1
|
Iwatsu J, Watanuki M, Yoshida S, Hitachi S, Watanabe M, Aizawa T. Clinical outcome of porous hydroxyapatite/collagen graft on bone defects following curettage of bone tumors. J Biomed Mater Res B Appl Biomater 2022; 110:2211-2216. [PMID: 35441487 DOI: 10.1002/jbm.b.35070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/11/2022] [Accepted: 04/01/2022] [Indexed: 11/07/2022]
Abstract
Hydroxyapatite/collagen (HAp/col) has been reported to be a highly useful bone-like nanocomposite. This study included 33 human patients to investigate the details of the clinical outcomes, which are (1) onset of timing of bone regeneration, (2) replacement by regenerated bone of HAp/col and (3) complications, in human cases grafting HAp/col in large bone defects, following curettage of bone tumors. Porous HAp/col initiated bone regeneration approximately 59 days following the surgery. In 15 cases (45%), complete replacement by newly formed bone was observed 12 months after surgery. On the other hand, incomplete replacement of HAp/col at the final follow-up was observed in 13 cases (39%). In these cases, HAp/col could not be detected in the transparent area of postoperative plain radiographs owing to quick absorption; moreover, it was difficult to distinguish whether the transparent area in plain radiographs was remaining HAp/col, recurrence, or remaining tumor. In addition, larger HAp/col implantation volume (≧15 cm3 ) was associated with poorer result of complete replacement (log-rank, p = .005). Further studies are warranted for the construction of a new artificial bone graft substitute that is more quickly and surely regenerated by newly formed bone in large bone defects.
Collapse
Affiliation(s)
- Jun Iwatsu
- Department of Orthopaedic Surgery, Tohoku University School of Medicine, Sendai, Japan
| | - Munenori Watanuki
- Department of Orthopaedic Surgery, Tohoku University School of Medicine, Sendai, Japan
| | - Shinichirou Yoshida
- Department of Orthopaedic Surgery, Tohoku University School of Medicine, Sendai, Japan
| | - Shin Hitachi
- Department of Diagnostic Radiology, Tohoku University School of Medicine, Sendai, Japan
| | - Mika Watanabe
- Department of Pathology, Tohoku Kosai Hospital, Sendai, Japan
| | - Toshimi Aizawa
- Department of Orthopaedic Surgery, Tohoku University School of Medicine, Sendai, Japan
| |
Collapse
|
2
|
Veiga A, Castro F, Rocha F, Oliveira AL. An update on hydroxyapatite/collagen composites: What is there left to say about these bioinspired materials? J Biomed Mater Res B Appl Biomater 2021; 110:1192-1205. [PMID: 34860461 DOI: 10.1002/jbm.b.34976] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 10/25/2021] [Accepted: 11/16/2021] [Indexed: 01/01/2023]
Abstract
Hydroxyapatite (HAp)/collagen-based composite materials have been a constant in the development of bioinspired materials for bone tissue engineering. The most fundamental research works focus on combining HAp, due to its chemical similarity with the mineral component of bones, and collagen, which is the most abundant protein in the body. Modern studies have explored different two-dimensional (2D) and 3D structures, in order to obtain biomaterials with specific physicochemical, mechanical, and biological characteristics that can be applied in distinct biomedical applications. However, as there is already so much work developed with these materials, it is crucial to question: what can still be done? What is the importance of current know-how for the future of bioinspired materials? In this paper we intend to review and update the available methodologies to synthesize HAp/collagen composites, along with their characteristics. In addition, the future of these materials in terms of applications and their potential as a cutting-edge technology is discussed.
Collapse
Affiliation(s)
- Anabela Veiga
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal.,Universidade Católica Portuguesa, CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal
| | - Filipa Castro
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal
| | - Fernando Rocha
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal
| | - Ana L Oliveira
- Universidade Católica Portuguesa, CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal
| |
Collapse
|
3
|
Li Z, Du T, Ruan C, Niu X. Bioinspired mineralized collagen scaffolds for bone tissue engineering. Bioact Mater 2021; 6:1491-1511. [PMID: 33294729 PMCID: PMC7680706 DOI: 10.1016/j.bioactmat.2020.11.004] [Citation(s) in RCA: 108] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/20/2020] [Accepted: 11/02/2020] [Indexed: 12/13/2022] Open
Abstract
Successful regeneration of large segmental bone defects remains a major challenge in clinical orthopedics, thus it is of important significance to fabricate a suitable alternative material to stimulate bone regeneration. Due to their excellent biocompatibility, sufficient mechanical strength, and similar structure and composition of natural bone, the mineralized collagen scaffolds (MCSs) have been increasingly used as bone substitutes via tissue engineering approaches. Herein, we thoroughly summarize the state of the art of MCSs as tissue-engineered scaffolds for acceleration of bone repair, including their fabrication methods, critical factors for osteogenesis regulation, current opportunities and challenges in the future. First, the current fabrication methods for MCSs, mainly including direct mineral composite, in-situ mineralization and 3D printing techniques, have been proposed to improve their biomimetic physical structures in this review. Meanwhile, three aspects of physical (mechanics and morphology), biological (cells and growth factors) and chemical (composition and cross-linking) cues are described as the critical factors for regulating the osteogenic feature of MCSs. Finally, the opportunities and challenges associated with MCSs as bone tissue-engineered scaffolds are also discussed to point out the future directions for building the next generation of MCSs that should be endowed with satisfactorily mimetic structures and appropriately biological characters for bone regeneration.
Collapse
Affiliation(s)
- Zhengwei Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, PR China
- Research Center for Human Tissue and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, PR China
| | - Tianming Du
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, PR China
| | - Changshun Ruan
- Research Center for Human Tissue and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, PR China
| | - Xufeng Niu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, PR China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100083, PR China
- Research Institute of Beihang University in Shenzhen, Shenzhen, 518057, PR China
| |
Collapse
|
4
|
Hung CW, Mazumder N, Lin DJ, Chen WL, Lin ST, Chan MC, Zhuo GY. Label-Free Characterization of Collagen Crosslinking in Bone-Engineered Materials Using Nonlinear Optical Microscopy. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2021; 27:1-11. [PMID: 33829983 DOI: 10.1017/s1431927621000295] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Engineered biomaterials provide unique functions to overcome the bottlenecks seen in biomedicine. Hence, a technique for rapid and routine tests of collagen is required, in which the test items commonly include molecular weight, crosslinking degree, purity, and sterilization induced structural change. Among them, the crosslinking degree mainly influences collagen properties. In this study, second harmonic generation (SHG) and coherent anti-Stokes Raman scattering (CARS) microscopy are used in combination to explore the collagen structure at molecular and macromolecular scales. These measured parameters are applied for the classification and quantification among the different collagen scaffolds, which were verified by other conventional methods. It is demonstrated that the crosslinking status can be analyzed from SHG images and presented as the coherency of collagen organization that is correlated with the mechanical properties. Also, the comparative analyses of SHG signal and relative CARS signal of amide III band at 1,240 cm−1 to δCH2 band at 1,450 cm−1 of these samples provide information regarding the variation of the molecular structure during a crosslinking process, thus serving as nonlinear optical signatures to indicate a successful crosslinking.
Collapse
Affiliation(s)
- Chao-Wei Hung
- PhD Program for Biomedical Engineering and Rehabilitation Science, China Medical University, No. 91, Hsueh-Shih Road, Taichung40402, Taiwan R.O.C
| | - Nirmal Mazumder
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka576104, India
| | - Dan-Jae Lin
- School of Dentistry, College of Dentistry, China Medical University, No. 91, Hsueh-Shih Road, Taichung40402, Taiwan R.O.C
| | - Wei-Liang Chen
- Center for Condensed Matter Sciences, National Taiwan University, Taipei10617, Taiwan R.O.C
| | - Shih-Ting Lin
- Integrative Stem Cell Center, China Medical University Hospital, No. 2, Yude Road, Taichung40447, Taiwan R.O.C
| | - Ming-Che Chan
- Institute of Photonic System, College of Photonics, National Chiao-Tung University, Tainan71150, Taiwan R.O.C
- Institute of Biophotonics, National Yang-Ming University, No. 155, Sec. 2, Linong Street, Beitou District, Taipei City112, Taiwan R.O.C
| | - Guan-Yu Zhuo
- Integrative Stem Cell Center, China Medical University Hospital, No. 2, Yude Road, Taichung40447, Taiwan R.O.C
- Institute of New Drug Development, China Medical University, No. 91, Hsueh-Shih Road, Taichung40402, Taiwan R.O.C
| |
Collapse
|
5
|
Electrodeposited Hydroxyapatite-Based Biocoatings: Recent Progress and Future Challenges. COATINGS 2021. [DOI: 10.3390/coatings11010110] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Hydroxyapatite has become an important coating material for bioimplants, following the introduction of synthetic HAp in the 1950s. The HAp coatings require controlled surface roughness/porosity, adequate corrosion resistance and need to show favorable tribological behavior. The deposition rate must be sufficiently fast and the coating technique needs to be applied at different scales on substrates having a diverse structure, composition, size, and shape. A detailed overview of dry and wet coating methods is given. The benefits of electrodeposition include controlled thickness and morphology, ability to coat a wide range of component size/shape and ease of industrial processing. Pulsed current and potential techniques have provided denser and more uniform coatings on different metallic materials/implants. The mechanism of HAp electrodeposition is considered and the effect of operational variables on deposit properties is highlighted. The most recent progress in the field is critically reviewed. Developments in mineral substituted and included particle, composite HAp coatings, including those reinforced by metallic, ceramic and polymeric particles; carbon nanotubes, modified graphenes, chitosan, and heparin, are considered in detail. Technical challenges which deserve further research are identified and a forward look in the field of the electrodeposited HAp coatings is taken.
Collapse
|
6
|
Kumar P, Saini M, Dehiya BS, Sindhu A, Kumar V, Kumar R, Lamberti L, Pruncu CI, Thakur R. Comprehensive Survey on Nanobiomaterials for Bone Tissue Engineering Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2019. [PMID: 33066127 PMCID: PMC7601994 DOI: 10.3390/nano10102019] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 02/06/2023]
Abstract
One of the most important ideas ever produced by the application of materials science to the medical field is the notion of biomaterials. The nanostructured biomaterials play a crucial role in the development of new treatment strategies including not only the replacement of tissues and organs, but also repair and regeneration. They are designed to interact with damaged or injured tissues to induce regeneration, or as a forest for the production of laboratory tissues, so they must be micro-environmentally sensitive. The existing materials have many limitations, including impaired cell attachment, proliferation, and toxicity. Nanotechnology may open new avenues to bone tissue engineering by forming new assemblies similar in size and shape to the existing hierarchical bone structure. Organic and inorganic nanobiomaterials are increasingly used for bone tissue engineering applications because they may allow to overcome some of the current restrictions entailed by bone regeneration methods. This review covers the applications of different organic and inorganic nanobiomaterials in the field of hard tissue engineering.
Collapse
Affiliation(s)
- Pawan Kumar
- Department of Materials Science and Nanotechnology, Deenbandhu Chhotu Ram University of Science and Technology, Murthal 131039, India; (M.S.); (B.S.D.)
| | - Meenu Saini
- Department of Materials Science and Nanotechnology, Deenbandhu Chhotu Ram University of Science and Technology, Murthal 131039, India; (M.S.); (B.S.D.)
| | - Brijnandan S. Dehiya
- Department of Materials Science and Nanotechnology, Deenbandhu Chhotu Ram University of Science and Technology, Murthal 131039, India; (M.S.); (B.S.D.)
| | - Anil Sindhu
- Department of Biotechnology, Deenbandhu Chhotu Ram University of Science and Technology, Murthal 131039, India;
| | - Vinod Kumar
- Department of Bio and Nanotechnology, Guru Jambheshwar University of Science and Technology, Hisar 125001, India; (V.K.); (R.T.)
| | - Ravinder Kumar
- School of Mechanical Engineering, Lovely Professional University, Phagwara 144411, India
| | - Luciano Lamberti
- Dipartimento di Meccanica, Matematica e Management, Politecnico di Bari, 70125 Bari, Italy;
| | - Catalin I. Pruncu
- Department of Design, Manufacturing & Engineering Management, University of Strathclyde, Glasgow G1 1XJ, UK
- Department of Mechanical Engineering, Imperial College London, London SW7 2AZ, UK
| | - Rajesh Thakur
- Department of Bio and Nanotechnology, Guru Jambheshwar University of Science and Technology, Hisar 125001, India; (V.K.); (R.T.)
| |
Collapse
|
7
|
Verma S, Murugavel R. Di- tert-butylphosphate Derived Thermolabile Calcium Organophosphates: Precursors for Ca(H 2PO 4) 2, Ca(HPO 4), α-/β-Ca(PO 3) 2, and Nanocrystalline Ca 10(PO 4) 6(OH) 2. Inorg Chem 2020; 59:13233-13244. [PMID: 32892621 DOI: 10.1021/acs.inorgchem.0c01591] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Thermally and hydrolytically unstable di-tert-butyl phosphate (dtbp-H) has been used as synthon to prepare discrete and polymeric calcium phosphates that are convenient single-source precursors for a range of calcium phosphate ceramic biomaterials. The reactivity of dtbp-H toward two different calcium sources has been found to vary significantly, e.g., the reaction of Ca(OMe)2 with dtbp-H in a 1:6 molar ratio in petroleum ether forms a mononuclear calcium hexa-phosphate complex [Ca(dtbp)2(dtbp-H)4] (1), whereas the change of calcium source to CaH2, in a 1:2 molar ratio under otherwise similar reaction conditions, yields the calcium phosphate polymer, [Ca(μ-dtbp)2(H2O)2·H2O]n(2). Compounds 1 and 2 have been extensively characterized by various spectroscopic and analytical techniques. The solid-state structures of both 1 and 2 have been determined by single-crystal X-ray diffraction studies. In discrete molecule 1, the central calcium ion is surrounded by two anionic dtbp and four neutral dtbp-H ligands in an octahedral coordination environment. Compound 2 is a one-dimensional polymer in which adjacent calcium ions are connected through double dtbp bridges. Solid-state thermolysis of bulk 1 in air leads to the exclusive formation of calcium metaphosphate β-Ca(PO3)2 in the entire temperature range of 400-800 °C. Thermal decomposition of polymer 2, however, can be fine-tuned to produce either α-Ca(PO3)2 or β-Ca(PO3)2 depending on the thermolysis conditions employed. Although the sample sintered at 600 °C produces exclusively α-form of Ca(PO3)2, the sample annealed at 800 °C or above produces β-form. Both α- and β-forms can also be successively formed one after other by a slow heating of a freshly prepared 2 on the powder diffractometer sample holder. Additional forms of ceramic phosphates have been prepared by solvothermal conditions because of the highly labile nature of the tert-butoxy groups of dtbp in 1 and 2. Solution decomposition of either 1 or 2 in boiling toluene at 140 °C in a sealed tube produces calcium dihydrogen phosphate [Ca(H2PO4)2·H2O] as the only product in the form of single crystals. Solution thermolysis of 2 in protic solvents such as water and methanol can be biased to produce other calcium phosphate biomaterials such as hydroxyapatite [Ca10(PO4)6(OH)2]and calcium monohydrogen phosphate [Ca(HPO4)] in the presence of additional calcium precursors such as CaO and Ca(OMe)2, respectively.
Collapse
Affiliation(s)
- Sonam Verma
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Ramaswamy Murugavel
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
8
|
Injectable hydrogel delivering bone morphogenetic protein-2, vascular endothelial growth factor, and adipose-derived stem cells for vascularized bone tissue engineering. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101637] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
9
|
Tarrahi R, Fathi Z, Seydibeyoğlu MÖ, Doustkhah E, Khataee A. Polyhydroxyalkanoates (PHA): From production to nanoarchitecture. Int J Biol Macromol 2020; 146:596-619. [DOI: 10.1016/j.ijbiomac.2019.12.181] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 12/03/2019] [Accepted: 12/20/2019] [Indexed: 02/07/2023]
|
10
|
Chen G, Xin B, Yin M, Fan T, Wang J, Wang T, Bai G, Xiao J, Liu T. Biomechanical analysis of a novel height-adjustable nano-hydroxyapatite/polyamide-66 vertebral body: a finite element study. J Orthop Surg Res 2019; 14:368. [PMID: 31727110 PMCID: PMC6854736 DOI: 10.1186/s13018-019-1432-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 10/24/2019] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
To compare the biomechanical properties of a novel height-adjustable nano-hydroxyapatite/polyamide-66 vertebral body (HAVB) with the titanium mesh cage (TMC) and artificial vertebral body (AVB), and evaluate its biomechanical efficacy in spinal stability reconstruction.
Methods
A 3D nonliner FE model of the intact L1-sacrum was established and validated. Three FE models which instrumented HAVB, TMC, and AVB were constructed for surgical simulation. A pure moment of 7.5 Nm and a 400-N preload were applied to the three FE models in 3D motion. The peak von Mises stress upon each prosthesis and the interfaced endplate was recorded for analysis. In addition, the overall and intersegmental range of motion (ROM) of each model was investigated to assess the efficacy of each model in spinal stability reconstruction.
Results
AVB had the greatest stress concentration compared with TMC and HAVB in all motions (25.6–101.8 times of HAVB, 0.8–8.1 times of TMC). The peak stress on HAVB was 3.1–10.3% of TMC and 1.6–3.9% of AVB. The maximum stress values on L2 caudal and L4 cranial endplates are different between the three FE models: 0.9–1.9, 1.3–12.1, and 31.3–117.9 times of the intact model on L2 caudal endplates and 0.9–3.5, 7.2–31.5, and 10.3–56.4 times of the intact model on L4 cranial endplates in HAVB, TMC, and AVB, respectively, while the overall and segmental ROM reduction was similar between the three models, with AVB providing a relatively higher ROM reduction in all loading conditions (88.1–84.7% of intact model for overall ROM and 69.5–82.1% for L1/2, 87.0–91.7% for L2/4, and 71.1–87.2% for L4/5, respectively).
Conclusions
HAVB had similar biomechanical efficacy in spinal stability reconstruction as compared with TMC and AVB. The material used and the anatomic design of HAVB can help avoid stress concentration and the stress shielding effect, thus greatly reducing the implant-associated complications. HAVB exhibited some advantageous biomechanical properties over TMC and AVB and may prove to be a potentially viable option for spinal stability reconstruction. Further in vivo and vitro studies are still required to validate our findings and conclusions.
Collapse
|
11
|
He X, Fan X, Feng W, Chen Y, Guo T, Wang F, Liu J, Tang K. Incorporation of microfibrillated cellulose into collagen-hydroxyapatite scaffold for bone tissue engineering. Int J Biol Macromol 2018; 115:385-392. [PMID: 29673955 DOI: 10.1016/j.ijbiomac.2018.04.085] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 04/16/2018] [Indexed: 11/19/2022]
Abstract
In this study, the composite of Collagen-Hydroxyapitite (COL-HA) with microfibrillated cellulose (MFC) was developed as a new bone substitute material. COL-HA was prepared by in-situ method and modified by dehydrothermal treatment. Microfibrillated cellulose (MFC), a nature polysaccharide with plenty of hydroxyl groups, was incorporated into COL-HA composites to improve the properties. The novel COL-HA-MFC scaffold with different ratios of COL-HA and MFC were fabricated by cold isostatic pressing technique and freeze-drying technology. During the forming process, a three-dimensional bone-like structure was shaped in hybrid scaffolds. The microstructural transitions of COL-HA-MFC composites were examined by Fourier transform infrared spectroscope (FTIR), Ultraviolet-visible spectrophotometer (UV), and X-ray diffraction (XRD), which indicated that HA deposited on collagen molecules and MFC bonded with COL-HA. Hydrophilicity, swelling property, mechanical property, and degradability of COL-HA-MFC composites were investigated. Biological properties, such as cytotoxicity and hemolysis, were also studied. The results showed a good swelling capacity for the scaffolds, keeping their original shapes after swelling. The compression strength and degradability of the scaffold materials could be regulated by the MFC content. The compression strength of COL-HA-MFC composite scaffords increased to 20-40 MPa, closing to that of the nature bone (1-200 MPa). The obtained scaffolds are good in biocompatibility with high level of cell growth rate (>70%) and suitable hemolysis rate (≦5%). The work might provide an efficient and alternative approach for collagen-based biomaterials with necessary properties. The COL-HA-MFC composite scaffold showed a potential application in bone tissue engineering.
Collapse
Affiliation(s)
- Xichan He
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Xialian Fan
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Wenpo Feng
- School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang 471000, China
| | - Yifei Chen
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Ting Guo
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Fang Wang
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Jie Liu
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Keyong Tang
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
12
|
A 3D-Printed PLCL Scaffold Coated with Collagen Type I and Its Biocompatibility. BIOMED RESEARCH INTERNATIONAL 2018; 2018:5147156. [PMID: 29850530 PMCID: PMC5911326 DOI: 10.1155/2018/5147156] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 11/30/2017] [Accepted: 01/30/2018] [Indexed: 02/03/2023]
Abstract
Scaffolds play an important role in tissue engineering and their structure and biocompatibility have great influence on cell behaviors. In this study, poly(l-lactide-co-ε-caprolactone) (PLCL) scaffolds were printed by a 3D printing technology, low-temperature deposition manufacturing (LDM), and then PLCL scaffolds were treated by alkali and coated with collagen type I (COLI). The scaffolds were characterized by scanning electron microscopy (SEM), porosity test, mechanical test, and infrared spectroscopy. The prepared PLCL and PLCL-COLI scaffolds had three-dimensional (3D) porous structure and they not only have macropores but also have micropores in the deposited lines. Although the mechanical property of PLCL-COLI was slightly lower than that of PLCL scaffold, the hydrophilicity of PLCL-COLI was significantly enhanced. Rabbit articular chondrocytes were extracted and were identified as chondrocytes by toluidine blue staining. To study the biocompatibility, the chondrocytes were seeded on scaffolds for 1, 3, 5, 7, and 10 days. MTT assay showed that the proliferation of chondrocytes on PLCL-COLI scaffold was better than that on PLCL scaffold. And the morphology of cells on PLCL-COLI after 1-day culture was much better than that on PLCL. This 3D-printed PLCL scaffold coated with COLI shows a great potential application in tissue engineering.
Collapse
|
13
|
Guo T, Tian X, Li B, Yang T, Li Y. Repair of articular cartilage and subchondral defects in rabbit knee joints with a polyvinyl alcohol/nano-hydroxyapatite/polyamide 66 biological composite material. J Orthop Surg Res 2017; 12:176. [PMID: 29141674 PMCID: PMC5688619 DOI: 10.1186/s13018-017-0666-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 10/26/2017] [Indexed: 02/05/2023] Open
Abstract
Background This study sought to prepare a new PVA/n-HA/PA66 composite to investigate the repair of articular cartilage and subchondral defects in rabbit knee joints. Methods A 5 × 5 × 5 mm-sized defect was created in the patellofemoral joints of 72 healthy adult New Zealand rabbits. The rabbits were then randomly divided into three groups (n = 24): PVA/n-HA+PA66 group, polyvinyl alcohol (PVA) group, and control (untreated) group. Cylindrical PVA/n-HA+PA66, 5 × 5 mm, comprised an upper PVA layer and a lower n-HA+PA66 layer. Macroscopic and histological evaluations were performed at 4, 8, 12, and 24 weeks, postoperatively. Type II collagen was measured by immunohistochemical staining. The implant/cartilage and bone interfaces were observed by scanning electron microscopy. Results At 24 weeks postoperatively, the lower PVA/n-HA+PA66 layer became surrounded by cartilage, with no obvious degeneration. In the PVA group, an enlarged space was observed between the implant and the host tissue that had undergone degeneration. In the control group, the articular cartilage had become calcified. In the PVA/n-HA+PA66 group, positive type II collagen staining was observed between the composite and the surrounding cartilage and on the implant surface. In the PVA group, positive staining was slightly increased between the PVA and the surrounding cartilage, but reduced on the PVA surface. In the control group, reduced staining was observed throughout. Scanning electron microscopy showed increased bone tissue in the lower n-HA+PA66 layer that was in close approximation with the upper PVA layer of the composite. In the PVA group, the bone tissue around the material had receded, and in the control group, the defect was filled with bone tissue, while the superior aspect of the defect was filled with disordered, fibrous tissue. Conclusion The diphase biological composite material PVA/n-HA+PA66 exhibits good histocompatibility and offers a satisfactory substitute for articular cartilage and subchondral bone.
Collapse
Affiliation(s)
- Tao Guo
- Department of Orthopedics, Guizhou Province People's Hospital, Guiyang, Guizhou province, 550002, China.
| | - Xiaobin Tian
- Department of Orthopedics, Guizhou Province People's Hospital, Guiyang, Guizhou province, 550002, China
| | - Bo Li
- Department of Orthopedics, Guizhou Province People's Hospital, Guiyang, Guizhou province, 550002, China
| | - Tianfu Yang
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, Sichuan province, 610041, China
| | - Yubao Li
- Nanometer Analytical and Testing Center, Sichuan University, Chengdu, Sichuan province, 610041, China
| |
Collapse
|
14
|
Yu J, Xu Y, Li S, Seifert GV, Becker ML. Three-Dimensional Printing of Nano Hydroxyapatite/Poly(ester urea) Composite Scaffolds with Enhanced Bioactivity. Biomacromolecules 2017; 18:4171-4183. [PMID: 29020441 DOI: 10.1021/acs.biomac.7b01222] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Polymer-bioceramic composites incorporate the desirable properties of each material while mitigating the limiting characteristics of each component. 1,6-Hexanediol l-phenylalanine-based poly(ester urea) (PEU) blended with hydroxyapatite (HA) nanocrystals were three-dimensional (3D) printed into porous scaffolds (75% porosity) via fused deposition modeling and seeded with MC3T3-E1 preosteoblast cells in vitro to examine their bioactivity. The resulting 3D printed scaffolds exhibited a compressive modulus of ∼50 MPa after a 1-week incubation in PBS at 37 °C, cell viability >95%, and a composition-dependent enhancement of radio-contrast. The influence of HA on MC3T3-E1 proliferation and differentiation was measured using quantitative real-time polymerase chain reaction, immunohistochemistry and biochemical assays. After 4 weeks, alkaline phosphatase activity increased significantly for the 30% HA composite with values reaching 2.5-fold greater than the control. Bone sialoprotein showed approximately 880-fold higher expression and 15-fold higher expression of osteocalcin on the 30% HA composite compared to those of the control. Calcium quantification results demonstrated a 185-fold increase of calcium concentration in mineralized extracellular matrix deposition after 4 weeks of cell culture in samples with higher HA content. 3D printed HA-containing PEU composites promote bone regeneration and have the potential to be used in orthopedic applications.
Collapse
Affiliation(s)
- Jiayi Yu
- Department of Polymer Science and ∥Department of Biomedical Engineering, The University of Akron , Akron, Ohio 44325, United States
| | - Yanyi Xu
- Department of Polymer Science and ∥Department of Biomedical Engineering, The University of Akron , Akron, Ohio 44325, United States
| | - Shan Li
- Department of Polymer Science and ∥Department of Biomedical Engineering, The University of Akron , Akron, Ohio 44325, United States
| | - Gabrielle V Seifert
- Department of Polymer Science and ∥Department of Biomedical Engineering, The University of Akron , Akron, Ohio 44325, United States
| | - Matthew L Becker
- Department of Polymer Science and ∥Department of Biomedical Engineering, The University of Akron , Akron, Ohio 44325, United States
| |
Collapse
|
15
|
Sionkowska A, Kaczmarek B. Preparation and characterization of composites based on the blends of collagen, chitosan and hyaluronic acid with nano-hydroxyapatite. Int J Biol Macromol 2017; 102:658-666. [DOI: 10.1016/j.ijbiomac.2017.03.196] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 03/23/2017] [Accepted: 03/30/2017] [Indexed: 11/26/2022]
|
16
|
Xie B, Wang H, Hao J, Wang P, Zhang N, Wu J, Qiu Z, Cui F. Histopathological and imageological studies on clinical outcomes of mineralized collagen reconstruction rod for femoral head necrosis with one case report. Regen Biomater 2017; 4:243-249. [PMID: 28798870 PMCID: PMC5544908 DOI: 10.1093/rb/rbx013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 03/11/2017] [Accepted: 04/10/2017] [Indexed: 12/22/2022] Open
Abstract
In this article, the biodegradation process and bone formation of a mineralized collagen reconstruction rod embedding in necrosis of human femoral head were investigated by imageological and histological methods. Computed radiography (CR) computerized tomography (CT), common pathological section and hard tissue section analysis were used to evaluated the dynamics of imageological and histopathological changes of femoral head, interface between the host bone and implant and the bone reconstruction process. The results showed that the density of rods increased closed to that of host bones after 1 year implanting, and the interface between them turns to blurring. Hard tissue grinding sections analysis showed osteocytes appearing in sparse bone trabecular and bone pit region, as well as a few vessels in the degraded dye powder matrix were noticed, indicating the new bone forming between the implants and host bones. Regular decalcified sections analysis showed scattered osteoclasts, multinucleated giant cells and fibrosis components existing in the degraded rod and the host bone trabecular. Degraded debris was endocytosed by giant cells, and vascular network formed around the boundaries of the implanted rod. The good osteointegration has been expressed by the interface between the implanted rod and the host bone becoming blurred. Histological results indicated that the implanted rod degradation process and new bones regeneration simultaneously occurred around the boundaries of embedding rod. New bone and host bone were hinged and co-existed.
Collapse
Affiliation(s)
- Baogang Xie
- Department of Orthopaedics, 254th Hospital of PLA, No. 60 Huangwei Road, Hebei District, Tianjin 300142, China
| | - Hao Wang
- Department of Orthopaedics, 254th Hospital of PLA, No. 60 Huangwei Road, Hebei District, Tianjin 300142, China
| | - Jianhua Hao
- Department of Orthopaedics, 254th Hospital of PLA, No. 60 Huangwei Road, Hebei District, Tianjin 300142, China
| | - Ping Wang
- Department of Orthopaedics, 254th Hospital of PLA, No. 60 Huangwei Road, Hebei District, Tianjin 300142, China
| | - Na Zhang
- Department of Orthopaedics, 254th Hospital of PLA, No. 60 Huangwei Road, Hebei District, Tianjin 300142, China
| | - Jingjing Wu
- School of Materials Science and Engineering, Tsinghua University, Haidian District Beijing 100084, China
| | - Zhiye Qiu
- School of Materials Science and Engineering, Tsinghua University, Haidian District Beijing 100084, China
| | - Fuzhai Cui
- School of Materials Science and Engineering, Tsinghua University, Haidian District Beijing 100084, China
| |
Collapse
|
17
|
Sun Y, Wang C, Chen Q, Liu H, Deng C, Ling P, Cui FZ. Effects of the bilayer nano-hydroxyapatite/mineralized collagen-guided bone regeneration membrane on site preservation in dogs. J Biomater Appl 2017; 32:242-256. [DOI: 10.1177/0885328217715150] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Yi Sun
- School of Stomatology, Wannan Medical college, WuHu, Anhui, PR China
| | - Chengyue Wang
- School of Stomatology, Wannan Medical college, WuHu, Anhui, PR China
| | - Qixin Chen
- School of Stomatology, Wannan Medical college, WuHu, Anhui, PR China
| | - Hai Liu
- School of Stomatology, Wannan Medical college, WuHu, Anhui, PR China
| | - Chao Deng
- School of Stomatology, Wannan Medical college, WuHu, Anhui, PR China
| | - Peixue Ling
- School of Stomatology, Wannan Medical college, WuHu, Anhui, PR China
| | - Fu-Zhai Cui
- School of Stomatology, Wannan Medical college, WuHu, Anhui, PR China
| |
Collapse
|
18
|
Celikkin N, Rinoldi C, Costantini M, Trombetta M, Rainer A, Święszkowski W. Naturally derived proteins and glycosaminoglycan scaffolds for tissue engineering applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 78:1277-1299. [PMID: 28575966 DOI: 10.1016/j.msec.2017.04.016] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 04/02/2017] [Accepted: 04/03/2017] [Indexed: 12/25/2022]
Abstract
Tissue engineering (TE) aims to mimic the complex environment where organogenesis takes place using advanced materials to recapitulate the tissue niche. Cells, three-dimensional scaffolds and signaling factors are the three main and essential components of TE. Over the years, materials and processes have become more and more sophisticated, allowing researchers to precisely tailor the final chemical, mechanical, structural and biological features of the designed scaffolds. In this review, we will pose the attention on two specific classes of naturally derived polymers: fibrous proteins and glycosaminoglycans (GAGs). These materials hold great promise for advances in the field of regenerative medicine as i) they generally undergo a fast remodeling in vivo favoring neovascularization and functional cells organization and ii) they elicit a negligible immune reaction preventing severe inflammatory response, both representing critical requirements for a successful integration of engineered scaffolds with the host tissue. We will discuss the recent achievements attained in the field of regenerative medicine by using proteins and GAGs, their merits and disadvantages and the ongoing challenges to move the current concepts to practical clinical application.
Collapse
Affiliation(s)
- Nehar Celikkin
- Warsaw University of Technology, Faculty of Material Science and Engineering, 141 Woloska str., 02-507 Warsaw, Poland
| | - Chiara Rinoldi
- Warsaw University of Technology, Faculty of Material Science and Engineering, 141 Woloska str., 02-507 Warsaw, Poland
| | - Marco Costantini
- Tissue Engineering Unit, Department of Engineering, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128 Rome, Italy
| | - Marcella Trombetta
- Tissue Engineering Unit, Department of Engineering, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128 Rome, Italy
| | - Alberto Rainer
- Tissue Engineering Unit, Department of Engineering, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128 Rome, Italy
| | - Wojciech Święszkowski
- Warsaw University of Technology, Faculty of Material Science and Engineering, 141 Woloska str., 02-507 Warsaw, Poland.
| |
Collapse
|
19
|
Wang X, Kou JM, Yue Y, Shao AZ, Jia XJ, Hou JW, Gao C, Qiu ZY, Wang XM, Weng XS. Clinical observations of osteoporotic vertebral compression fractures by using mineralized collagen modified polymethylmethacrylate bone cement. Regen Biomater 2017. [DOI: 10.1093/rb/rbw043] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Xi Wang
- Department of Orthopedics, The Second People’s Hospital of Lianyungang, No. 41 Hailian East Road, Haizhou District, Lianyungang 222000, China
| | - Jian-Ming Kou
- Department of Orthopedics, The Second People’s Hospital of Lianyungang, No. 41 Hailian East Road, Haizhou District, Lianyungang 222000, China
| | - Yang Yue
- Department of Orthopedics, The Second People’s Hospital of Lianyungang, No. 41 Hailian East Road, Haizhou District, Lianyungang 222000, China
| | - An-Ze Shao
- Department of Orthopedics, The Second People’s Hospital of Lianyungang, No. 41 Hailian East Road, Haizhou District, Lianyungang 222000, China
| | - Xue-Jun Jia
- Department of Orthopedics, The Second People’s Hospital of Lianyungang, No. 41 Hailian East Road, Haizhou District, Lianyungang 222000, China
| | - Jian-Wen Hou
- Department of Orthopedics, The Second People’s Hospital of Lianyungang, No. 41 Hailian East Road, Haizhou District, Lianyungang 222000, China
| | - Chong Gao
- Department of Orthopedics, The Second People’s Hospital of Lianyungang, No. 41 Hailian East Road, Haizhou District, Lianyungang 222000, China
| | - Zhi-Ye Qiu
- Institute for Regenerative Medicine and Biomimetic Materials, Tsinghua University, Haidian District, Beijing 100084, China
| | - Xiu-Mei Wang
- Institute for Regenerative Medicine and Biomimetic Materials, Tsinghua University, Haidian District, Beijing 100084, China
| | - Xi-Sheng Weng
- Department of Orthopaedics, Peking Union Medical College Hospital, No. 1 Shuaifuyuan, Dongcheng District, Beijing 100730, China
| |
Collapse
|
20
|
Zhang L, Mu W, Chen S, Yang D, Xu F, Wu Y. The enhancement of osteogenic capacity in a synthetic BMP-2 derived peptide coated mineralized collagen composite in the treatment of the mandibular defects. Biomed Mater Eng 2017; 27:495-505. [PMID: 27885997 DOI: 10.3233/bme-161603] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The novel synthetic peptide P17-BMP-2 could promote cell attachment and enhance osteogenic capability. A composite, comprising nano-hydroxyapatite, collagen and poly(L-lactide) (nHAC/PLLA), was an efficient scaffold for carrier of P17-BMP-2. Our aim was to investigate whether nHAC/PLLA/P17-BMP-2 accelerates the osteogenesis as a reliable method for mandibular defect healing in this study. The repair capability was assessed by the gross observation, X-ray test and histological observation in four animal experiment groups at 2 week and 4 week after surgery: Group A (control), Group B (nHAC/PLLA treatment), Group C (nHAC/PLLA with 2 mg/g P17-BMP-2 treatment) and Group D (nHAC/PLLA with 10 mg/g P17-BMP-2 treatment). The Lane-Sandhu X-ray scores of the four groups were compared among four groups as well. The results showed that the composites containing the highest content of P17- BMP-2 performed best. Therefore, the nHAC/PLLA with P17-BMP-2 composite can accelerate the osteogenesis for mandibular defect healing and could be an ideal biological material as a bone graft material option for clinical applications.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Traumatic Orthopaedics, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong Province, China.,Department of Orthopaedics, Liaocheng People's Hospital, Liaocheng Clinical School, Taishan Medical University, Liaocheng, Shandong Province, China
| | - Weidong Mu
- Department of Traumatic Orthopaedics, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong Province, China
| | - Shuangfeng Chen
- Central Laboratory, Liaocheng People's Hospital, Medical School of Liaocheng, Zhong Yuan Academy of Biological Medicine, Liaocheng University, Shandong Province, China
| | - Dawei Yang
- Central Laboratory, Liaocheng People's Hospital, Medical School of Liaocheng, Zhong Yuan Academy of Biological Medicine, Liaocheng University, Shandong Province, China
| | - Fei Xu
- Central Laboratory, Liaocheng People's Hospital, Medical School of Liaocheng, Zhong Yuan Academy of Biological Medicine, Liaocheng University, Shandong Province, China
| | - Yaping Wu
- Central Laboratory, Liaocheng People's Hospital, Medical School of Liaocheng, Zhong Yuan Academy of Biological Medicine, Liaocheng University, Shandong Province, China.,Department of Clinical Chemistry and Haematology, University Medical Centre Utrecht, G03.550, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| |
Collapse
|
21
|
Role of Coral, Demineralized Calf Fetal Growth Plate, and a Combination of the Two in Healing of Bone Defects in Rabbits. Trauma Mon 2016. [DOI: 10.5812/traumamon.28275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
22
|
Vollmer NL, Spear JR, Ayers RA. Antimicrobial activity and biologic potential of silver-substituted calcium phosphate constructs produced with self-propagating high-temperature synthesis. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2016; 27:104. [PMID: 27094319 DOI: 10.1007/s10856-016-5715-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 04/06/2016] [Indexed: 06/05/2023]
Abstract
There is significant demand for synthetic bone substitute materials that can decrease the incidence of implant-based bacterial infections. The intent of this research was to evaluate the antimicrobial activity and biologic potential of calcium phosphate (CaP) constructs substituted with silver (Ag) that were produced via self-propagating high-temperature synthesis (SHS). SHS is a combustion synthesis technique that has successfully generated porous CaP bioceramics intended for use in bone repair. SHS reactions are highly versatile; dopants can be added to the reactant powders to alter product chemistry and morphology. In this research, Ag powder was added to the reactants generating porous CaP constructs containing 0.5, 1, or 2 wt% Ag. Antibacterial performance of the constructs was assessed against Escherichia coli, a representative model for Gram-negative bacteria. Liquid solutions (1 μg/mL) of CaP-Ag particles to phosphate buffered saline were incubated with 10(5) cells/mL. After 24 h, 10 μL of solution were spread on an LB agar plate and cultured for 24 h at 37 °C. Samples cultured with CaP-Ag showed complete bacterial inhibition while the controls (E. coli only and CaP without Ag) exhibited significant colony formation. The effects of Ag concentration on cytotoxicity and biocompatibility were tested in vitro. At 7 days, osteoblasts uniformly enveloped the CaP-Ag particles and displayed a healthy flattened morphology suggesting the concentrations of Ag incorporated into constructs were not cytotoxic. CaP-Ag constructs produced via SHS represent a source of synthetic bone substitute materials that could potentially inhibit, or reduce the incidence of post-operative bacterial infections.
Collapse
Affiliation(s)
- N L Vollmer
- George S. Ansell Department of Metallurgy and Materials Engineering, Colorado School of Mines, 1500 Illinois Street, Golden, CO, 80401, USA.
| | - J R Spear
- Civil and Environmental Engineering Department, Colorado School of Mines, 1500 Illinois Street, Golden, CO, 80401, USA
| | - R A Ayers
- Department of Orthopedics, School of Medicine, University of Colorado, 13001 E. 17th Place, Campus Box B202, Aurora, CO, 80045, USA
| |
Collapse
|
23
|
Wang C, Wang Y, Meng H, Wang X, Zhu Y, Yu K, Yuan X, Wang A, Guo Q, Peng J, Lu S. Research progress regarding nanohydroxyapatite and its composite biomaterials in bone defect repair. INT J POLYM MATER PO 2016. [DOI: 10.1080/00914037.2016.1149849] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
24
|
Scaffolds for bone regeneration made of hydroxyapatite microspheres in a collagen matrix. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 63:499-505. [PMID: 27040244 DOI: 10.1016/j.msec.2016.03.022] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 02/15/2016] [Accepted: 03/07/2016] [Indexed: 01/19/2023]
Abstract
Biomimetic scaffolds with a structural and chemical composition similar to native bone tissue may be promising for bone tissue regeneration. In the present work hydroxyapatite mesoporous microspheres (mHA) were incorporated into collagen scaffolds containing an ordered interconnected macroporosity. The mHA were obtained by spray drying of a nano hydroxyapatite slurry prepared by the precipitation technique. X-ray diffraction (XRD) analysis revealed that the microspheres were composed only of hydroxyapatite (HA) phase, and energy-dispersive x-ray spectroscopy (EDS) analysis revealed the Ca/P ratio to be 1.69 which is near the value for pure HA. The obtained microspheres had an average diameter of 6 μm, a specific surface area of 40 m(2)/g as measured by Brunauer-Emmett-Teller (BET) analysis, and Barrett-Joyner-Halenda (BJH) analysis showed a mesoporous structure with an average pore diameter of 16 nm. Collagen/HA-microsphere (Col/mHA) composite scaffolds were prepared by freeze-drying followed by dehydrothermal crosslinking. SEM observations of Col/mHA scaffolds revealed HA microspheres embedded within a porous collagen matrix with a pore size ranging from a few microns up to 200 μm, which was also confirmed by histological staining of sections of paraffin embedded scaffolds. The compressive modulus of the composite scaffold at low and high strain values was 1.7 and 2.8 times, respectively, that of pure collagen scaffolds. Cell proliferation measured by the MTT assay showed more than a 3-fold increase in cell number within the scaffolds after 15 days of culture for both pure collagen scaffolds and Col/mHA composite scaffolds. Attractive properties of this composite scaffold include the potential to load the microspheres for drug delivery and the controllability of the pore structure at various length scales.
Collapse
|
25
|
Gwak GH, Choi AJ, Bae YS, Choi HJ, Oh JM. Electrophoretically prepared hybrid materials for biopolymer hydrogel and layered ceramic nanoparticles. Biomater Res 2016; 20:1. [PMID: 26865985 PMCID: PMC4748479 DOI: 10.1186/s40824-016-0048-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 01/04/2016] [Indexed: 11/21/2022] Open
Abstract
Background In order to obtain biomaterials with controllable physicochemical properties, hybrid biomaterials composed of biocompatible biopolymers and ceramic nanoparticles have attracted interests. In this study, we prepared biopolymer/ceramic hybrids consisting of various natural biopolymers and layered double hydroxide (LDH) ceramic nanoparticles via an electrophoretic method. We studied the structures and controlled-release properties of these materials. Results and discussion X-ray diffraction (XRD) patterns and X-ray absorption spectra (XAS) showed that LDH nanoparticles were formed in a biopolymer hydrogel through electrophoretic reaction. Scanning electron microscopic (SEM) images showed that the ceramic nanoparticles were homogeneously distributed throughout the hydrogel matrix. An antioxidant agent (i.e., ferulic acid) was loaded onto agarose/LDH and gelatin/LDH hybrids, and the time-dependent release of ferulic acid was investigated via high-performance liquid chromatography (HPLC) for kinetic model fitting. Conclusions Biopolymer/LDH hybrid materials that were prepared by electrophoretic method created a homogeneous composite of two components and possessed controllable drug release properties according to the type of biopolymer.
Collapse
Affiliation(s)
- Gyeong-Hyeon Gwak
- Department of Chemistry and Medical Chemistry, College of Science and Technology, Yonsei University, #326, Changjo-hall, Wonju Campus, Yonseidaegil 1, Heungeop-myeon, Wonju, Gangwondo 26493 Republic of Korea
| | - Ae-Jin Choi
- Postharvest Research Team, National Institute of Horticultural and Herbal Science (NIHHS) of RDA, Wanju, Jeollabukdo 55365 Republic of Korea
| | - Yeoung-Seuk Bae
- Postharvest Research Team, National Institute of Horticultural and Herbal Science (NIHHS) of RDA, Wanju, Jeollabukdo 55365 Republic of Korea
| | - Hyun-Jin Choi
- Postharvest Research Team, National Institute of Horticultural and Herbal Science (NIHHS) of RDA, Wanju, Jeollabukdo 55365 Republic of Korea
| | - Jae-Min Oh
- Department of Chemistry and Medical Chemistry, College of Science and Technology, Yonsei University, #326, Changjo-hall, Wonju Campus, Yonseidaegil 1, Heungeop-myeon, Wonju, Gangwondo 26493 Republic of Korea
| |
Collapse
|
26
|
Sun Y, Wang CY, Wang ZY, Cui Y, Qiu ZY, Song TX, Cui FZ. Test in canine extraction site preservations by using mineralized collagen plug with or without membrane. J Biomater Appl 2015; 30:1285-99. [PMID: 26721867 DOI: 10.1177/0885328215625429] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The aim of this study was to discuss the feasibility of porous mineralized collagen plug and bilayer mineralized collagen-guided bone regeneration membrane in site preservation in extraction sockets. The third mandibular premolars on both sides were extracted from four dogs, thus there were 16 alveolar sockets in all dogs and were randomly assigned into three groups. Group A had six alveolar sockets, and groups B and C had five alveolar sockets, respectively. Each alveolar socket of group A was immediately implanted with a porous mineralized collagen plug and covered with a bilayer mineralized collagen-guided bone regeneration membrane after tooth extraction. Alveolar sockets of group B were implanted with porous mineralized collagen plug only, and group C was set as blank control without any implantation. The healing effects of the extraction sockets were evaluated by gross observation, morphological measurements, and X-ray micro-computed tomography after twelve weeks. Twelve weeks after operation, both groups A and B had more amount of new bone formation compared with group C; in terms of the degree of alveolar bone height, group A was lower than groups B and C with significant differences; the bone mineral density in the region of interest and bone remodeling degree in group A were higher than those of groups B and C. As a result, porous mineralized collagen plug could induce the regeneration of new bone in extraction socket, and combined use of porous mineralized collagen plug and bilayer mineralized collagen guided bone regeneration membrane could further reduce the absorption of alveolar ridge and preserve the socket site.
Collapse
Affiliation(s)
- Yi Sun
- Department of Prosthodontics, Affiliated Stomatological Hospital of Liaoning Medical University, JinZhou, China
| | - Cheng-Yue Wang
- Department of Prosthodontics, Affiliated Stomatological Hospital of Liaoning Medical University, JinZhou, China
| | - Zhi-Ying Wang
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital of Liaoning Medical University, JinZhou, China
| | - Yun Cui
- Beijing Allgens Medical Science and Technology Co. Ltd, China
| | - Zhi-Ye Qiu
- Beijing Allgens Medical Science and Technology Co. Ltd, China
- School of Materials Science and Engineering, Tsinghua University, Beijing, China
| | - Tian-Xi Song
- Beijing Allgens Medical Science and Technology Co. Ltd, China
| | - Fu-Zhai Cui
- School of Materials Science and Engineering, Tsinghua University, Beijing, China
| |
Collapse
|
27
|
Prakasam M, Locs J, Salma-Ancane K, Loca D, Largeteau A, Berzina-Cimdina L. Fabrication, Properties and Applications of Dense Hydroxyapatite: A Review. J Funct Biomater 2015; 6:1099-140. [PMID: 26703750 PMCID: PMC4695913 DOI: 10.3390/jfb6041099] [Citation(s) in RCA: 151] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 12/05/2015] [Accepted: 12/09/2015] [Indexed: 02/04/2023] Open
Abstract
In the last five decades, there have been vast advances in the field of biomaterials, including ceramics, glasses, glass-ceramics and metal alloys. Dense and porous ceramics have been widely used for various biomedical applications. Current applications of bioceramics include bone grafts, spinal fusion, bone repairs, bone fillers, maxillofacial reconstruction, etc. Amongst the various calcium phosphate compositions, hydroxyapatite, which has a composition similar to human bone, has attracted wide interest. Much emphasis is given to tissue engineering, both in porous and dense ceramic forms. The current review focusses on the various applications of dense hydroxyapatite and other dense biomaterials on the aspects of transparency and the mechanical and electrical behavior. Prospective future applications, established along the aforesaid applications of hydroxyapatite, appear to be promising regarding bone bonding, advanced medical treatment methods, improvement of the mechanical strength of artificial bone grafts and better in vitro/in vivo methodologies to afford more particular outcomes.
Collapse
Affiliation(s)
- Mythili Prakasam
- CNRS, Université de Bordeaux, ICMCB, 87 avenue du Dr. A. Schweitzer, Pessac F-33608, France; E-Mail:
| | - Janis Locs
- Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre of RTU, Institute of General Chemical Engineering, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Pulka 3, Riga LV-1007, Latvia; E-Mails: (J.L.); (K.S.-A.); (D.L.); (L.B.-C.)
| | - Kristine Salma-Ancane
- Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre of RTU, Institute of General Chemical Engineering, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Pulka 3, Riga LV-1007, Latvia; E-Mails: (J.L.); (K.S.-A.); (D.L.); (L.B.-C.)
| | - Dagnija Loca
- Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre of RTU, Institute of General Chemical Engineering, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Pulka 3, Riga LV-1007, Latvia; E-Mails: (J.L.); (K.S.-A.); (D.L.); (L.B.-C.)
| | - Alain Largeteau
- CNRS, Université de Bordeaux, ICMCB, 87 avenue du Dr. A. Schweitzer, Pessac F-33608, France; E-Mail:
| | - Liga Berzina-Cimdina
- Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre of RTU, Institute of General Chemical Engineering, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Pulka 3, Riga LV-1007, Latvia; E-Mails: (J.L.); (K.S.-A.); (D.L.); (L.B.-C.)
| |
Collapse
|
28
|
Shirane HY, Oda DY, Pinheiro TC, Cunha MRD. BIOMATERIAL IMPLANTS IN BONE FRACTURES PRODUCED IN RATS FIBULAS. Rev Bras Ortop 2015; 45:478-82. [PMID: 27047813 PMCID: PMC4799216 DOI: 10.1016/s2255-4971(15)30439-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
To evaluate the importance of collagen and hydroxyapatite in the regeneration of fractures experimentally induced in the fibulas of rats. Method: 15 rats were used. These were subjected to surgery to remove a fragment from the fibula. This site then received a graft consisting of a silicone tubes filled with hydroxyapatite and collagen. Results: Little bone neoformation occurred inside the tubes filled with the biomaterials. There was more neoformation in the tubes with collagen. Conclusion: The biomaterials used demonstrated biocompatibility and osteoconductive capacity that was capable of stimulating osteogenesis, even in bones with secondary mechanical and morphological functions such as the fibula of rats.
Collapse
Affiliation(s)
| | - Diogo Yochizumi Oda
- Third-year medical student at the Jundiaí School of Medicine, Jundiaí, SP, Brazil
| | | | - Marcelo Rodrigues da Cunha
- Department of Morphology and Basic Pathology, Discipline of Anatomy, Jundiaí School of Medicine, Jundiaí, SP, Brazil
| |
Collapse
|
29
|
Borkowski L, Pawłowska M, Radzki RP, Bieńko M, Polkowska I, Belcarz A, Karpiński M, Słowik T, Matuszewski Ł, Ślósarczyk A, Ginalska G. Effect of a carbonated HAP/β-glucan composite bone substitute on healing of drilled bone voids in the proximal tibial metaphysis of rabbits. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 53:60-7. [DOI: 10.1016/j.msec.2015.04.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 02/24/2015] [Accepted: 04/10/2015] [Indexed: 01/28/2023]
|
30
|
Qiu ZY, Cui Y, Tao CS, Zhang ZQ, Tang PF, Mao KY, Wang XM, Cui FZ. Mineralized Collagen: Rationale, Current Status, and Clinical Applications. MATERIALS 2015; 8:4733-4750. [PMID: 28793468 PMCID: PMC5455477 DOI: 10.3390/ma8084733] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Revised: 06/29/2015] [Accepted: 07/13/2015] [Indexed: 01/19/2023]
Abstract
This paper presents a review of the rationale for the in vitro mineralization process, preparation methods, and clinical applications of mineralized collagen. The rationale for natural mineralized collagen and the related mineralization process has been investigated for decades. Based on the understanding of natural mineralized collagen and its formation process, many attempts have been made to prepare biomimetic materials that resemble natural mineralized collagen in both composition and structure. To date, a number of bone substitute materials have been developed based on the principles of mineralized collagen, and some of them have been commercialized and approved by regulatory agencies. The clinical outcomes of mineralized collagen are of significance to advance the evaluation and improvement of related medical device products. Some representative clinical cases have been reported, and there are more clinical applications and long-term follow-ups that currently being performed by many research groups.
Collapse
Affiliation(s)
- Zhi-Ye Qiu
- School of Materials Science and Engineering, Tsinghua University, Haidian District, Beijing 100084, China.
- Beijing Allgens Medical Science and Technology Co., Ltd., No.1 Disheng East Road, Yizhuang Economic and Technological Development Zone, Beijing 100176, China.
| | - Yun Cui
- Beijing Allgens Medical Science and Technology Co., Ltd., No.1 Disheng East Road, Yizhuang Economic and Technological Development Zone, Beijing 100176, China.
| | - Chun-Sheng Tao
- School of Materials Science and Engineering, Tsinghua University, Haidian District, Beijing 100084, China.
- The 401 Hospital of Chinese People's Liberation Army, No. 22 Minjiang Road, Qingdao 266071, China.
| | - Zi-Qiang Zhang
- Beijing Allgens Medical Science and Technology Co., Ltd., No.1 Disheng East Road, Yizhuang Economic and Technological Development Zone, Beijing 100176, China.
| | - Pei-Fu Tang
- The General Hospital of People's Liberation Army, No. 28 Fuxing Road, Beijing 100853, China.
| | - Ke-Ya Mao
- The General Hospital of People's Liberation Army, No. 28 Fuxing Road, Beijing 100853, China.
| | - Xiu-Mei Wang
- School of Materials Science and Engineering, Tsinghua University, Haidian District, Beijing 100084, China.
| | - Fu-Zhai Cui
- School of Materials Science and Engineering, Tsinghua University, Haidian District, Beijing 100084, China.
| |
Collapse
|
31
|
Vollmer N, King KB, Ayers R. Biologic Potential of Calcium Phosphate Biopowders Produced via Decomposition Combustion Synthesis. CERAMICS INTERNATIONAL 2015; 41:7735-7744. [PMID: 26034341 PMCID: PMC4448779 DOI: 10.1016/j.ceramint.2015.02.105] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The aim of this research was to evaluate the biologic potential of calcium phosphate (CaP) biopowders produced with a novel reaction synthesis system. Decomposition combustion synthesis (DCS) is a modified combustion synthesis method capable of producing CaP powders for use in bone tissue engineering applications. During DCS, the stoichiometric ratio of reactant salt to fuel was adjusted to alter product chemistry and morphology. In vitro testing methods were utilized to determine the effects of controlling product composition on cytotoxicity, proliferation, biocompatibility and biomineralization. In vitro, human fetal osteoblasts (ATCC, CRL-11372) cultured with CaP powder displayed a flattened morphology, and uniformly encompassed the CaP particulates. Matrix vesicles containing calcium and phosphorous budded from the osteoblast cells. CaP powders produced via DCS are a source of biologically active, synthetic, bone graft substitute materials.
Collapse
Affiliation(s)
- N Vollmer
- George S. Ansell Department of Metallurgy and Materials Engineering, Colorado School of Mines, 1500 Illinois Street, Golden, Colorado, 80401, USA
| | - K B King
- University of Colorado School of Medicine, Department of Orthopaedics, Aurora, Colorado, 80045, USA
| | - R Ayers
- University of Colorado School of Medicine, Department of Orthopaedics, Aurora, Colorado, 80045, USA
| |
Collapse
|
32
|
Bigham-Sadegh A, Oryan A. Selection of animal models for pre-clinical strategies in evaluating the fracture healing, bone graft substitutes and bone tissue regeneration and engineering. Connect Tissue Res 2015; 56:175-94. [PMID: 25803622 DOI: 10.3109/03008207.2015.1027341] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In vitro assays can be useful in determining biological mechanism and optimizing scaffold parameters, however translation of the in vitro results to clinics is generally hard. Animal experimentation is a better approximation than in vitro tests, and usage of animal models is often essential in extrapolating the experimental results and translating the information in a human clinical setting. In addition, usage of animal models to study fracture healing is useful to answer questions related to the most effective method to treat humans. There are several factors that should be considered when selecting an animal model. These include availability of the animal, cost, ease of handling and care, size of the animal, acceptability to society, resistance to surgery, infection and disease, biological properties analogous to humans, bone structure and composition, as well as bone modeling and remodeling characteristics. Animal experiments on bone healing have been conducted on small and large animals, including mice, rats, rabbits, dogs, pigs, goats and sheep. This review also describes the molecular events during various steps of fracture healing and explains different means of fracture healing evaluation including biomechanical, histopathological and radiological assessments.
Collapse
Affiliation(s)
- Amin Bigham-Sadegh
- Faculty of Veterinary Medicine, Department of Veterinary Surgery and Radiology, Shahrekord University , Shahrekord , Iran and
| | | |
Collapse
|
33
|
Velasco MA, Narváez-Tovar CA, Garzón-Alvarado DA. Design, materials, and mechanobiology of biodegradable scaffolds for bone tissue engineering. BIOMED RESEARCH INTERNATIONAL 2015; 2015:729076. [PMID: 25883972 PMCID: PMC4391163 DOI: 10.1155/2015/729076] [Citation(s) in RCA: 187] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 01/27/2015] [Indexed: 11/22/2022]
Abstract
A review about design, manufacture, and mechanobiology of biodegradable scaffolds for bone tissue engineering is given. First, fundamental aspects about bone tissue engineering and considerations related to scaffold design are established. Second, issues related to scaffold biomaterials and manufacturing processes are discussed. Finally, mechanobiology of bone tissue and computational models developed for simulating how bone healing occurs inside a scaffold are described.
Collapse
Affiliation(s)
- Marco A. Velasco
- Studies and Applications in Mechanical Engineering Research Group (GEAMEC), Universidad Santo Tomás, Bogotá, Colombia
| | - Carlos A. Narváez-Tovar
- Studies and Applications in Mechanical Engineering Research Group (GEAMEC), Universidad Santo Tomás, Bogotá, Colombia
- Biomimetics Laboratory and Numerical Methods and Modeling Research Group (GNUM), Instituto de Biotecnología (IBUN), Universidad Nacional de Colombia, Bogotá, Colombia
| | - Diego A. Garzón-Alvarado
- Biomimetics Laboratory and Numerical Methods and Modeling Research Group (GNUM), Instituto de Biotecnología (IBUN), Universidad Nacional de Colombia, Bogotá, Colombia
| |
Collapse
|
34
|
Han X, Wu X, Liu H, Wang D, E L, Zhou W. Ectopic osteogenesis of an injectable nHAC/CSH loaded with blood-acquired mesenchymal progenitor cells in a nude mice model. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2015; 26:5338. [PMID: 25577218 DOI: 10.1007/s10856-014-5338-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 07/31/2014] [Indexed: 06/04/2023]
Abstract
An injectable bone cement, nHAC/CSH, which consists of nano-hydroxyapatite/collagen (nHAC) and calcium sulphate hemihydrate (CaSO4.½H2O; CSH) was investigated as a tissue-engineered scaffold material with blood-acquired mesenchymal progenitor cells (BMPCs) as seeding cells. An in vitro study on the cytocompatability of nHAC/CSH and an in vivo study on the ectopic bone formation of nHAC/CSH loaded with dBMPCs were both conducted. The dBMPCs morphology, proliferation, differentiation and apoptosis assays were conducted using the direct contact and extract method. The cells tests exhibited normal growth and bioactive function in vitro. Studies in vivo showed that this injectable tissue engineered bone (ITB) formed bone structure in the heterotopic site of nude mice. These findings indicate that the ITB composed of nHAC/CSH and dBMPCs may represent a useful strategy for clinical reconstruction of irregular bone defects.
Collapse
Affiliation(s)
- Xue Han
- Department of Stomatology, 309th Hospital of Chinese People's Liberation Army, Beijing, 100091, China
| | | | | | | | | | | |
Collapse
|
35
|
Development and characterization of fast-hardening composite cements composed of natural ceramics originated from horse bones and chitosan solution. Tissue Eng Regen Med 2014. [DOI: 10.1007/s13770-014-0036-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
36
|
Oryan A, Bigham-Sadegh A, Abbasi-Teshnizi F. Effects of osteogenic medium on healing of the experimental critical bone defect in a rabbit model. Bone 2014; 63:53-60. [PMID: 24582803 DOI: 10.1016/j.bone.2014.02.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 02/13/2014] [Accepted: 02/18/2014] [Indexed: 10/25/2022]
Abstract
Today, finding an ideal biomaterial to treat the large bone defects, delayed unions and non-unions remains a challenge for orthopedic surgeons and researchers. Several studies have been carried out on the subject of bone regeneration, each having its own advantages. At the same time, a variety of disadvantages still remain. The present study has been designed in vivo to evaluate the effects of osteogenic medium on healing of experimental critical bone defect in a rabbit model. Twenty New Zealand albino rabbits, 12 months old, of both sexes, weighing 2.0±0.5 kg were used in this study. An approximately 10mm segmental defect was created in the mid portion of each radius as a critical size bone defect. In the osteogenic medium group (n=5) 1 ml osteogenic medium, in the maintenance medium group (n=5) 1 ml maintenance medium, and in the normal saline group (n=5) 1 ml normal saline were injected in the defected area while the defects of the rabbits of the control group (n=5) were left empty. Radiological evaluation was done on the 1st day and then at the 2nd, 4th, 6th and 8th weeks post injury. Biomechanical and histopathological evaluations were done 8 weeks post injury. The radiological, histological and biomechanical findings of the present study indicated a superior bone healing capability in the osteogenic and maintenance medium groups, by the end of 8 weeks post-surgery, in comparison to the normal saline and control groups. In conclusion, this study demonstrated that the osteogenic medium and maintenance medium could promote bone regeneration in long bone defects better than the control group in rabbit model.
Collapse
Affiliation(s)
- Ahmad Oryan
- Department of Veterinary Pathology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | | | - Fatemeh Abbasi-Teshnizi
- Department of Veterinary Pathology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| |
Collapse
|
37
|
Chen Y, Yan Y, Li X, Li H, Tan H, Li H, Zhu Y, Niemeyer P, Yaega M, Yu B. Application of ultrasound on monitoring the evolution of the collagen fiber reinforced nHAC/CS composites in vivo. BIOMED RESEARCH INTERNATIONAL 2014; 2014:418302. [PMID: 24822206 PMCID: PMC4009107 DOI: 10.1155/2014/418302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 03/04/2014] [Indexed: 11/17/2022]
Abstract
To date, fiber reinforce scaffolds have been largely applied to repair hard and soft tissues. Meanwhile, monitoring the scaffolds for long periods in vivo is recognized as a crucial issue before its wide use. As a consequence, there is a growing need for noninvasive and convenient methods to analyze the implantation remolding process in situ and in real time. In this paper, diagnostic medical ultrasound was used to monitor the in vivo bone formation and degradation process of the novel mineralized collagen fiber reinforced composite which is synthesized by chitosan (CS), nanohydroxyapatite (nHA), and collagen fiber (Col). To observe the impact of cells on bone remodeling process, the scaffolds were planted into the back of the SD rats with and without rat bone mesenchymal stem cells (rBMSCs). Systematic data of scaffolds in vivo was extracted from ultrasound images. Significant consistency between the data from the ultrasound and DXA could be observed (P < 0.05). This indicated that ultrasound may serve as a feasible alternative for noninvasive monitoring the evolution of scaffolds in situ during cell growth.
Collapse
Affiliation(s)
- Yan Chen
- Department of Ultrasonic Diagnosis, Zhujiang Hospital of Southern Medical University, Guangzhou 510282, China
| | - Yuting Yan
- The Second Clinical Medical College of Southern Medical University, Guangzhou 510282, China
| | - Xiaoming Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - He Li
- The Second Clinical Medical College of Southern Medical University, Guangzhou 510282, China
| | - Huiting Tan
- The Second Clinical Medical College of Southern Medical University, Guangzhou 510282, China
| | - Huajun Li
- The Second Clinical Medical College of Southern Medical University, Guangzhou 510282, China
| | - Yanwen Zhu
- The Second Clinical Medical College of Southern Medical University, Guangzhou 510282, China
| | - Philipp Niemeyer
- Department of Orthopaedic surgery and Traumatology, Freiburg University Hospital, Freiburg, Germany
| | - Matin Yaega
- Department of Orthopaedic surgery and Traumatology, Freiburg University Hospital, Freiburg, Germany
| | - Bo Yu
- Department of Orthopedics, Zhujiang Hospital of Southern Medical University, Guangzhou 510282, China
| |
Collapse
|
38
|
Nga NK, Giang LT, Huy TQ, Viet PH, Migliaresi C. Surfactant-assisted size control of hydroxyapatite nanorods for bone tissue engineering. Colloids Surf B Biointerfaces 2014; 116:666-73. [DOI: 10.1016/j.colsurfb.2013.11.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 10/26/2013] [Accepted: 11/02/2013] [Indexed: 12/13/2022]
|
39
|
Förster Y, Rentsch C, Schneiders W, Bernhardt R, Simon JC, Worch H, Rammelt S. Surface modification of implants in long bone. BIOMATTER 2014; 2:149-57. [PMID: 23507866 PMCID: PMC3549868 DOI: 10.4161/biom.21563] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Coatings of orthopedic implants are investigated to improve the osteoinductive and osteoconductive properties of the implant surfaces and thus to enhance periimplant bone formation. By applying coatings that mimic the extracellular matrix a favorable environment for osteoblasts, osteoclasts and their progenitor cells is provided to promote early and strong fixation of implants. It is known that the early bone ongrowth increases primary implant fixation and reduces the risk of implant failure. This review presents an overview of coating titanium and hydroxyapatite implants with components of the extracellular matrix like collagen type I, chondroitin sulfate and RGD peptide in different small and large animal models. The influence of these components on cells, the inflammation process, new bone formation and bone/implant contact is summarized.
Collapse
Affiliation(s)
- Yvonne Förster
- Department of Trauma and Reconstructive Surgery, Center for Translational Bone, Joint and Soft Tissue Research, Dresden University Hospital Carl Gustav Carus, Dresden, Germany.
| | | | | | | | | | | | | |
Collapse
|
40
|
Venkateswarlu K, Sandhyarani M, Nellaippan T, Rameshbabu N. Estimation of Crystallite Size, Lattice Strain and Dislocation Density of Nanocrystalline Carbonate Substituted Hydroxyapatite by X-ray Peak Variance Analysis. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.mspro.2014.07.260] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
41
|
Xia Y, Peng SS, Xie LZ, Lian XJ, Zhang XJ, Cui H, Song TX, Zhang FM, Gu N, Cui FZ. A novel combination of nano-scaffolds with micro-scaffolds to mimic extracellularmatrices improve osteogenesis. J Biomater Appl 2013; 29:59-71. [DOI: 10.1177/0885328213514467] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
To improve bone engineering for clinical applications, we coupled nanofiber-peptide hydrogel to nano-hydroxyapatite/collagen to form a bioactive scaffold (cnHAC) that mimics extracellular matrices. In comparison to nano-hydroxyapatite/collagen, we found that cnHAC promoted cell adhesion and spreading, and DNA content measurements, alkaline phosphatase activity assays, and reverse transcriptase-polymerase chain reaction analyses of osteogenic gene expression showed that cnHAC significantly improved cellular attachment, proliferation, and osteogenic differentiation in vitro ( P < 0.05). In vivo models based on rat calvarial implants showed that cnHAC significantly enhanced bone regeneration ( P < 0.05). In conclusion, we demonstrated that novel cnHAC scaffolds could potentially facilitate future bone regenerative medicine.
Collapse
Affiliation(s)
- Yang Xia
- Institute of Stomatology, Nanjing Medical University, Nanjing, PR China
| | - Sha-Sha Peng
- Institute of Stomatology, Nanjing Medical University, Nanjing, PR China
- Department of Stomatology, Yancheng No.1 People's Hospital, Yancheng, PR China
| | - Li-Zhe Xie
- Institute of Stomatology, Nanjing Medical University, Nanjing, PR China
| | - Xiao-Jie Lian
- Biomaterials Laboratory, Department of Materials Science and Engineering, Tsinghua University, Beijing, PR China
- School of Mechanics, Taiyuan University of Technology, Taiyuan, PR China
| | - Xiao-Jun Zhang
- Beijing Allgens Medical Science & Technology Co., Ltd, Beijing, PR China
| | - Han Cui
- Beijing Allgens Medical Science & Technology Co., Ltd, Beijing, PR China
| | - Tian-Xi Song
- Beijing Allgens Medical Science & Technology Co., Ltd, Beijing, PR China
| | - Fei-Min Zhang
- Institute of Stomatology, Nanjing Medical University, Nanjing, PR China
| | - Ning Gu
- Suzhou Institute, Southeast University, Suzhou, PR China
| | - Fu-Zhai Cui
- Biomaterials Laboratory, Department of Materials Science and Engineering, Tsinghua University, Beijing, PR China
| |
Collapse
|
42
|
Liu J, Mao K, Liu Z, Wang X, Cui F, Guo W, Mao K, Yang S. Injectable biocomposites for bone healing in rabbit femoral condyle defects. PLoS One 2013; 8:e75668. [PMID: 24146770 PMCID: PMC3797737 DOI: 10.1371/journal.pone.0075668] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 08/16/2013] [Indexed: 11/23/2022] Open
Abstract
A novel biomimetic bone scaffold was successfully prepared in this study, which was composed of calcium sulfate hemihydrate (CSH), collagen and nano-hydroxyapatite (nHAC). CSH/nHAC was prepared and observed with scanning electron microscope and rhBMP-2 was introduced into CSH/nHAC. The released protein content from the scaffold was detected using high performance liquid chromatography at predetermined time interval. In vivo bone formation capacity was investigated by means of implanting the scaffolds with rhBMP-2 or without rhBMP-2 respectively into a critical size defect model in the femoral condyle of rabbit. The releasing character of rhBMP-2 was that an initial burst release (37.5%) was observed in the first day, followed by a sustained release and reached 100% at the end of day 20. The CSH/nHAC showed a gradual decrease in degradation with the content of nHAC increase. The results of X-rays, Micro CT and histological observation indicated that more new bone was formed in rhBMP-2 group. The results implied that this new injectable bone scaffold should be very promising for bone repair and has a great potential in bone tissue engineering.
Collapse
Affiliation(s)
- Jianheng Liu
- Department of Orthopaedics, General Hospital of People's Liberation Army, Beijing, China
| | - Kezheng Mao
- Department of Orthopaedics, General Hospital of People's Liberation Army, Beijing, China
| | - Zhengsheng Liu
- Department of Orthopaedics, General Hospital of People's Liberation Army, Beijing, China
| | - Xiumei Wang
- Department of Materials Science and Engineering, Tsinghua University, Beijing, China
| | - Fuzhai Cui
- Department of Materials Science and Engineering, Tsinghua University, Beijing, China
| | - Wenguang Guo
- Beijing Olympic fine Pharmaceutical Technology Co., Ltd, Beijing, China
| | - Keya Mao
- Department of Orthopaedics, General Hospital of People's Liberation Army, Beijing, China
- * E-mail: (KM); (SY)
| | - Shuying Yang
- Department of Oral Biology, University at Buffalo - SUNY, Buffalo, New York, United States of America
- * E-mail: (KM); (SY)
| |
Collapse
|
43
|
Wang X, Liu Z, Cui F. Biomimetic Synthesis of Self‐Assembled Mineralized Collagen‐Based Composites for Bone Tissue Engineering. Biomimetics (Basel) 2013. [DOI: 10.1002/9781118810408.ch2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023] Open
|
44
|
Troiano NW, Kacena MA. Bone Implants: Processing, Embedding, Cutting, and Histopathology. J Histotechnol 2013. [DOI: 10.1179/his.2006.29.4.253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
45
|
Wagner-Ecker M, Voltz P, Egermann M, Richter W. The collagen component of biological bone graft substitutes promotes ectopic bone formation by human mesenchymal stem cells. Acta Biomater 2013; 9:7298-307. [PMID: 23542556 DOI: 10.1016/j.actbio.2013.03.037] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 03/06/2013] [Accepted: 03/23/2013] [Indexed: 12/13/2022]
Abstract
Synthetic bone substitutes are attractive materials for repairing a variety of bone defects. They are readily available in unlimited quantities, have a defined composition without batch variability and bear no risk of disease transmission. When combined with mesenchymal stem cells (MSCs), bone healing can be further enhanced due to the osteogenic potential of these cells. However, human MSCs showed considerable donor variability in ectopic bone formation assays on synthetic bone substitutes, which may limit clinical success. This study addresses whether bone formation variability of MSCs is cell-intrinsic or biomaterial-dependent and may be improved using biological bone substitutes with and without collagen. Ectopic bone formation of MSCs from nine donors was tested in immune-deficient mice on biological bone substitutes of bovine and equine origin, containing collagen (bHA-C; eHA-C) or not (bHA; eHA). Synthetic β-TCP was used for comparison. Histology of 8-week explants demonstrated a significant influence of the bone graft substitute (BGS) on donor variability of ectopic bone formation with best results seen for eHA-C (15/17) and β-TCP (16/18). Bone was of human origin in all groups according to species-specific in situ hybridization, but MSCs from one donor formed no bone with any bone substitute. According to histomorphometry, most neo-bone was formed on eHA-C with significant differences to bHA, eHA and β-TCP (p<0.001). Collagen-free biological BGSs were inferior to biological BGSs with collagen (p<0.001), while species-origin was of little influence. In conclusion, BGS composition had a strong influence on ectopic bone formation ability of MSCs, and biological BGSs with a collagen component seem most promising to display the strong osteogenic potential of MSCs.
Collapse
|
46
|
Young MD, Tran N, Tran PA, Jarrell JD, Hayda RA, Born CT. Niobium oxide-polydimethylsiloxane hybrid composite coatings for tuning primary fibroblast functions. J Biomed Mater Res A 2013; 102:1478-85. [DOI: 10.1002/jbm.a.34832] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Revised: 04/10/2013] [Accepted: 06/03/2013] [Indexed: 11/07/2022]
Affiliation(s)
- Matthew D. Young
- Alpert Medical School; Brown University; Providence Rhode Island 02903
| | - Nhiem Tran
- Alpert Medical School; Brown University; Providence Rhode Island 02903
- Department of Orthopaedics; Rhode Island Hospital; Providence Rhode Island 02903
| | - Phong A. Tran
- Alpert Medical School; Brown University; Providence Rhode Island 02903
- Department of Orthopaedics; Rhode Island Hospital; Providence Rhode Island 02903
| | - John D. Jarrell
- Department of Orthopaedics; Rhode Island Hospital; Providence Rhode Island 02903
- BioIntraface Inc.; North Kingstown Rhode Island 02852
| | - Roman A. Hayda
- Alpert Medical School; Brown University; Providence Rhode Island 02903
- Department of Orthopaedics; Rhode Island Hospital; Providence Rhode Island 02903
| | - Chistopher T. Born
- Alpert Medical School; Brown University; Providence Rhode Island 02903
- Department of Orthopaedics; Rhode Island Hospital; Providence Rhode Island 02903
- BioIntraface Inc.; North Kingstown Rhode Island 02852
| |
Collapse
|
47
|
Vozzi G, Corallo C, Carta S, Fortina M, Gattazzo F, Galletti M, Giordano N. Collagen-gelatin-genipin-hydroxyapatite composite scaffolds colonized by human primary osteoblasts are suitable for bone tissue engineering applications: in vitro evidences. J Biomed Mater Res A 2013; 102:1415-21. [PMID: 23775901 DOI: 10.1002/jbm.a.34823] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2013] [Revised: 04/30/2013] [Accepted: 05/31/2013] [Indexed: 11/09/2022]
Abstract
The application of porous hydroxyapatite (HAp)-collagen as a bone tissue engineering scaffold represents a new trend of mimicking the specific bone extracellular matrix (ECM). The use of HAp in reconstructive surgery has shown that it is slowly invaded by host tissue. Therefore, implant compatibility may be augmented by seeding cells before implantation. Human primary osteoblasts were seeded onto innovative collagen-gelatin-genipin (GP)-HAp scaffolds containing respectively 10%, 20%, and 30% HAp. Cellular adhesion, proliferation, alkaline phosphatase (ALP) activity, osteopontin (OPN), and osteocalcin (OC) expressions were evaluated after 3, 7, 15, and 21 days. The three types of scaffolds showed increased cellular proliferation over time in culture (maximum at 21 days) but the highest was recorded in 10% HAp scaffolds. ALP activity was the highest in 10% HAp scaffolds in all the times of evaluation. OC and OPN resulted in higher concentration in 10% HAp scaffolds compared to 20% and 30% HAp (maximum at 21 days). Finally, scanning electron microscopy analysis showed progressive scaffolds adhesion and colonization from the surface to the inside from day 3 to day 21. In vitro attachment, proliferation, and colonization of human primary osteoblasts on collagen-GP-HAp scaffolds with different percentages of HAp (10%, 20%, and 30%) all increased over time in culture, but comparing different percentages of HAp, they seem to increase with decreasing of HAp component. Therefore, the mechanical properties (such as the stiffness due to the HAp%) coupled with a good biomimetic component (collagen) are the parameters to set up in composite scaffolds design for bone tissue engineering.
Collapse
Affiliation(s)
- G Vozzi
- Department of Chemical Engineering, Industrial Chemistry and Material Science, University of Pisa, Pisa, Italy
| | | | | | | | | | | | | |
Collapse
|
48
|
Zhang X, Guo WG, Cui H, Liu HY, Zhang Y, Müller WEG, Cui FZ. In vitro and in vivo enhancement of osteogenic capacity in a synthetic BMP-2 derived peptide-coated mineralized collagen composite. J Tissue Eng Regen Med 2013; 10:99-107. [PMID: 23364810 DOI: 10.1002/term.1705] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Revised: 11/08/2012] [Accepted: 12/20/2012] [Indexed: 01/27/2023]
Abstract
Enhancement of osteogenic capacity was achieved in a mineralized collagen composite, nano-hydroxyapatite/collagen (nHAC), by loading with synthetic peptides derived from BMP-2 residues 32-48 (P17-BMP-2). Rabbit marrow stromal cells (MSCs) were used in vitro to study cell biocompatibility, attachment and differentiation on the mineralized collagen composite by a cell counting kit, scanning electron microscopy (SEM) and real-time reversed transcriptase-polymerase chain reaction analysis (RT-PCR). Optimal peptide dosage (1.0 µg/mL) was obtained by RT-PCR analysis in vitro. In addition, the relative expression level of OPN and OCN was significantly upregulated on P17-BMP-2/nHAC compared with nHAC. In vitro results of P17-BMP-2 release kinetics demonstrated that nHAC released P17-BMP-2 in a controlled and sustained manner. In the rabbit mandibular box-shaped bone defect model, osteogenic capacity of three groups (nHAC, P17-BMP-2/nHAC, rhBMP-2/nHAC) was evaluated. Compared to the nHAC group, bone repair responses in both P17-BMP-2/nHAC and rhBMP-2/nHAC group implants were significantly improved based on histological analysis. The osteogenic response of the P17-BMP-2/nHAC group was similar to that of the rhBMP-2/nHAC group.
Collapse
Affiliation(s)
- Xue Zhang
- Department of Orthodontics, School of Stomatology, China Medical University, Shenyang, 110001, China
| | - Wen-Guang Guo
- Beijing Allgens Medical Science & Technology Company, Beijing, 100085, China
| | - Helen Cui
- Beijing Allgens Medical Science & Technology Company, Beijing, 100085, China
| | - Huan-Ye Liu
- Department of Orthodontics, School of Stomatology, China Medical University, Shenyang, 110001, China
| | - Yang Zhang
- Department of Orthodontics, School of Stomatology, China Medical University, Shenyang, 110001, China
| | - Werner E G Müller
- Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, D-55128, Mainz, Germany
| | - Fu-Zhai Cui
- Institute of Regenerative Medical Materials, Department of Materials Science & Engineering, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
49
|
Tien WB, Chen MT, Yao PC. Effects of pH and temperature on microstructure and morphology of hydroxyapatite/collagen composites synthesized in vitro. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2012; 32:2096-2102. [DOI: 10.1016/j.msec.2012.05.046] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Revised: 03/21/2012] [Accepted: 05/25/2012] [Indexed: 10/28/2022]
|
50
|
Alves Cardoso D, Jansen JA, Leeuwenburgh SCG. Synthesis and application of nanostructured calcium phosphate ceramics for bone regeneration. J Biomed Mater Res B Appl Biomater 2012; 100:2316-26. [PMID: 23015272 DOI: 10.1002/jbm.b.32794] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 07/13/2012] [Accepted: 07/14/2012] [Indexed: 01/02/2023]
Abstract
In the past two decades, nanotechnology has entered the field of regenerative medicine, resulting in the development of a novel generation of instructive, nanostructured biomaterials that are able to orchestrate cellular behavior by presenting specific morphological and biological cues. Using nanotechnology, materials containing nanosized features (e.g., pores, patterns, textures, grain sizes) can be obtained that exhibit properties that are considerably altered compared with micron-structured materials. Inspired by the hierarchical nanostructure of bone, the application of nanostructured materials for bone regeneration is gaining increasing interest in the field of biomaterials research. Because crystallographic and chemical studies have shown that synthetic hydroxyapatite closely resembles the inorganic phase found in bone and teeth, synthesis and applications of nanostructured calcium phosphate ceramics have been reviewed. Synthesis techniques for the preparation of calcium phosphate nanoparticles include precipitation, sol-gel, and hydrothermal processes, whereas four main biomedical applications of nanostructured calcium phosphate ceramics in bone regeneration have been addressed in more detail, that is, (1) polymer/calcium phosphate nanocomposites, (2) nanostructured monophasic calcium phosphate bone fillers, (3) nanostructured precursor phases for calcium phosphate cements, and (4) nanostructured calcium phosphate coatings.
Collapse
Affiliation(s)
- D Alves Cardoso
- Department of Biomaterials, Radboud University Nijmegen Medical Center, 6500 HB Nijmegen, The Netherlands
| | | | | |
Collapse
|