaCO3) composite materials were prepared by an alternate soaking process, which simply forms apatite or CaCO3 on the polymer materials by alternate soaking in Ca(2+)- and PO(3-)4- or CO(3)2- -containing solutions. X-ray diffraction analysis of the composite films indicated the presence of hydroxyapatite or CaCO3 on the film. Scanning electron microscopic observation revealed that the whole surface of the film was covered by the apatite or CaCO3. Cell compatibility tests of the apatite- or CaCO3-coated film suggested that the greater number of cells adhered on the films and that the cell proliferation properties were extremely greater on the films.
Collapse
Affiliation(s)
- Daisuke Ogomi
- Department of Nanostructured and Advanced Materials, Graduate School of Science and Engineering, Kagoshima University, 1-21-40 Korimoto, Kagoshima 890-0065, Japan
| | | | | |
Collapse
|
32
|
Elliott J, Hamerton I, Hay JN, Shaw SJ. Synthesis and characterisation of novel methyl methacrylate-2-(dimethylamino)ethyl methacrylate copolymer salts containing polymerisable anions. POLYMER 2003. [DOI: 10.1016/s0032-3861(03)00355-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
33
|
Daculsi G, Laboux O, Le Geros R. Outcome and perspectives in bioactive coatings: What's new, what's coming. ACTA ACUST UNITED AC 2002. [DOI: 10.1016/s1297-9562(02)90000-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
34
|
Grøndahl L, Cardona F, Chiem K, Wentrup-Byrne E. Preparation and characterization of the copolymers obtained by grafting of monoacryloxyethyl phosphate onto polytetrafluoroethylene membranes and poly(tetrafluoroethylene-co-hexafluoropropylene) films. J Appl Polym Sci 2002. [DOI: 10.1002/app.11177] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
35
|
Liu Q, Ding J, Mante FK, Wunder SL, Baran GR. The role of surface functional groups in calcium phosphate nucleation on titanium foil: a self-assembled monolayer technique. Biomaterials 2002; 23:3103-11. [PMID: 12102181 DOI: 10.1016/s0142-9612(02)00050-9] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Surface functional groups play important roles in nucleating calcium phosphate deposition on surgical titanium implants. In this study, various functional groups were introduced onto the surface of commercially pure titanium foils using a self-assembled monolayer (SAM) technique. An organic silane, 7-oct-1-enyltrichlorosilane (OETS) was used and -OH, -PO4H2, -COOH groups were derived from its unsaturated double bond. Ti foils were first oxidized in concentrated H2SO4/H2O2. ESCA and contact angle measurements were used to characterize the SAM surfaces and confirm the presence of various functional groups. A fast calcium phosphate deposition experiment was carried out by mixing Ca2+- and (PO4)(3-)-containing solutions in the presence of the surface-modified Ti samples at pH 7.4 at room temperature in order to verify the nucleating abilities of these functional groups. SEM, Raman spectroscopy, XRD and ATR-FTIR results showed that poorly crystallized hydroxyapatite (HA) can be deposited on the SAM surfaces with -PO4H2 and -COOH functional groups, but not onto the SAM with -CH=CH2 and -OH. -PO4H2 exhibited a stronger nucleating ability than that of -COOH. The oxidized Ti sample also showed some calcium phosphate deposition but to a lesser extent as compared to SAM surfaces with -PO4H2 and -COOH. The pre-deposited HA can rapidly induce biomimetic apatite layer formation after immersion in 1.5 SBF for 18 h regardless of the amount of pre-deposited HA. The results suggested that the pre-deposition of HA onto these functionalized SAM surfaces might be an effective and fast way to prepare biomimetic apatite coatings on surgical implants.
Collapse
Affiliation(s)
- Qing Liu
- Center for Bioengineering and Biomaterials, College of Engineering, Temple University, Philadelphia, PA 19122, USA
| | | | | | | | | |
Collapse
|
36
|
John A, Hong L, Ikada Y, Tabata Y. A trial to prepare biodegradable collagen-hydroxyapatite composites for bone repair. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2002; 12:689-705. [PMID: 11556744 DOI: 10.1163/156856201316883485] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
This paper is a trial to prepare collagen-hydroxyapatite composites in vitro by an alternate immersion method. Collagen sponges of different biodegradabilities were prepared through chemical cross-linking of Type I collagen with glutaraldehyde (GA) at concentrations of 0.2, 1.0, and 2.0 wt%. The sponges were immersed at 37 degrees C in Tris-HCl-buffered solution containing 200 mM CaCl2 (pH 7.4) for 2 h and then in an aqueous solution of 120 mM Na2HPO4 (pH 9.3) for a 2 h further (one immersion cycle). The alternate immersion cycle was repeated for different times to obtain collagen-hydroxyapatite composites. The characterization of the resulting composites was performed by Fourier transform infrared spectroscopy (FT-IR). X-ray diffraction (XRD), and scanning electron microscopy (SEM). The weight of composites increased with an increase in immersion cycles and the rate of increase became greater with higher GA cross-linking levels for collagen sponge preparation. The pH of the phosphate solution decreased with the immersion cycle, which suggests H+ generation accompanied hydroxyapatite formation. Irrespective of the GA concentration and immersion cycle, every composite showed IR absorption bands attributable to phosphate and hydroxyl groups at 950-1100 or 550-650 and 3000-3500 cm(-1) and broad peaks specific to hydroxyapatite on the XRD charts. SEM study revealed small white clusters of hydroxyapatite interspersed uniformly on/in the collagen framework without any preferential orientation. The composite prepared from 0.2 wt% GA cross-linked collagen sponge which showed favourable characteristics was applied to a rat skull defect to evaluate its osteoconductivity as well as biodegradability. The formation of new bone tissue was histologically observed at the defect 12 weeks after application in marked contrast to the collagen sponge alone. The composite degraded without any inflammation reaction. It is concluded that the collagen-hydroxyapatite composite prepared by the present method is a biodegradable biomaterial of osteoconductivity applicable to bone repair.
Collapse
Affiliation(s)
- A John
- Institute for Frontier Medical Sciences, Kyoto University, Japan
| | | | | | | |
Collapse
|
37
|
Granja PL, Pouységu L, Pétraud M, De Jéso B, Baquey C, Barbosa MA. Cellulose phosphates as biomaterials. I. Synthesis and characterization of highly phosphorylated cellulose gels. J Appl Polym Sci 2001. [DOI: 10.1002/app.2193] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
38
|
Filmon R, Baslé MF, Barbier A, Chappard D. Poly(2-hydroxy ethyl methacrylate)-alkaline phosphatase: a composite biomaterial allowing in vitro studies of bisphosphonates on the mineralization process. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2001; 11:849-68. [PMID: 11211096 DOI: 10.1163/156856200744057] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We have immobilized the mineralizing agent alkaline phosphatase (AlkP) in a hydrophilic polymer: poly(2-hydroxy ethyl methacrylate) - (pHEMA) - in a copolymerization technique. Histochemical study on polymer sections revealed that AlkP has retained its enzymic activity. The image analysis of sections using a tessellation method showed a lognormal distribution of the area of the tiles surrounding AlkP particles, thus confirming a homogeneous distribution of the enzyme in the polymer. Pellets of pHEMA-AlkP were incubated with a synthetic body fluid containing organic phosphates (beta-glycerophosphate). Mineral deposits with a rounded shape (calcospherites) were obtained in about 17 days. We have investigated the effects of three bisphosphonic pharmacological compounds (etidronate, alendronate and tiludronate) on this system which mimics the mineralization process of cartilage and woven bone. Bisphosphonates at a concentration of 10(-2) M totally inhibited AlkP in solution at a concentration of 10(-4) mg/ml. Inhibition has been reported being due to the chelation of a metal cofactor (Zn2+). Etidronate and alendronate appeared to similarly inhibit the calcospherite deposition onto the pHEMA-AlkP material. Both bisphosphonates possess three sites for the mineral complexion by Ca chemisorbtion. On the other hand, tiludronate having only two sites, was associated with a reduced inhibitory effect on mineralization but larger crystals were obtained. The pHEMA-AlkP material contains an immobilized enzyme in a hydrogel and mimics the physiological conditions of matrix vesicles entrapped within the cartilage (or bone) matrix. It provides an interesting method to study the effects of pharmacological compounds on the mineralization process in bone and cartilage in a non cellular and protein-free model.
Collapse
Affiliation(s)
- R Filmon
- LHEA - Laboratoire d 'Histologie-Embryologie, Faculté de Médicine & CHU d'Angers, France
| | | | | | | |
Collapse
|
39
|
Vijayasekaran S, Chirila TV, Robertson TA, Lou X, Fitton JH, Hicks CR, Constable IJ. Calcification of poly(2-hydroxyethyl methacrylate) hydrogel sponges implanted in the rabbit cornea: a 3-month study. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2001; 11:599-615. [PMID: 10981676 DOI: 10.1163/156856200743896] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Poly(2-hydroxyethyl methacrylate) (PHEMA) hydrogels have been used in the past as ocular implants. In a recent development, PHEMA sponges have shown suitable properties as materials for the peripheral component of an artificial cornea (keratoprosthesis). However, the propensity of PHEMA to calcify could threaten the long-term stability of the implanted devices. In an attempt to improve the understanding of the calcification mechanism, the dynamics, extent, and nature of calcified deposits within PHEMA sponges implanted in the cornea were investigated in this study, and the possible correlation between necrosis of cells and calcification was critically examined. Samples of a PHEMA sponge were implanted in rabbit corneas and explanted at predetermined time points (2, 4, and 12 weeks). The samples were examined by microscopy (light, transmission, scanning) and energy dispersive analysis of X-rays. Histological assessment and semiquantitative analysis of the amount of calcium deposited was performed using image analysis. An in vitro experiment was also performed by incubating sponge samples for 2 weeks in a solution of calcium and phosphate ions at a ratio similar to that in hydroxyapatite, in the absence of cells. Calcification was not seen in the 2- and 4-week explants, however, small deposits were detected in two of the 12-week explants, both within and on the sponge's constituent polymer particles. The deposit volumes represented 0.094% and 0.21%, respectively, of the total sponge volumes. Calcium deposits were present in large amounts both within the constituent polymer particles and on the surface of the sponges incubated in the abiotic calcifying solution. Cooperative mechanisms are suggested for the calcification of PHEMA sponges in vivo. The initial event may occur at a molecular level, when plasma proteins are adsorbed onto the polymer surface and bound through chelation to the calcium ions present in the medium. After their natural degradation, these structures may act as nucleation sites for calcium phosphate crystallization. Concurrently, the calcium ions can diffuse into the hydrogel particles and then the spontaneous precipitation of calcium phosphate may be caused by supersaturation due to the lower content of water in polymer, an effect which is likely predominant in vitro. The second event is the recruitment of phagocytic cells to clear calcium debris. Degeneration of these cells may then form nucleation sites for secondary calcification.
Collapse
Affiliation(s)
- S Vijayasekaran
- Department of Biomaterials and Polymer Research, University of Western Australia, Nedlands, Australia.
| | | | | | | | | | | | | |
Collapse
|
40
|
Taguchi T, Muraoka Y, Matsuyama H, Kishida A, Akashi M. Apatite coating on hydrophilic polymer-grafted poly(ethylene) films using an alternate soaking process. Biomaterials 2001; 22:53-8. [PMID: 11085383 DOI: 10.1016/s0142-9612(00)00162-9] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Previously, we developed a novel alternate soaking process and clarified that bone-like apatite was formed on/in organic polymer hydrogel matrices using this process. The present study focused on the apatite coating on hydrophilic polymer grafted poly(ethylene) (PE) films with various grafting densities and commonly used hydrophilic polymers, poly(acryl amide) (PAAm) and poly(acrylic acid) (PAAc) were employed. From X-ray diffraction analysis, hydroxyapatite was coated on PAAm- or PAAc- grafted PE films. The amount of apatite coated on PAAm-grafted PE (PAAm-g-PE) films increased with an increase in the reaction cycles and the grafting density of PAAm. Similar to PAAm-g-PE, the amount of apatite coated on PAAc-grafted PE (PAAc-g-PE) films increased linearly with an increase in the grafting density of the PAAc up to around 30 microg/cm2. While, no significant increase in the apatite coating on the PAAc-g-PE films was observed even after 50 reaction cycles when the grafting densities of PAAc were over 30 microg/cm2. Apatite coating was not observed on original PE films. Scanning electron microscopic images reveal that the aggregation of apatite crystals on all PAAm-g-PE films and PAAc-g-PE films with grafting density from 10 to 30 microg/cm2. On the other hand, a dense apatite layer with some cracks was coated when the grafting density of the PAAc chains was over 30 microg/cm2. These results indicated that it was possible to coat apatite on hydrophilic polymer grafted PE films by an alternate soaking process and that the apatite crystal morphology could be controlled as a function of polymer type and density.
Collapse
Affiliation(s)
- T Taguchi
- Department of Applied Chemistry and Chemical Engineering, Faculty of Engineering, Kagoshima University, Japan
| | | | | | | | | |
Collapse
|
41
|
Taguchi T, Kishida A, Akashi M. Apatite formation on/in hydrogel matrices using an alternate soaking process (III): effect of physico-chemical factors on apatite formation on/in poly(vinyl alcohol) hydrogel matrices. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 1999; 10:795-804. [PMID: 10487315 DOI: 10.1163/156856299x00883] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The aim of this study is to clarify the physico-chemical factors which influence apatite formation on/in a hydrogel during a novel alternate soaking process. A poly(vinyl alcohol) (PVA) gel was used as a model matrix. The amount of apatite formed on/in PVA gels decreased with an increase in the reaction temperature during the same reaction cycles. This suggested that the equilibrium swelling ratios decreased with increasing reaction temperatures; that is, the diffusion of calcium and phosphate ions reduced at high reaction temperature. However, the crystallinity of apatite formed on/in PVA gels was greater at higher reaction temperatures. The amount of apatite formed on/in PVA gels increased with an increase in the calcium and phosphate solution concentrations, and increased by shaking at the first three reaction cycles. A few influences could be observed when the solution volume was changed, however, the soaking order was not effective in this study. These results indicate that the amount of apatite formation on/in PVA gels can be controlled by changing the reaction temperature and the Ca- and P-solution concentrations, and that the crystallinity of apatite can be also changed by controlling the reaction temperatures.
Collapse
Affiliation(s)
- T Taguchi
- Department of Applied Chemistry and Chemical Engineering, Faculty of Engineering, Kagoshima University, Japan
| | | | | |
Collapse
|
42
|
Kim HM, Kishimoto K, Miyaji F, Kokubo T, Yao T, Suetsugu Y, Tanaka J, Nakamura T. Composition and structure of the apatite formed on PET substrates in SBF modified with various ionic activity products. JOURNAL OF BIOMEDICAL MATERIALS RESEARCH 1999; 46:228-35. [PMID: 10380001 DOI: 10.1002/(sici)1097-4636(199908)46:2<228::aid-jbm12>3.0.co;2-j] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
An apatite layer was formed on polyethyleneterephthalate (PET) substrates by the following biomimetic process. PET substrates were placed on granular particles of a CaO-SiO2-based glass in simulated body fluid (SBF) with ion concentrations nearly equal to those of human blood plasma to form apatite nuclei on their surfaces (first treatment). They then were soaked in modified SBFs, the ion concentrations of which were changed to give a variation in ionic activity product of apatite (IP), in order to make the apatite nuclei grow (second treatment). The Ca/P atomic ratio and the lattice constant c of the formed apatite decreased from 1.54 to 1.40 and from 6.880 to 6.838 A, respectively, with increasing ion concentrations from 0.75 to 2.00 times those of SBF, that is, with increasing IP from 10(-96.6) to 10(-91.9). This was attributed to an increase in the concentration of HPO4(2-) ion substituting for the PO4(3-) ion sites, which gave an increase in the Ca2+ in the apatite. Even the apatite formed in 1.00 SBF showed a Ca/P ratio of 1.51 and lattice constants a of 9.432 A and c of 6.870 A. The Ca/P ratio and lattice constant c were smaller and the lattice constant a was larger than those of the bone apatite; its Ca/P ratio and its lattice constants a and c, were 1.65, 9.419 A, and 6.88 A, respectively. This was attributed to the lower content (2.64 wt%) of the CO3(2-) ion substituting for the PO4(3-) ion sites of the apatite compared to that of the bone apatite (5.80 wt%). The lower content of the CO3(2-) ion in the apatite might be caused by the lower concentration of HCO3- ion in 1.00 SBF compared to that in human blood plasma.
Collapse
Affiliation(s)
- H M Kim
- Department of Material Chemistry, Faculty of Engineering, Kyoto University, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Tamada Y, Furuzono T, Taguchi T, Kishida A, Akashi M. Ca-adsorption and apatite deposition on silk fabrics modified with phosphate polymer chains. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 1999; 10:787-93. [PMID: 10426232 DOI: 10.1163/156856299x00649] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Silk fabric was modified with polymethacryloyloxyethylphosphate (pMOEP) by graft copolymerization. Ca-adsorption onto pMOEP-grafted silk fabric was significantly enhanced compared to that onto original silk fabric. SEM observation indicated that some crystallites were deposited on the pMOEP-grafted silk fabric after 1 week of immersion in simulated body fluid, whereas no change occurred on the surface of the original silk fabric. X-ray diffraction showed that this crystallite contained hydroxyapatite. These results indicate that pMOEP-grafted silk fabric induce hydroxyapatite formation more effectively than the original silk fabric.
Collapse
Affiliation(s)
- Y Tamada
- National Institute of Sericultural and Entomological Science, Tsukuba, Ibaraki, Japan.
| | | | | | | | | |
Collapse
|
44
|
Taguchi T, Kishida A, Akashi M. Apatite formation on/in hydrogel matrices using an alternate soaking process: II. Effect of swelling ratios of poly(vinyl alcohol) hydrogel matrices on apatite formation. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 1999; 10:331-9. [PMID: 10189101 DOI: 10.1163/156856299x00397] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In our previous study, we reported a novel method of apatite formation on/in a three-dimensional hydrogel matrix. Using this method, bone-like apatite could be formed on/in the hydrogel matrix under normal conditions in vitro. A poly(vinyl alcohol) (PVA) gel was used as a model matrix. The method consists of two steps: first, water is transformed in a PVA gel with a CaCl2/Tris-HCl aqueous solution (pH 7.4) and second, the gel is soaked in a Na2HPO4 aqueous solution. In the present study, we report a detailed study of the effects of the swelling ratios of PVA gels on apatite formation. Cross-sectional observations and gravimetric measurements of PVA gels with various swelling ratios were done. The amount of apatite formed on/in PVA gels increased almost linearly with an increase in the reaction cycles. The rates of apatite formation on/in PVA gels largely depended on the swelling ratios, which were approximately 0.48, 0.61, 1.28, and 1.55 mg per cycle for swelling ratios of 4.1, 10.4, 16.8, and 30.1, respectively. The apatite content in PVA-apatite composites that was obtained by this method also increased with an increase of the reaction cycles. After six reaction cycles, a PVA gel with a high swelling ratio contains approximately 70 wt% of formed apatite in the composite. On the other hand, a gel with a low swelling ratio contains about 15 wt% of formed apatite in the composite. Cross-sectional views of the PVA gels after each cycle showed that apatite crystals were formed, not only on the surface of the gel but also within it after fifteen reaction cycles. The hydrogel-apatite composites that were obtained using an alternative soaking process will be useful as not only bone substitute materials but also as soft tissue adhesive materials.
Collapse
Affiliation(s)
- T Taguchi
- Department of Applied Chemistry and Chemical Engineering, Faculty of Engineering, Kagoshima University, Korimoto, Japan
| | | | | |
Collapse
|
45
|
Taguchi T, Shiraogawa M, Kishida A, Akashi M. A study on hydroxyapatite formation on/in the hydroxyl groups-bearing nonionic hydrogels. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 1999; 10:19-32. [PMID: 10091920 DOI: 10.1163/156856299x00252] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Using the biomimetic method, we formed a hydroxyapatite (HAp) layer on/in certain types of nonionic hydrogels that contain hydroxyl groups. The hydrogels used were poly(vinyl alcohol) (PVA), poly(2-hydroxyethyl methacrylate) (PHEMA), poly(glucosyloxyethyl methacrylate) (PGEMA), and agarose. Under an optical microscope, we observed a thin, continuous HAp layer on the top surface of the PVA, PHEMA, and PGEMA gels. On the other hand, we only observed an intermittent HAp layer on the surface of the agarose gel. The swelling ratio and the bound water content of these hydrogels were measured as an essential character in HAp formation. There was some relation among the HAp formation, the swelling ratios, and the bound water content.
Collapse
Affiliation(s)
- T Taguchi
- Department of Applied Chemistry and Chemical Engineering, Faculty of Engineering, Kagoshima University, Japan
| | | | | | | |
Collapse
|
46
|
Taguchi T, Kishida A, Akashi M. Hydroxyapatite Formation on/in Poly(vinyl alcohol) Hydrogel Matrices Using a Novel Alternate Soaking Process. CHEM LETT 1998. [DOI: 10.1246/cl.1998.711] [Citation(s) in RCA: 230] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
47
|
Yamamoto M, Kato K, Ikada Y. Ultrastructure of the interface between cultured osteoblasts and surface-modified polymer substrates. JOURNAL OF BIOMEDICAL MATERIALS RESEARCH 1997; 37:29-36. [PMID: 9335346 DOI: 10.1002/(sici)1097-4636(199710)37:1<29::aid-jbm4>3.0.co;2-l] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Osteoblasts derived from rat bone marrow cells were cultured on surface-modified poly(ethylene terephthalate) films in the presence of ascorbic acid, beta-glycerophosphate, and dexamethasone. The surfaces employed for cell culture included the untreated hydrophobic surface and three modified surfaces possessing immobilized phosphate polymer chains, collagen molecules, and a thin hydroxyapatite-deposited layer. They all were produced by photo-induced graft polymerization with subsequent surface modifications of the graft chains. The ultrastructural morphology of the substrate/cell interfaces formed in in vitro osteoblast culture on these substrates was studied by transmission electron microscopy. The osteoblasts cultured for 1 week on the modified surfaces showed rough endoplasmic reticula rich in intracellular space and early matrix production in the extracellular space, irrespective of the surface chemistry. After 2 weeks of culture, osteoblasts exhibited active elaboration of extracellular matrix proteins, mostly composed of collagen, on all the surfaces. A remarkable result observed at this stage was direct deposition of an electron-dense, afibrillar layer of 180 nm thickness onto the surface having phosphate polymer chains. This layer became much more electron dense after 3 weeks of culture. Energy dispersive X-ray microanalysis revealed the presence of calcium phosphate in this layer. It was further found that the predeposited hydroxyapatite layer on the phosphate polymer-grafted surface promoted mineral deposition in the extracellular matrix that surrounded cuboid, osteocyte-like cells.
Collapse
Affiliation(s)
- M Yamamoto
- Research Center for Biomedical Engineering, Kyoto University, Japan
| | | | | |
Collapse
|