1
|
Weber A, Schwiebs A, Solhaug H, Stenvik J, Nilsen AM, Wagner M, Relja B, Radeke HH. Nanoplastics affect the inflammatory cytokine release by primary human monocytes and dendritic cells. ENVIRONMENT INTERNATIONAL 2022; 163:107173. [PMID: 35303527 DOI: 10.1016/j.envint.2022.107173] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/13/2022] [Accepted: 03/03/2022] [Indexed: 06/14/2023]
Abstract
So far, the human health impacts of nano- and microplastics are poorly understood. Thus, we investigated whether nanoplastics exposure induces inflammatory processes in primary human monocytes and monocyte-derived dendritic cells. We exposed these cells in vitro to nanoplastics of different shapes (irregular vs. spherical), sizes (50-310 nm and polydisperse mixtures) and polymer types (polystyrene; polymethyl methacrylate; polyvinyl chloride, PVC) using concentrations of 30-300 particles cell-1. Our results show that irregular PVC particles induce the strongest cytokine release of these nanoplastics. Irregular polystyrene triggered a significantly higher pro-inflammatory response compared to spherical nanoplastics. The contribution of chemicals leaching from the particles was minor. The effects were concentration-dependent but varied markedly between cell donors. We conclude that nanoplastics exposure can provoke human immune cells to secrete cytokines as key initiators of inflammation. This response is specific to certain polymers (PVC) and particle shapes (fragments). Accordingly, nanoplastics cannot be considered one homogenous entity when assessing their health implications and the use of spherical polystyrene nanoplastics may underestimate their inflammatory effects.
Collapse
Affiliation(s)
- Annkatrin Weber
- Goethe University, Department of Aquatic Ecotoxicology, Faculty of Biological Sciences, Max-von-Laue-Straße 13, 60438 Frankfurt am Main, Germany
| | - Anja Schwiebs
- Goethe University Hospital, Institute of General Pharmacology and Toxicology, pharmazentrum frankfurt, Theodor-Stern-Kai 7/75, 60596 Frankfurt am Main, Germany
| | - Helene Solhaug
- Norwegian University of Science and Technology, Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Erling Skjalgssons gate 1, Trondheim, Norway
| | - Jørgen Stenvik
- Norwegian University of Science and Technology, Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Erling Skjalgssons gate 1, Trondheim, Norway; Norwegian University of Science and Technology, Centre of Molecular Inflammation Research, Olav Kyrres gate 17, Trondheim, Norway
| | - Asbjørn M Nilsen
- Norwegian University of Science and Technology, Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Erling Skjalgssons gate 1, Trondheim, Norway
| | - Martin Wagner
- Norwegian University of Science and Technology, Department of Biology, Høgskoleringen 5, Realfagbygget, 7491 Trondheim, Norway.
| | - Borna Relja
- Otto-von-Guericke University, Department of Radiology and Nuclear Medicine, Experimental Radiology, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Heinfried H Radeke
- Goethe University Hospital, Institute of General Pharmacology and Toxicology, pharmazentrum frankfurt, Theodor-Stern-Kai 7/75, 60596 Frankfurt am Main, Germany
| |
Collapse
|
2
|
Høl PJ, Kristoffersen EK, Gjerdet NR, Pellowe AS. Novel Nanoparticulate and Ionic Titanium Antigens for Hypersensitivity Testing. Int J Mol Sci 2018; 19:E1101. [PMID: 29642398 PMCID: PMC5979587 DOI: 10.3390/ijms19041101] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 03/26/2018] [Accepted: 04/03/2018] [Indexed: 02/06/2023] Open
Abstract
Titanium is used in a wide variety of materials ranging from medical devices to materials used in everyday life. Adverse biological reactions that could occur in patients, consumers, and workers should be monitored and prevented. There is a lack of available agents to test and predict titanium-related hypersensitivity. The aim of this study was to develop two bioavailable titanium substances in ionic and nanoparticulate form to serve as antigens for hypersensitivity testing in vitro. Peripheral blood mononuclear cells from 20 test subjects were stimulated with the antigens and secretion of monocytic and lymphatic cytokines and chemokines were measured by a multiplex bead assay. Lymphocyte stimulation indices were also determined in a subset of test subjects by measuring CD69 and HLA-DR expression by flow cytometry. Cytokine profiling revealed that both antigens increased production of typical monocyte and macrophage secreted cytokines after 24 h, with significant increases in IL-1β, IL-7, IL-10, IL-12, IL-2R, IL-6, GM-CSF, TNF-α, IL-1RA, MIP-1α, MIP-1β, IFN-α, and IL-15. Lymphatic cytokines and chemokines were not significantly induced by activation. After seven days of stimulation, ionic-Ti (2.5 μg/mL) caused proliferation (stimulation index > 2) of CD4+ cells and CD8+ cells in all persons tested (N = 6), while titanium dioxide nanoparticles (50 μg/mL) only caused significant proliferation of CD4+ cells. Our preliminary results show that the experimental titanium antigens, especially the ionic form, induce a general inflammatory response in vitro. A relevant cohort of test subjects is required to further elucidate their potential for predictive hypersensitivity testing.
Collapse
Affiliation(s)
- Paul Johan Høl
- Department of Clinical Medicine, University of Bergen, N-5021 Bergen, Norway.
- Department of Orthopaedic Surgery, Haukeland University Hospital, Jonas Lies vei 87, N-5021 Bergen, Norway.
| | - Einar K Kristoffersen
- Department of Clinical Science, University of Bergen, N-5021 Bergen, Norway.
- Department of Immunology and Transfusion Medicine, Haukeland University Hospital, N-5021 Bergen, Norway.
| | - Nils Roar Gjerdet
- Department of Clinical Dentistry, University of Bergen, N-5009 Bergen, Norway.
| | - Amanda S Pellowe
- School of Engineering and Applied Sciences, Yale University, New Haven, CT 06511, USA.
| |
Collapse
|
3
|
Risbud M, Bhonde M, Bhonde R. Chitosan-Polyvinyl Pyrrolidone Hydrogel does Not Activate Macrophages: Potentials for Transplantation Applications. Cell Transplant 2017. [DOI: 10.3727/000000001783986828] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Makarand Risbud
- Tissue Engineering and Banking Laboratory, National Centre for Cell Science, Ganeshkhind, Pune 411 007, India
| | - Mandar Bhonde
- Tissue Engineering and Banking Laboratory, National Centre for Cell Science, Ganeshkhind, Pune 411 007, India
| | - Ramesh Bhonde
- Tissue Engineering and Banking Laboratory, National Centre for Cell Science, Ganeshkhind, Pune 411 007, India
| |
Collapse
|
4
|
Samelko L, Landgraeber S, McAllister K, Jacobs J, Hallab NJ. TLR4 (not TLR2) dominate cognate TLR activity associated with CoCrMo implant particles. J Orthop Res 2017; 35:1007-1017. [PMID: 27416075 DOI: 10.1002/jor.23368] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 07/11/2016] [Indexed: 02/04/2023]
Abstract
Innate immune reactions to orthopedic implant debris are the primary cause of total joint replacement (TJR) failure over the long term (15-20 years). The role of pathogen associated pattern recognition receptors (i.e., TLRs) in regulating immune reactivity to metal implant particles remains controversial. Do different TLRs (i.e., TLR2 vs. TLR4) activated by their respective ligands in concert with metal implant debris elicit equivalent innate immune responses? In this investigation, our in vitro and in vivo data indicate that Gram-negative PAMPs are more pro-inflammatory than Gram-positive PAMPs. In vitro results indicated TLR4 activation in concert with CoCrMo orthopedic implant debris (CoCrMo/LPS+) challenged primary macrophages resulted in significantly greater inflammatory responses than CoCrMo/PAM3CSK+ (TLR2). Similarly, in vivo results indicated CoCrMo/LPS+ TLR4 challenge induced a twofold increase in inflammation-induced bone resorption (osteolysis) than CoCrMo/PAM3CSK+ (p < 0.01) or CoCrMo (p < 0.03) alone in an established murine calvaria model. This points to a more potent TLR4-based effect of CoCrMo/LPS+ on innate immune responses, that is, IL-1ß, TNF-α, and resulting osteolysis. Differential CoCrMo/LPS+ induced osteolysis compared to CoCrMo/PAM3CSK+, reveals inherent differences in TLR4 versus TLR2 activation which are relevant to (i) how different types of implant debris elicit differential reactivity, (ii) how TLR2 Gram-positive bacteria benefits from less immune activation possibly due to the down-regulation of TLR2 surface expression, that subsequently impacts Gram-positive infections in TJRs, and (iii) how using TLR4 LPS (a Gram-negative agonist) may not accurately model Gram-positive bacteria responses, alone and/or with specific types of implant particles, particularly CoCrMo alloy. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:1007-1017, 2017.
Collapse
Affiliation(s)
- Lauryn Samelko
- Department of Orthopedic Surgery, Rush University Medical Center, 1735 W Harrison, Chicago, Illinois.,Department of Immunology, Rush University Medical Center, Chicago, Illinois
| | - Stefan Landgraeber
- Department of Orthopaedics, University Hospital Essen, University of Duisburg-Essen, Hufelandstrabe 55, Essen 45122, Germany
| | - Kyron McAllister
- Department of Orthopedic Surgery, Rush University Medical Center, 1735 W Harrison, Chicago, Illinois
| | - Joshua Jacobs
- Department of Orthopedic Surgery, Rush University Medical Center, 1735 W Harrison, Chicago, Illinois
| | - Nadim J Hallab
- Department of Orthopedic Surgery, Rush University Medical Center, 1735 W Harrison, Chicago, Illinois
| |
Collapse
|
5
|
Pajarinen J, Jamsen E, Konttinen YT, Goodman SB. Innate immune reactions in septic and aseptic osteolysis around hip implants. J Long Term Eff Med Implants 2015; 24:283-96. [PMID: 25747031 DOI: 10.1615/jlongtermeffmedimplants.2014010564] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
According to the long-standing definition, septic and aseptic total joint replacement loosening are two distinct conditions with little in common. Septic joint replacement loosening is driven by bacterial infection whereas aseptic loosening is caused by biomaterial wear debris released from the bearing surfaces. However, recently it has been recognized that the mechanisms that drive macrophage activation in septic and aseptic total joint replacement loosening resemble each other. In particular, accumulating evidence indicates that in addition to mediating bacterial recognition and the subsequent inflammatory reaction, toll-like receptors (TLRs) and their ligands, pathogen-associated molecular patterns (PAMPs) and danger-associated molecular patterns (DAMPS), play a key role in wear debris-induced inflammation and macrophage activation. In addition, subclinical bacterial biofilms have been identified from some cases of seemingly aseptic implant loosening. Furthermore, metal ions released from some total joint replacements can activate TLR signaling similar to bacterial derived PAMPs. Likewise, metal ions can function as haptens activating the adaptive immune system similar to bacterial derived antigens. Thus, it appears that aseptic and septic joint replacement loosening share similar underlying pathomechanisms and that this strict dichotomy to sterile aseptic and bacterial-caused septic implant loosening is somewhat questionable. Indeed, rather than being two, well-defined clinical entities, peri-implant osteolysis is, in fact, a spectrum of conditions in which the specific clinical picture is determined by complex interactions of multiple local and systemic factors.
Collapse
Affiliation(s)
- Jukka Pajarinen
- Department of Medicine, Institute of Clinical Medicine, Helsinki University Central Hospital, 00029 HUS, Finland; Department of Orthopaedic Surgery, Stanford Medical Center, Stanford CA 94305-5341 , USA
| | - Eemeli Jamsen
- Department of Medicine, Institute of Clinical Medicine, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland
| | - Yrjo T Konttinen
- Department of Clinical Medicine, University of Helsinki and ORTON Orthopaedic Hospital of the Invalid Foundation, Helsinki, Finland
| | - Stuart B Goodman
- Department of Orthopaedic Surgery Stanford University Medical Center Redwood City, CA
| |
Collapse
|
6
|
Jämsen E, Kouri VP, Olkkonen J, Cör A, Goodman SB, Konttinen YT, Pajarinen J. Characterization of macrophage polarizing cytokines in the aseptic loosening of total hip replacements. J Orthop Res 2014; 32:1241-6. [PMID: 24897980 DOI: 10.1002/jor.22658] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 05/14/2014] [Indexed: 02/04/2023]
Abstract
Aseptic loosening of hip replacements is driven by the macrophage reaction to wear particles. The extent of particle-induced macrophage activation is dependent on the state of macrophage polarization, which is dictated by the local cytokine microenvironment. The aim of the study was to characterize cytokine microenvironment surrounding failed, loose hip replacements with an emphasis on identification of cytokines that regulate macrophage polarization. Using qRT-PCR, the expression of interferon gamma (IFN-γ), interleukin-4 (IL-4), granulocyte-macrophage colony-stimulating factor (GM-CSF), IL-13, and IL-17A was low and similar to the expression in control synovial tissues of patients undergoing primary hip replacement. Using immunostaining, no definite source of IFN-γ or IL-4 could be identified. IL-17A positive cells, identified as mast cells by double staining, were detected but their number was significantly reduced in interface tissues compared to the controls. Significant up-regulation of IL-10, M-CSF, IL-8, CCL2-4, CXCL9-10, CCL22, TRAP, cathepsin K, and down regulation of OPG was seen in the interface tissues, while expression of TNF-α, IL-1β, and CD206 were similar between the conditions. It is concluded that at the time of the revision surgery the peri-implant macrophage phenotype has both M1 and M2 characteristics and that the phenotype is regulated by other local and systemic factors than traditional macrophage polarizing cytokines.
Collapse
Affiliation(s)
- Eemeli Jämsen
- Department of Medicine, Institute of Clinical Medicine, University of Helsinki, and Helsinki University Central Hospital, Helsinki, Finland
| | | | | | | | | | | | | |
Collapse
|
7
|
Goodman SB, Gibon E, Pajarinen J, Lin TH, Keeney M, Ren PG, Nich C, Yao Z, Egashira K, Yang F, Konttinen YT. Novel biological strategies for treatment of wear particle-induced periprosthetic osteolysis of orthopaedic implants for joint replacement. J R Soc Interface 2014; 11:20130962. [PMID: 24478281 DOI: 10.1098/rsif.2013.0962] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Wear particles and by-products from joint replacements and other orthopaedic implants may result in a local chronic inflammatory and foreign body reaction. This may lead to persistent synovitis resulting in joint pain and swelling, periprosthetic osteolysis, implant loosening and pathologic fracture. Strategies to modulate the adverse effects of wear debris may improve the function and longevity of joint replacements and other orthopaedic implants, potentially delaying or avoiding complex revision surgical procedures. Three novel biological strategies to mitigate the chronic inflammatory reaction to orthopaedic wear particles are reported. These include (i) interference with systemic macrophage trafficking to the local implant site, (ii) modulation of macrophages from an M1 (pro-inflammatory) to an M2 (anti-inflammatory, pro-tissue healing) phenotype in the periprosthetic tissues, and (iii) local inhibition of the transcription factor nuclear factor kappa B (NF-κB) by delivery of an NF-κB decoy oligodeoxynucleotide, thereby interfering with the production of pro-inflammatory mediators. These three approaches have been shown to be viable strategies for mitigating the undesirable effects of wear particles in preclinical studies. Targeted local delivery of specific biologics may potentially extend the lifetime of orthopaedic implants.
Collapse
Affiliation(s)
- S B Goodman
- Department of Orthopaedic Surgery, Stanford University, , Stanford, CA, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Pajarinen J, Kouri VP, Jämsen E, Li TF, Mandelin J, Konttinen YT. The response of macrophages to titanium particles is determined by macrophage polarization. Acta Biomater 2013; 9:9229-40. [PMID: 23827094 DOI: 10.1016/j.actbio.2013.06.027] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 05/24/2013] [Accepted: 06/18/2013] [Indexed: 02/06/2023]
Abstract
Aseptic loosening of total joint replacements is driven by the reaction of macrophages to foreign body particles released from the implant. It was hypothesized that the macrophages' response to these particles is dependent, in addition to particle characteristics and contaminating biomolecules, on the state of macrophage polarization as determined by the local cytokine microenvironment. To test this hypothesis we differentiated M1 and M2 macrophages from human peripheral blood monocytes and compared their responses to titanium particles using genome-wide microarray analysis and a multiplex cytokine assay. In comparison to non-activated M0 macrophages, the overall chemotactic and inflammatory responses to titanium particles were greatly enhanced in M1 macrophages and effectively suppressed in M2 macrophages. In addition, the genome-wide approach revealed several novel, potentially osteolytic, particle-induced mediators, and signaling pathway analysis suggested the involvement of toll-like and nod-like receptor signaling in particle recognition. It is concluded that the magnitude of foreign body reaction caused by titanium particles is dependent on the state of macrophage polarization. Thus, by limiting the action of M1 polarizing factors, e.g. bacterial biofilm formation, in peri-implant tissues and promoting M2 macrophage polarization by biomaterial solutions or pharmacologically, it might be possible to restrict wear-particle-induced inflammation and osteolysis.
Collapse
Affiliation(s)
- Jukka Pajarinen
- Institute of Biomedicine, Anatomy, University of Helsinki, Haartmaninkatu 8, P.O. Box 63, 00014 University of Helsinki, Finland; Department of Medicine, Institute of Clinical Medicine, University of Helsinki and Helsinki University Central Hospital, Haartmaninkatu 8, P.O. Box 20, 00029 HUS, Finland
| | | | | | | | | | | |
Collapse
|
9
|
Jansen RG, van Kuppevelt TH, Daamen WF, Kuijpers-Jagtman AM, Von den Hoff JW. Interferon- -loaded collagen scaffolds reduce myofibroblast numbers in rat palatal mucosa. Eur J Orthod 2010; 33:1-8. [DOI: 10.1093/ejo/cjp129] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
10
|
Chiu R, Ma T, Smith RL, Goodman SB. Polymethylmethacrylate particles inhibit osteoblastic differentiation of bone marrow osteoprogenitor cells. J Biomed Mater Res A 2007; 77:850-6. [PMID: 16596588 DOI: 10.1002/jbm.a.30697] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Aseptic implant loosening of total joint replacements often results from particle-mediated bone loss, which may be a combined effect of osteolysis and suppressed bone formation. Bone regeneration in the prosthetic bed depends on the activity of osteoblasts and their differentiation from osteoprogenitors in the bone marrow. This study investigated the effects of polymethylmethacrylate (PMMA) particles on the ability of bone marrow osteoprogenitors to differentiate into osteoblasts in vitro. Murine bone marrow cells challenged with PMMA particles on the first day of differentiation in osteogenic medium showed a dose-dependent decrease in osteoprogenitor proliferation, alkaline phosphatase expression, and mineralization. Undifferentiated bone marrow cells pretreated with PMMA particles in nonosteogenic medium for 5 days also showed a dose-dependent loss in osteogenic potential, which was sustained throughout subsequent growth in particle-free, osteogenic medium. Bone marrow cells challenged with PMMA particles after the fifth day of differentiation in osteogenic medium showed significant reductions in cellular proliferation, but not alkaline phosphatase expression and mineralization, indicating that bone marrow cells were most sensitive to particle treatment during the first 5 days of differentiation. This study demonstrated that PMMA particles inhibit osteoblastic differentiation of bone marrow osteoprogenitor cells, which may contribute to periprosthetic bone loss and implant failure.
Collapse
Affiliation(s)
- Richard Chiu
- Department of Orthopaedic Surgery, Stanford University Medical Center, California 94305-5341, USA
| | | | | | | |
Collapse
|
11
|
Chiu R, Ma T, Smith RL, Goodman SB. Kinetics of polymethylmethacrylate particle-induced inhibition of osteoprogenitor differentiation and proliferation. J Orthop Res 2007; 25:450-7. [PMID: 17205559 DOI: 10.1002/jor.20328] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Periprosthetic bone loss induced by implant wear debris may be a combined effect of osteolysis and reduced bone formation resulting from particle-induced suppression of osteoprogenitor differentiation. This study investigated the time-dependent effects of polymethylmethacrylate (PMMA) particles on the osteogenic capability of bone marrow osteoprogenitor cells during the early phase of differentiation. Murine bone marrow cells were challenged with PMMA particles (0.30% v/v) on the first day of growth in osteogenic medium. Particles were removed from culture after 1, 3, and 5 days, respectively, after which cell growth in osteogenic medium was continued until the 15th day. Bone marrow osteoprogenitor cells exposed to particles during the first 5 days of differentiation showed complete, irreversible inhibition of proliferation, alkaline phosphatase expression, and mineralization. Osteoprogenitors exposed to particles for more than 5 days showed the same degree of inhibition, while those exposed to particles for less than 5 days showed a diminished inhibitory response. Conditioned medium from particle-treated cells did not suppress osteogenic development, demonstrating that suppression of osteogenesis was not due to secreted inhibitory factors. This study has shown that the early phase of osteoprogenitor differentiation is a crucial time period during which exposure to PMMA particles causes irreversible inhibition of osteogenesis.
Collapse
Affiliation(s)
- Richard Chiu
- Department of Orthopaedic Surgery, Stanford University Medical Center, 800 Welch Road, Room 354, Stanford, California 94305, USA.
| | | | | | | |
Collapse
|
12
|
Baldwin L, Hunt JA. Host inflammatory response to NiCr, CoCr, and Ti in a soft tissue implantation model. J Biomed Mater Res A 2006; 79:574-81. [PMID: 16817217 DOI: 10.1002/jbm.a.30856] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The inflammatory response to nickel chromium (NiCr), cobalt chromium (CoCr), and titanium (Ti) implants at 7 and 28 days was investigated using real-time PCR analysis along with histological and immunohistochemical staining. Contrasting inflammatory profiles were found in response to the different metal compositions. The inflammatory profile induced by CoCr remained consistent and elevated during the 28-day period with high cell counts associated with the implants and a progressive recruitment of T lymphocytes. The response to NiCr was also elevated, but with an initially low T-lymphocyte infiltration that increased by the later time period. Ti indicated an early increased inflammatory response that had reduced by 28 days. Changes in gene expression demonstrated that Ti induced very low levels of expression of the three inflammatory cytokine genes. NiCr initiated a significant upregulation in gene expression for IL-6 and TNF-alpha. CoCr resulted in the highest upregulation of IL-2 indicative of T-lymphocyte activation to this material.
Collapse
Affiliation(s)
- L Baldwin
- Department of Clinical Engineering, UK Centre for Tissue Engineering, Duncan Building, Daulby Street, University of Liverpool, Liverpool L69 3GA, United Kingdom.
| | | |
Collapse
|
13
|
Mulhall KJ, Curtin WA, Given HF. Comparison of different anti-inflammatory agents in suppressing the monocyte response to orthopedic particles. Orthopedics 2003; 26:1219-23. [PMID: 14690293 DOI: 10.3928/0147-7447-20031201-12] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Three different anti-inflammatory agents--diclofenac, dexamethasone, and N-acetylcysteine--were compared to evaluate their effectiveness in suppressing monocyte-macrophage cell culture activation and mediator release (tumor necrosis factor-alpha [TNF-alpha] and interleukin-1beta [IL-1beta]) in response to polymethylmethacrylate particulate debris. N-acetylcysteine and diclofenac were most effective in suppressing TNF-alpha and IL-1beta expression by the monocyte-macrophages. Dexamethasone reduced TNF-alpha expression but was not as effective suppressing IL-1beta expression. N-acetylcysteine and dexamethasone had no effect on cell viability whereas diclofenac at the highest concentrations decreased cell viabilities. N-acetylcysteine and diclofenac, but less so dexamethasone, are effective in suppressing wear debris-related cell activation and mediator release and thus potentially represent therapeutic or preventive modalities for periprosthetic osteolysis.
Collapse
Affiliation(s)
- Kevin J Mulhall
- Department of Orthopedics, Merlin Park Hospital, Galway, Ireland
| | | | | |
Collapse
|
14
|
Schmidt S, Haase G, Csomor E, Lütticken R, Peltroche-Llacsahuanga H. Inhibitor of complement, Compstatin, prevents polymer-mediated Mac-1 up-regulation of human neutrophils independent of biomaterial type tested. J Biomed Mater Res A 2003; 66:491-9. [PMID: 12918031 DOI: 10.1002/jbm.a.10031] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The inflammatory reaction after cell contact with polymer materials is primarily mediated by activated neutrophils and may, in some cases, lead to exhaustion of neutrophil cell function. A direct consequence of this can be impairment of local or even systemic host defense mechanisms, which in turn can result in foreign body infections. Neutrophil activation, as indicated by the up-regulation of the Mac-1 adhesion receptor, is a reliable parameter for estimating the inflammatory risk due to implanted biomaterials. Because at blood contact, biomaterials immediately acquire a material-specific layer of blood proteins on their surface, including fibrinogen, complement, and immunoglobulin G, it is generally believed that after biomaterial contact, neutrophil activation primarily occurs by interaction with this protein layer. In this study, using our recently established polymer bead in vitro assay, we investigated whether complement inhibition alone can reduce biomaterial-mediated neutrophil activation, independent of the type of polymer and, hence, also its surface chemistry. Complement inhibition was achieved by using Compstatin, a recently developed complement inhibitor that binds to the complement component C3 preventing C3 convertase formation. We revealed significantly reduced (p < or = 0.025) Mac-1 receptor expression levels after 45 min of blood contact with the following polymers (without and with Compstatin): 1. polyurethane, 98.3%, 13.6%; 2. polymethylmetacrylate, 88.5%, 11.0%; and poly-D,L-lactide, 71.8%, 8.4%. Although these three polymer types acquire material-specific protein layers because of their different surface chemistry, complement inhibition by Compstatin alone proved to be sufficient to reduce neutrophil activation after surface contact, thus reducing the risk of biomaterial-mediated inflammatory reaction.
Collapse
Affiliation(s)
- S Schmidt
- Institute of Medical Microbiology, University Hospital RWTH Aachen, Pauwelsstr. 30, 52057 Aachen, Germany
| | | | | | | | | |
Collapse
|
15
|
Cenni E, Granchi D, Ciapetti G, Savarino L, Corradini A, Vancini M, Giunti A. Gene expression of bone-associated cytokines in MG63 osteoblast-like cells incubated with acrylic bone cement extracts in minimum essential medium. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2003; 13:1283-94. [PMID: 12555896 DOI: 10.1163/15685620260449697] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
This study examined the effects of in vitro challenge with four polymerized acrylic bone cements (Sulfix-60, CMW 1, CMW 2, and CMW 3) on the expression of interleukin-1beta (IL-1beta), interleukin-6 (IL-6), and transforming growth factor-beta1 (TGF-beta1) mRNAs in the osteoblast-like cell line MG63. The extracts of the cements in minimal essential medium (MEM) were tested following 1-h and 7-day curing. A semi-quantitative analysis of the cytokine-specific mRNAs was carried out by agarose gel densitometry and expression was compared with the GAPDH housekeeping gene. The ratio between cytokine gene expression and GAPDH expression was calculated. The mRNA specific for the bone-resorbing cytokines IL-1beta and IL-6 was low in basal conditions. IL-1beta mRNA increased only after incubation with the extract of CMW 1 following 1-h curing. The mRNA specific for the bone-resorbing cytokine IL-6 also increased after contact with CMW 1 at both curing times. Sulfix-60 and CMW 3 following 7-day curing, but not after 1 h, induced higher levels of IL-6 mRNA than the control. CMW 2 after 1-h curing constantly determined the expression of IL-6 mRNA, but at low levels. The mRNA specific for TGF-beta1 was also expressed by the MG63 osteoblast-like cells in basal conditions. The levels increased after contact with Sulfix-60 after 7-day curing and with CMW 1 after 1-h curing. CMW 2 after 7-day curing decreased TGF-beta1 mRNA. In conclusion, the highest expression of the cytokines IL-1beta, IL-6, and TGF-beta1 mRNA was determined by CMW 1. If the results are confirmed in vivo, the increased expression of the osteolytic cytokines induced by the bone cement might result in loosening of the prosthesis, even with all the restrictions of an in vitro study on continuous cell lines.
Collapse
Affiliation(s)
- E Cenni
- Laboratorio di Fisiopatologia degli Impianti Ortopedici, Istituti Ortopedici Rizzoli, via di Barbiano 1/10, 40136 Bologna, Italy.
| | | | | | | | | | | | | |
Collapse
|
16
|
Sun DH, Trindade MCD, Nakashima Y, Maloney WJ, Goodman SB, Schurman DJ, Smith RL. Human serum opsonization of orthopedic biomaterial particles: protein-binding and monocyte/macrophage activation in vitro. J Biomed Mater Res A 2003; 65:290-8. [PMID: 12734824 DOI: 10.1002/jbm.a.10477] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Wear particles generated after total joint arthroplasty activate monocyte/macrophages and incite formation of a granulomatous periprosthetic tissue associated with bone loss and implant loosening. This study tested the hypothesis that selective opsonization of orthopedic implant biomaterial wear particles by human serum proteins influences monocyte/macrophage activation. Serum protein binding to metallic, polymeric, and ceramic particles was determined by one-dimensional sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Individual proteins bound to particles were subsequently identified using two-dimensional SDS-PAGE, microsequencing techniques, and SWISS-PROT analysis. Effects of selective protein opsonization on particle-induced monocyte/macrophage activation were assessed by quantification of interleukin-1beta, interleukin-6, and tumor necrosis factor-alpha release. Results from one-dimensional gel analyses revealed distinct serum protein-binding patterns specific for each material tested. Two-dimensional gel analysis together with amino acid sequencing of the prominent protein species confirmed the presence of albumin and alpha-1-antitrypsin bound to all particles tested. In contrast to the metallic particles, apolipoprotein was a major species associated with polymeric particles. Opsonization of PMMA particles with purified preparations of each of the identified proteins showed that albumin significantly enhanced particle-induced monocyte/macrophage activation. These data confirm orthopedic biomaterial specific binding of human serum proteins and demonstrate that albumin exacerbates particle-induced monocyte/macrophage activation. Alterations in the chemical and surface properties of orthopedic biomaterials to modulate protein interactions may improve implant longevity.
Collapse
Affiliation(s)
- Doo-Hoon Sun
- Orthopaedic Research Laboratory, Stanford University School of Medicine, Stanford, CA 94305-5341, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Sandberg E, Bergenholtz G, Eklund C, Dahlgren UI. HEMA bound to self-protein promotes auto-antibody production in mice. J Dent Res 2002; 81:633-6. [PMID: 12202646 DOI: 10.1177/154405910208100911] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
While several studies report that acrylic monomers contained in dental materials may cause hypersensitivity reactions, little is known of the associated immune response. Here we address the potential of 2-hydroxyethyl-methacrylate (HEMA) to bind to endogenous protein and elicit auto-antibody production in vivo. Albumin was incubated with HEMA at various times and pH. Following confirmation of the conjugation by inhibition of trinitrophenyl (TNP) binding, female Balb/c mice received HEMA conjugated to mouse serum albumin (MSA) in Freund's incomplete adjuvant or saline subcutaneously. ELISA was used to determine the serum antibody responses to native and modified MSA. IL-2 production in spleen cell cultures stimulated with HEMA-conjugated MSA was measured. HEMA reacted with serum albumin at physiological conditions. HEMA-conjugated MSA induced IL-2 secretion and production of IgG antibodies to native MSA. The results suggest that modification of an endogenous protein like serum albumin with HEMA may defeat the control of immune responses to this self-protein.
Collapse
Affiliation(s)
- E Sandberg
- Department of Endodontology/Oral Diagnosis, Faculty of Odontology, Box 450, SE 405 30 Göteborg.
| | | | | | | |
Collapse
|
18
|
Peltroche-Llacsahuanga H, Schmidt S, Schnitzler N, Lütticken R, Haase G. Simultaneous measurement of biopolymer-mediated Mac-1 up-regulation and adherence of neutrophils: a novel flow cytometric approach for predicting initial inflammatory interaction with foreign materials. J Immunol Methods 2001; 258:13-25. [PMID: 11684119 DOI: 10.1016/s0022-1759(01)00468-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Implantation of any medical device normally causes an inflammatory cell interaction with the foreign material. In vitro cell activation of human neutrophils (Mac-1 upregulation) has been taken as one measure to assess the attributable risk of inflammation due to biopolymers before their clinical application. Mac-1 expression has generally been measured by flow cytometric assays, whereas quantification of neutrophil adhesion to the biopolymer surfaces has been performed by separate and time-consuming assays, e.g. microscopically by differential cell counting. However, due to an increasing number of surface-modified novel biopolymers entering clinical usage, effective testing of their inflammatory potential is now mandatory. To facilitate these analyses, we have developed a novel flow cytometric assay permitting simultaneous measurement of biopolymer-mediated neutrophil activation and adhesion. The biopolymers were used as beads (diameter 25+/-10 microm), and were demonstrated to be non-phagocytosable and non-fluorescent before being co-incubated with whole human blood (range of ratio granulocytes/beads from 5:1 to 1:1). Besides flow cytometric measurement of Mac-1 up-regulated neutrophils as fluorescing events, a fluorescence of the bead population indicates the adherence of activated neutrophils to the biopolymer surface.After establishing this assay, we evaluated it by comparing six different biopolymers. We observed high levels of Mac-1 expression (>70% of positive control) accompanied by increased adhesiveness (>60% of neutrophils) for polyurethane (PUR), polymethylmetacrylate (PMMA), and poly-DL-lactide (PDLLA) beads. Low Mac-1 expression levels (<10%) accompanied by a low percentage of adhering neutrophils (<10%) were observed for polyethylene (PE), polyisoprene (PI), and silicone (SI) beads.
Collapse
Affiliation(s)
- H Peltroche-Llacsahuanga
- Institute of Medical Microbiology, University Hospital RWTH Aachen, Pauwelsstr. 30, 52074, Aachen, Germany.
| | | | | | | | | |
Collapse
|
19
|
Trindade MC, Lind M, Nakashima Y, Sun D, Goodman SB, Schurman DJ, Smith RL. Interleukin-10 inhibits polymethylmethacrylate particle induced interleukin-6 and tumor necrosis factor-alpha release by human monocyte/macrophages in vitro. Biomaterials 2001; 22:2067-73. [PMID: 11432585 DOI: 10.1016/s0142-9612(00)00376-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Periprosthetic membranes commonly observed at sites of total joint implant loosening exhibit abundant macrophages and particulate debris. Macrophages phagocytose orthopedic debris and release the pro-inflammatory mediators interleukin-1, interleukin-6, tumor necrosis factor-alpha, and prostaglandin E2. Populations of activated lymphocytes are often seen in periprosthetic membranes. These lymphocytes may modulate the monocyte/macrophage response to particulate debris and influence aseptic loosening. In addition, other immunologic agents, such as interleukin-10, are present in tissues harvested from the bone-implant interface of failed total joint arthroplasties. The present study examined the effects of interleukin-10 on polymethylmethacrylate (PMMA) particle challenged human monocyte/macrophages in vitro. Human monocyte/macrophages isolated from buffy coats of five healthy individuals were exposed to 1-10 microm PMMA particles. Interleukin-10 was added to the monocyte/macrophages with and without the addition of PMMA particles. Interleukin-10-induced alterations in monocyte/macrophage metabolism were determined measuring interleukin-6 and tumor necrosis factor-alpha release by the cells following exposure to PMMA particles. Exposure of the monocyte/macrophages to PMMA particles resulted in a dose-dependent release of interleukin-6 and tumor necrosis factor-alpha at 48 h. Interleukin-10 reduced the levels of interleukin-6 and tumor necrosis factor-alpha release by macrophages in response to PMMA particles in a dose-dependent manner. At 48 h, particle-induced interleukin-6 release was inhibited by 60 and 90% with 1.0 and 10.0 ng/ml treatments of interleukin-10, respectively. At 48 h, particle-induced tumor necrosis factor-alpha release was inhibited by 58 and 88% with 1.0 and 10.0 ng/ml treatments of interleukin-10, respectively. Interleukin-10 challenge alone did not significantly alter basal interleukin-6 or tumor necrosis factor-alpha release relative to control cultures. The data presented in this study demonstrate that the anti-inflammatory cytokine, interleukin-10, inhibits monocyte/macrophage release of the pro-inflammatory cytokines interleukin-6 and tumor necrosis factor-alpha in response to PMMA particle challenge in vitro.
Collapse
Affiliation(s)
- M C Trindade
- Orthopaedic Research Laboratory, Stanford University Medical Center, CA 94305-5341, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Trindade MC, Schurman DJ, Maloney WJ, Goodman SB, Smith RL. G-protein activity requirement for polymethylmethacrylate and titanium particle-induced fibroblast interleukin-6 and monocyte chemoattractant protein-1 release in vitro. JOURNAL OF BIOMEDICAL MATERIALS RESEARCH 2000; 51:360-8. [PMID: 10880077 DOI: 10.1002/1097-4636(20000905)51:3<360::aid-jbm9>3.0.co;2-e] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Periprosthetic granulomatous membranes consisting of fibroblasts, macrophages, lymphocytes, foreign body giant cells, and abundant particulate debris occur at sites of implant loosening. Previous studies demonstrate that fibroblasts respond to particulate debris through the release of interleukin-6 (IL-6), prostaglandin E(2), and matrix metalloproteinases in vitro. C-C chemokines are observed in granulomatous tissue surrounding loosened prosthetic implants and are released by macrophages and fibroblasts in response to particle challenge in vitro. This study tested the hypothesis that G protein activity is required for fibroblast activation by titanium and polymethylmethacrylate (PMMA) particles, and that inhibition of G protein activity would alter IL-6 and and monocyte chemoattractant protein-1 (MCP-1) release from activated fibroblasts. The specific inhibitor of G protein activity, pertussis toxin, was added to the fibroblasts to examine the effects of G protein activity with respect to the production of IL-6 and MCP-1 by orthopedic biomaterial-challenged fibroblasts in vitro. Interleukin-1beta (IL-1beta), a proven activator of MCP-1 and interleukin-6, was used as a positive control. Exposure of fibroblasts to titanium and polymethylmethacrylate (PMMA) particles resulted in a dose-dependent release of MCP-1 and IL-6. Challenge with PMMA particles at doses of 0.150%, 0.300%, and 0.600% vol/vol increased the release of interleukin-6 by 7-, 19-, and 22-fold, respectively, compared to fibroblasts exposed to serum-free culture medium alone at 24 h. Challenge with PMMA particles at doses of 0.075%, 0.150%, 0.300%, and 0.600% vol/vol increased the release of MCP-1-6 by 2.5-, 3.6-, 4. 3-, and 4.5-fold, respectively, compared to fibroblasts exposed to serum-free culture medium alone. Challenge with titanium particles at concentrations of 0.075%, 0.150%, 0.300%, and 0.600% vol/vol increased the release of interleukin-6 by 2.6-, 6.4-, 9.6-, and 10. 0-fold, respectively, compared to fibroblasts exposed to serum-free culture medium alone at 24 h. Challenge with titanium particles at concentrations of 0.038%, 0.075%, 0.150%, 0.300%, and 0.600% vol/vol increased the release of MCP-1 by 2.9-, 3.1-, 5.8-, 5.4-, and 5. 8-fold, respectively, compared to fibroblasts exposed to serum-free culture medium alone. Pretreatment of fibroblasts with pertussis toxin inhibited the release of interleukin-6 and MCP-1 from PMMA and titanium particle challenged fibroblasts in a dose-dependent manner. PMMA particle induced fibroblast IL-6 release was inhibited by 23.6% and 35.3% with 20- and 200-ng/mL doses of pertussis toxin, respectively. Titanium particle induced fibroblast IL-6 release was inhibited by 48.2% and 56.3% with 20- and 200-ng/mL doses of pertussis toxin, respectively. PMMA particle-induced fibroblast MCP-1 release was inhibited by 36.0%, 50.4%, and 60.1% with 2-, 20- and 200-ng/mL doses of pertussis toxin, respectively. Titanium particle-induced fibroblast MCP-1 release was inhibited by 15.5%, 53.2%, and 64.6% with 2-, 20-, and 200-ng/mL doses of pertussis toxin, respectively. This study suggests that fibroblasts localized in periprosthetic membranes are a source of macrophage chemoattractant factors and proinflammatory mediators that may influence granuloma formation and lead to periprosthetic bone resorption. Furthermore, this study shows that G proteins are involved in particle-induced fibroblast activation, as evidenced by decrease levels of particle induced IL-6 and MCP-1 release following pertussis toxin treatment. (c) 2000 John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- M C Trindade
- Orthopaedic Research Laboratory, Stanford University School of Medicine, Stanford, California 94305, USA.
| | | | | | | | | |
Collapse
|