1
|
Kciuk M, Alam M, Ali N, Rashid S, Głowacka P, Sundaraj R, Celik I, Yahya EB, Dubey A, Zerroug E, Kontek R. Epigallocatechin-3-Gallate Therapeutic Potential in Cancer: Mechanism of Action and Clinical Implications. Molecules 2023; 28:5246. [PMID: 37446908 PMCID: PMC10343677 DOI: 10.3390/molecules28135246] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Cellular signaling pathways involved in the maintenance of the equilibrium between cell proliferation and apoptosis have emerged as rational targets that can be exploited in the prevention and treatment of cancer. Epigallocatechin-3-gallate (EGCG) is the most abundant phenolic compound found in green tea. It has been shown to regulate multiple crucial cellular signaling pathways, including those mediated by EGFR, JAK-STAT, MAPKs, NF-κB, PI3K-AKT-mTOR, and others. Deregulation of the abovementioned pathways is involved in the pathophysiology of cancer. It has been demonstrated that EGCG may exert anti-proliferative, anti-inflammatory, and apoptosis-inducing effects or induce epigenetic changes. Furthermore, preclinical and clinical studies suggest that EGCG may be used in the treatment of numerous disorders, including cancer. This review aims to summarize the existing knowledge regarding the biological properties of EGCG, especially in the context of cancer treatment and prophylaxis.
Collapse
Affiliation(s)
- Mateusz Kciuk
- Department of Molecular Biotechnology and Genetics, University of Lodz, Banacha Street 12/16, 90-237 Lodz, Poland; (M.K.); (R.K.)
- Doctoral School of Exact and Natural Sciences, University of Lodz, Banacha Street 12/16, 90-237 Lodz, Poland
| | - Manzar Alam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India;
| | - Nemat Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Summya Rashid
- Department of Pharmacology & Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | - Pola Głowacka
- Department of Medical Biochemistry, Medical University of Lodz, Mazowiecka 6/8, 90-001 Lodz, Poland;
- Doctoral School of Medical University of Lodz, Hallera 1 Square, 90-700 Lodz, Poland
| | - Rajamanikandan Sundaraj
- Department of Biochemistry, Centre for Drug Discovery, Karpagam Academy of Higher Education, Coimbatore 641021, India;
| | - Ismail Celik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri 38280, Turkey;
| | - Esam Bashir Yahya
- Bioprocess Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia;
| | - Amit Dubey
- Computational Chemistry and Drug Discovery Division, Quanta Calculus, Greater Noida 201310, India;
- Department of Pharmacology, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College and Hospital, Chennai 600077, India
| | - Enfale Zerroug
- LMCE Laboratory, Group of Computational and Pharmaceutical Chemistry, University of Biskra, Biskra 07000, Algeria;
| | - Renata Kontek
- Department of Molecular Biotechnology and Genetics, University of Lodz, Banacha Street 12/16, 90-237 Lodz, Poland; (M.K.); (R.K.)
| |
Collapse
|
2
|
Alam M, Ali S, Ashraf GM, Bilgrami AL, Yadav DK, Hassan MI. Epigallocatechin 3-gallate: From green tea to cancer therapeutics. Food Chem 2022; 379:132135. [PMID: 35063850 DOI: 10.1016/j.foodchem.2022.132135] [Citation(s) in RCA: 106] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/22/2021] [Accepted: 01/09/2022] [Indexed: 12/13/2022]
Abstract
Epigallocatechin 3-gallate (EGCG) possesses various biological functions, including anti-cancer and anti-inflammatory properties. EGCG is an abundant polyphenolic component originating from green tea extract that has exhibited versatile bioactivities in combating several cancers. This review highlights the pharmacological features of EGCG and its therapeutic implications in cancer and other metabolic diseases. It modulates numerous signaling pathways, regulating cells' undesired survival and proliferation, thus imparting strong tumor chemopreventive and therapeutic effects. EGCG initiates cell death through the intrinsic pathway and causes inhibition of EGFR, STAT3, and ERK pathways in several cancers. EGCG alters and inhibits ERK1/2, NF-κB, and Akt-mediated signaling, altering the Bcl-2 family proteins ratio and activating caspases in tumor cells. This review focuses on anti-cancer, anti-oxidant, anti-inflammatory, anti-angiogenesis, and apoptotic effects of EGCG. We further highlighted the potential of EGCG in different types of cancer, emphasizing clinical trials formulations that further improve our understanding of the therapeutic management of cancer and inflammatory diseases.
Collapse
Affiliation(s)
- Manzar Alam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Sabeeha Ali
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Ghulam Md Ashraf
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia; Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Anwar L Bilgrami
- Deanship of Scientific Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Dharmendra Kumar Yadav
- College of Pharmacy, Gachon University of Medicine and Science, Hambakmoeiro, Yeonsu-gu, Incheon City 21924, South Korea.
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India.
| |
Collapse
|
3
|
Fang L, Guo Y, Li Y, Jia Q, Han X, Liu B, Chen J, Cheng JC, Sun YP. Epigallocatechin-3-gallate stimulates StAR expression and progesterone production in human granulosa cells through the 67-kDa laminin receptor-mediated CREB signaling pathway. J Cell Physiol 2021; 237:687-695. [PMID: 34318927 DOI: 10.1002/jcp.30538] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 05/12/2021] [Accepted: 07/14/2021] [Indexed: 12/19/2022]
Abstract
Epigallocatechin-3-gallate (EGCG) is the most abundant and biologically active catechins extracted from green tea. The health benefits of EGCG have been extendedly studied. Ovarian steroidogenesis plays a pivotal role in maintaining normal reproductive function. Granulosa cells in the ovary are essential for steroid hormone production. To date, the effect of EGCG on steroidogenesis in human granulosa cells remains unclear. In the present study, we examine the physiological concentrations of EGCG on steroidogenesis in a steroidogenic human granulosa-like tumor cell line, KGN. Our results demonstrate that treatment with EGCG upregulates steroidogenic acute regulatory protein (StAR) expression and increases progesterone (P4) production. EGCG does not affect the expression levels of other steroidogenesis-related enzymes, such as P450 side-chain cleavage enzyme, 3β-hydroxysteroid dehydrogenase, and aromatase. In addition, we identify the expression of 67-kDa laminin receptor (67LR) in KGN cells. Moreover, EGCG-induced StAR expression and P4 production require the 67LR-mediated activation of the PKA-CREB signaling pathway. These results provide a better understanding of the function of EGCG on ovarian steroidogenesis, which may lead to the development of alternative therapeutic approaches for reproductive disorders.
Collapse
Affiliation(s)
- Lanlan Fang
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yanjie Guo
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yiran Li
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Department of Obstetrics & Gynaecology, The Chinese University of Hong Kong, New Territories, Hong Kong, China
| | - Qiongqiong Jia
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaoyu Han
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Boqun Liu
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jiaye Chen
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jung-Chien Cheng
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ying-Pu Sun
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
4
|
Epigallocatechin-3-Gallate and PEDF 335 Peptide, 67LR Activators, Attenuate Vasogenic Edema, and Astroglial Degeneration Following Status Epilepticus. Antioxidants (Basel) 2020; 9:antiox9090854. [PMID: 32933011 PMCID: PMC7555521 DOI: 10.3390/antiox9090854] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/07/2020] [Accepted: 09/08/2020] [Indexed: 12/17/2022] Open
Abstract
Non-integrin 67-kDa laminin receptor (67LR) is involved in cell adherence to the basement membrane, and it regulates the interactions between laminin and other receptors. The dysfunction of 67LR leads to serum extravasation via blood-brain barrier (BBB) disruption. Polyphenol (–)-epigallocatechin-3-O-gallate (EGCG) and pigment epithelium-derived factor (PEDF) bind to 67LR and inhibit neovascularization. Therefore, in the present study, we investigated the effects of EGCG and NU335, a PEDF-derive peptide, on BBB integrity and their possible underlying mechanisms against vasogenic edema formation induced by status epilepticus (SE, a prolonged seizure activity). Following SE, both EGCG and NU335 attenuated serum extravasation and astroglial degeneration in the rat piriform cortex (PC). Both EGCG and NU335 reversely regulated phosphatidylinositol 3 kinase (PI3K)/AKT–eNOS (endothelial nitric oxide synthase) mediated BBB permeability and aquaporin 4 (AQP4) expression in endothelial cells and astrocytes through the p38 mitogen-activated protein kinase (p38 MAPK) and extracellular signal-regulated kinase 1/2 (ERK1/2) signaling pathways, respectively. Furthermore, EGCG and NU335 decreased p47Phox (a nicotinamide adenine dinucleotide phosphate oxidase subunit) expression in astrocytes under physiological and post-SE conditions. Therefore, we suggest that EGCG and PEDF derivatives may activate 67LR and its downstream effectors, and they may be considerable anti-vasogenic edema agents.
Collapse
|
5
|
The Intrinsic Virtues of EGCG, an Extremely Good Cell Guardian, on Prevention and Treatment of Diabesity Complications. Molecules 2020; 25:molecules25133061. [PMID: 32635492 PMCID: PMC7411588 DOI: 10.3390/molecules25133061] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/01/2020] [Accepted: 07/02/2020] [Indexed: 12/19/2022] Open
Abstract
The pandemic proportion of diabesity—a combination of obesity and diabetes—sets a worldwide health issue. Experimental and clinical studies have progressively reinforced the pioneering epidemiological observation of an inverse relationship between consumption of polyphenol-rich nutraceutical agents and mortality from cardiovascular and metabolic diseases. With chemical identification of epigallocatechin-3-gallate (EGCG) as the most abundant catechin of green tea, a number of cellular and molecular mechanisms underlying the activities of this unique catechin have been proposed. Favorable effects of EGCG have been initially attributed to its scavenging effects on free radicals, inhibition of ROS-generating mechanisms and upregulation of antioxidant enzymes. Biologic actions of EGCG are concentration-dependent and under certain conditions EGCG may exert pro-oxidant activities, including generation of free radicals. The discovery of 67-kDa laminin as potential EGCG membrane target has broaden the likelihood that EGCG may function not only because of its highly reactive nature, but also via receptor-mediated activation of multiple signaling pathways involved in cell proliferation, angiogenesis and apoptosis. Finally, by acting as epigenetic modulator of DNA methylation and chromatin remodeling, EGCG may alter gene expression and modify miRNA activities. Despite unceasing research providing detailed insights, ECGC composite activities are still not completely understood. This review summarizes the most recent evidence on molecular mechanisms by which EGCG may activate signal transduction pathways, regulate transcription factors or promote epigenetic changes that may contribute to prevent pathologic processes involved in diabesity and its cardiovascular complications.
Collapse
|
6
|
EGCG down-regulates MuRF1 expression through 67-kDa laminin receptor and the receptor signaling is amplified by eriodictyol. J Nat Med 2020; 74:673-679. [DOI: 10.1007/s11418-020-01417-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 05/17/2020] [Indexed: 12/18/2022]
|
7
|
Zhang J, Li X, Huang L. Anticancer activities of phytoconstituents and their liposomal targeting strategies against tumor cells and the microenvironment. Adv Drug Deliv Rev 2020; 154-155:245-273. [PMID: 32473991 PMCID: PMC7704676 DOI: 10.1016/j.addr.2020.05.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/07/2020] [Accepted: 05/20/2020] [Indexed: 12/13/2022]
Abstract
Various bioactive ingredients have been extracted from Chinese herbal medicines (CHMs) that affect tumor progression and metastasis. To further understand the mechanisms of CHMs in cancer therapy, this article summarizes the effects of five categories of CHMs and their active ingredients on tumor cells and the tumor microenvironment. Despite their treatment potential, the undesirable physicochemical properties (poor permeability, instability, high hydrophilicity or hydrophobicity, toxicity) and unwanted pharmacokinetic profiles (short half-life in blood and low bioavailability) restrict clinical studies of CHMs. Therefore, development of liposomes through relevant surface modifying techniques to achieve targeted CHM delivery for cancer cells, i.e., extracellular and intracellular targets and targets in tumor microenvironment or vasculature, have been reviewed. Current challenges of liposomal targeting of these phytoconstituents and future perspective of CHM applications are discussed to provide an informative reference for interested readers.
Collapse
Affiliation(s)
- Jing Zhang
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, Jiangxi, China
| | - Xiang Li
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, Jiangxi, China
| | - Leaf Huang
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States.
| |
Collapse
|
8
|
Identification of the Neuroinvasive Pathogen Host Target, LamR, as an Endothelial Receptor for the Treponema pallidum Adhesin Tp0751. mSphere 2020; 5:5/2/e00195-20. [PMID: 32238570 PMCID: PMC7113585 DOI: 10.1128/msphere.00195-20] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Treponema pallidum subsp. pallidum is the causative agent of syphilis, a human-specific sexually transmitted infection that causes a multistage disease with diverse clinical manifestations. Treponema pallidum undergoes rapid vascular dissemination to penetrate tissue, placental, and blood-brain barriers and gain access to distant tissue sites. The rapidity and extent of T. pallidum dissemination are well documented, but the molecular mechanisms have yet to be fully elucidated. One protein that has been shown to play a role in treponemal dissemination is Tp0751, a T. pallidum adhesin that interacts with host components found within the vasculature and mediates bacterial adherence to endothelial cells under shear flow conditions. In this study, we further explore the molecular interactions of Tp0751-mediated adhesion to the vascular endothelium. We demonstrate that recombinant Tp0751 adheres to human endothelial cells of macrovascular and microvascular origin, including a cerebral brain microvascular endothelial cell line. Adhesion assays using recombinant Tp0751 N-terminal truncations reveal that endothelial binding is localized to the lipocalin fold-containing domain of the protein. We also confirm this interaction using live T. pallidum and show that spirochete attachment to endothelial monolayers is disrupted by Tp0751-specific antiserum. Further, we identify the 67-kDa laminin receptor (LamR) as an endothelial receptor for Tp0751 using affinity chromatography, coimmunoprecipitation, and plate-based binding methodologies. Notably, LamR has been identified as a receptor for adhesion of other neurotropic invasive bacterial pathogens to brain endothelial cells, including Neisseria meningitidis, Haemophilus influenzae, and Streptococcus pneumoniae, suggesting the existence of a common mechanism for extravasation of invasive extracellular bacterial pathogens.IMPORTANCE Syphilis is a sexually transmitted infection caused by the spirochete bacterium Treponema pallidum subsp. pallidum. The continued incidence of syphilis demonstrates that screening and treatment strategies are not sufficient to curb this infectious disease, and there is currently no vaccine available. Herein we demonstrate that the T. pallidum adhesin Tp0751 interacts with endothelial cells that line the lumen of human blood vessels through the 67-kDa laminin receptor (LamR). Importantly, LamR is also a receptor for meningitis-causing neuroinvasive bacterial pathogens such as Neisseria meningitidis, Haemophilus influenzae, and Streptococcus pneumoniae Our findings enhance understanding of the Tp0751 adhesin and present the intriguing possibility that the molecular events of Tp0751-mediated treponemal dissemination may mimic the endothelial interaction strategies of other invasive pathogens.
Collapse
|
9
|
Zanka K, Kawaguchi Y, Okada Y, Nagaoka S. Epigallocatechin Gallate Induces Upregulation of LDL Receptor via the 67 kDa Laminin Receptor-Independent Pathway in HepG2 Cells. Mol Nutr Food Res 2020; 64:e1901036. [PMID: 31978263 DOI: 10.1002/mnfr.201901036] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 12/27/2019] [Indexed: 12/14/2022]
Abstract
SCOPE Epigallocatechin gallate (EGCG), an active polyphenol in green tea, exhibits various physiological effects, including activation of low-density lipoprotein receptors (LDLR). The previous studies have suggested that EGCG activates LDLR via extracellular signal-regulated kinase (ERK) pathway in HepG2 cells. However, the detailed molecular mechanism remains unclear. Recently, 67 kDa laminin receptor (67LR) is identified as a receptor for EGCG. Therefore, this study aims to determine whether 67LR is involved in the mechanism of LDLR activation by EGCG. METHODS AND RESULTS EGCG induces upregulation of LDLR when 67LR is knocked down in HepG2 cells. Similar effect is observed after the cells are treated with 67LR monoclonal antibody. The loss of antiallergic effect following 67LR siRNA knockdown and 67LR antibody treatment confirms the results since the antiallergic effect of EGCG is known to be mediated by 67LR. CONCLUSION EGCG activates LDLR expression via 67LR-independent pathway in HepG2 cells.
Collapse
Affiliation(s)
- Kumiko Zanka
- Department of Applied Life Science, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Yuya Kawaguchi
- Department of Applied Life Science, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Yudai Okada
- Department of Applied Life Science, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Satoshi Nagaoka
- Department of Applied Life Science, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| |
Collapse
|
10
|
Vania L, Morris G, Otgaar TC, Bignoux MJ, Bernert M, Burns J, Gabathuse A, Singh E, Ferreira E, Weiss SFT. Patented therapeutic approaches targeting LRP/LR for cancer treatment. Expert Opin Ther Pat 2019; 29:987-1009. [PMID: 31722579 DOI: 10.1080/13543776.2019.1693543] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Introduction: The ubiquitously expressed 37 kDa/67 kDa high-affinity laminin receptor (laminin receptor precursor/laminin receptor, LRP/LR) is a protein found to play several roles within cells. The receptor is located in the nucleus, cytosol and the cell surface. LRP/LR mediates cell proliferation, cell adhesion and cell differentiation. As a result, it is seen to enhance tumor angiogenesis as well as invasion and adhesion, key steps in the metastatic cascade of cancer. Recent findings have shown that LRP/LR is involved in the maintenance of cell viability through apoptotic evasion, allowing for tumor progression. Thus, several patented therapeutic approaches targeting the receptor for the prevention and treatment of cancer have emerged.Areas covered: The several roles that LRP/LR plays in cancer progression as well as an overview of the current therapeutic patented strategies targeting LRP/LR and cancer to date.Expert opinion: Small molecule inhibitors, monoclonal antibodies and small interfering RNAs might act used as powerful tools in preventing tumor angiogenesis and metastasis through the induction of apoptosis and telomere erosion in several cancers. This review offers an overview of the roles played by LRP/LR in cancer progression, while providing novel patented approaches targeting the receptor as potential therapeutic routes for the treatment of cancer as well as various other diseases.
Collapse
Affiliation(s)
- Leila Vania
- School of Molecular and Cell Biology, University of the Witwatersrand, Wits, Johannesburg, Republic of South Africa
| | - Gavin Morris
- School of Molecular and Cell Biology, University of the Witwatersrand, Wits, Johannesburg, Republic of South Africa
| | - Tyrone C Otgaar
- School of Molecular and Cell Biology, University of the Witwatersrand, Wits, Johannesburg, Republic of South Africa
| | - Monique J Bignoux
- School of Molecular and Cell Biology, University of the Witwatersrand, Wits, Johannesburg, Republic of South Africa
| | - Martin Bernert
- School of Molecular and Cell Biology, University of the Witwatersrand, Wits, Johannesburg, Republic of South Africa
| | - Jessica Burns
- School of Molecular and Cell Biology, University of the Witwatersrand, Wits, Johannesburg, Republic of South Africa
| | - Anne Gabathuse
- Wits Commercial Enterprise, The Commercial Development Hub, Johannesburg, Republic of South Africa
| | - Elvira Singh
- School of Public Health, University of the Witwatersrand, Johannesburg, Republic of South Africa
| | - Eloise Ferreira
- School of Molecular and Cell Biology, University of the Witwatersrand, Wits, Johannesburg, Republic of South Africa
| | - Stefan F T Weiss
- School of Molecular and Cell Biology, University of the Witwatersrand, Wits, Johannesburg, Republic of South Africa
| |
Collapse
|
11
|
Rebelo TM, Vania L, Ferreira E, Weiss SFT. siRNA - Mediated LRP/LR knock-down reduces cellular viability of malignant melanoma cells through the activation of apoptotic caspases. Exp Cell Res 2018; 368:1-12. [PMID: 29653110 DOI: 10.1016/j.yexcr.2018.04.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 03/29/2018] [Accepted: 04/04/2018] [Indexed: 01/05/2023]
Abstract
The 37 kDa/67 kDa laminin receptor (LRP/LR) is over-expressed in tumor cells and has been implicated in several tumourigenic processes such as metastasis and telomerase activation, however, more importantly the focus of the present study is on the maintenance of cellular viability and the evasion of apoptosis. The aim of the study was to investigate the role of LRP/LR on the cellular viability of early (A375) and late stage (A375SM) malignant melanoma cells. Flow cytometry and western blot analysis revealed that A375SM cells contain more cell-surface and total LRP/LR levels in comparison to the A375 cells, respectively. In order to determine the effect of LRP/LR on cell viability and apoptosis, LRP was down-regulated via siRNA technology. MTT assays revealed that LRP knock-down led to significant reductions in the viability of A375 and A375SM cells. Confocal microscopy indicated nuclear morphological changes suggestive of apoptotic induction in both cell lines and Annexin-V FITC/PI assays confirmed this observation. Additionally, caspase-3 activity assays revealed that apoptosis was induced in both cell lines after siRNA-mediated down-regulation of LRP. Caspase-8 and -9 activity assays suggested that post LRP knock-down; A375 cells undergo apoptosis solely via the extrinsic pathway, while A375SM cells undergo apoptosis via the intrinsic pathway. IMPLICATIONS siRNAs mediated LRP knock-down might represent a powerful alternative therapeutic strategy for the treatment of malignant melanoma through the induction of apoptosis.
Collapse
Affiliation(s)
- Thalia M Rebelo
- School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg, Republic of South Africa (RSA).
| | - Leila Vania
- School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg, Republic of South Africa (RSA).
| | - Eloise Ferreira
- School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg, Republic of South Africa (RSA).
| | - Stefan F T Weiss
- School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg, Republic of South Africa (RSA).
| |
Collapse
|
12
|
Sugiyama I, Kaihatsu K, Soma Y, Kato N, Sadzuka Y. Dual-effect liposomes with increased antitumor effects against 67-kDa laminin receptor-overexpressing tumor cells. Int J Pharm 2018; 541:206-213. [DOI: 10.1016/j.ijpharm.2018.02.041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 02/13/2018] [Accepted: 02/23/2018] [Indexed: 12/01/2022]
|
13
|
The Role of Meningococcal Porin B in Protein-Protein Interactions with Host Cells. FOLIA VETERINARIA 2018. [DOI: 10.2478/fv-2018-0008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Neisseria meningitidis is a Gram-negative diplococcus responsible for bacterial meningitis and fatal sepsis. Ligand-receptor interactions are one of the main steps in the development of neuroinvasion. Porin B (PorB), neisserial outer membrane protein (ligand), binds to host receptors and triggers many cell signalling cascades allowing the meningococcus to damage the host cells or induce immune cells responses via the TLR2-dependent mechanisms. In this paper, we present a brief review of the structure and function of PorB.
Collapse
|
14
|
Umbaugh CS, Diaz-Quiñones A, Neto MF, Shearer JJ, Figueiredo ML. A dock derived compound against laminin receptor (37 LR) exhibits anti-cancer properties in a prostate cancer cell line model. Oncotarget 2017; 9:5958-5978. [PMID: 29464047 PMCID: PMC5814187 DOI: 10.18632/oncotarget.23236] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 07/16/2017] [Indexed: 11/25/2022] Open
Abstract
Laminin receptor (67 LR) is a 67 kDa protein derived from a 37 kDa precursor (37 LR). 37/67 LR is a strong clinical correlate for progression, aggression, and chemotherapeutic relapse of several cancers including breast, prostate, and colon. The ability of 37/67 LR to promote cancer cell aggressiveness is further increased by its ability to transduce physiochemical and mechanosensing signals in endothelial cells and modulate angiogenesis. Recently, it was demonstrated that 37/67 LR modulates the anti-angiogenic potential of the secreted glycoprotein pigment epithelium-derived factor (PEDF). Restoration of PEDF balance is a desirable therapeutic outcome, and we sought to identify a small molecule that could recapitulate known signaling properties of PEDF but without the additional complications of peptide formulation or gene delivery safety validation. We used an in silico drug discovery approach to target the interaction interface between PEDF and 37 LR. Following cell based counter screening and binding validation, we characterized a hit compound's anti-viability, activation of PEDF signaling-related genes, anti-wound healing, and anti-cancer signaling properties. This hit compound has potential for future development as a lead compound for treating tumor growth and inhibiting angiogenesis.
Collapse
Affiliation(s)
- Charles Samuel Umbaugh
- Department of Basic Medical Sciences, Purdue University College of Veterinary Medicine, West Lafayette, IN 47907, USA
| | - Adriana Diaz-Quiñones
- Department of Basic Medical Sciences, Purdue University College of Veterinary Medicine, West Lafayette, IN 47907, USA
| | - Manoel Figueiredo Neto
- Department of Basic Medical Sciences, Purdue University College of Veterinary Medicine, West Lafayette, IN 47907, USA
| | - Joseph J Shearer
- Department of Basic Medical Sciences, Purdue University College of Veterinary Medicine, West Lafayette, IN 47907, USA
| | - Marxa L Figueiredo
- Department of Basic Medical Sciences, Purdue University College of Veterinary Medicine, West Lafayette, IN 47907, USA
| |
Collapse
|
15
|
Munien C, Rebelo TM, Ferreira E, Weiss SF. IgG1-iS18 impedes the adhesive and invasive potential of early and late stage malignant melanoma cells. Exp Cell Res 2017; 351:135-141. [DOI: 10.1016/j.yexcr.2017.01.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 01/19/2017] [Accepted: 01/21/2017] [Indexed: 01/24/2023]
|
16
|
Castellanos MI, Guillem-Marti J, Mas-Moruno C, Díaz-Ricart M, Escolar G, Ginebra MP, Gil FJ, Pegueroles M, Manero JM. Cell adhesive peptides functionalized on CoCr alloy stimulate endothelialization and prevent thrombogenesis and restenosis. J Biomed Mater Res A 2017; 105:973-983. [DOI: 10.1002/jbm.a.35988] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Revised: 12/14/2016] [Accepted: 12/15/2016] [Indexed: 01/26/2023]
Affiliation(s)
- Maria Isabel Castellanos
- Biomaterials; Biomechanics and Tissue Engineering Group, Department of Materials Science and Metallurgical Engineering, ETSEIB, Technical University of Catalonia (UPC); Barcelona 08028 Spain
- Centre for Research in NanoEngineering (CRNE); UPC; Barcelona 08028 Spain
| | - Jordi Guillem-Marti
- Biomaterials; Biomechanics and Tissue Engineering Group, Department of Materials Science and Metallurgical Engineering, ETSEIB, Technical University of Catalonia (UPC); Barcelona 08028 Spain
- Centre for Research in NanoEngineering (CRNE); UPC; Barcelona 08028 Spain
| | - Carlos Mas-Moruno
- Biomaterials; Biomechanics and Tissue Engineering Group, Department of Materials Science and Metallurgical Engineering, ETSEIB, Technical University of Catalonia (UPC); Barcelona 08028 Spain
- Centre for Research in NanoEngineering (CRNE); UPC; Barcelona 08028 Spain
| | - Maribel Díaz-Ricart
- Hemotherapy-Hemostasis Department; Centre de Diagnòstic Biomèdic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clinic, Universitat de Barcelona; Barcelona 08036 Spain
| | - Ginés Escolar
- Hemotherapy-Hemostasis Department; Centre de Diagnòstic Biomèdic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clinic, Universitat de Barcelona; Barcelona 08036 Spain
| | - Maria Pau Ginebra
- Biomaterials; Biomechanics and Tissue Engineering Group, Department of Materials Science and Metallurgical Engineering, ETSEIB, Technical University of Catalonia (UPC); Barcelona 08028 Spain
- Centre for Research in NanoEngineering (CRNE); UPC; Barcelona 08028 Spain
- Institute for Bioengineering of Catalonia (IBEC); Barcelona 08028 Spain
| | | | - Marta Pegueroles
- Biomaterials; Biomechanics and Tissue Engineering Group, Department of Materials Science and Metallurgical Engineering, ETSEIB, Technical University of Catalonia (UPC); Barcelona 08028 Spain
- Centre for Research in NanoEngineering (CRNE); UPC; Barcelona 08028 Spain
| | - Jose María Manero
- Biomaterials; Biomechanics and Tissue Engineering Group, Department of Materials Science and Metallurgical Engineering, ETSEIB, Technical University of Catalonia (UPC); Barcelona 08028 Spain
- Centre for Research in NanoEngineering (CRNE); UPC; Barcelona 08028 Spain
| |
Collapse
|
17
|
Al-Eisawi Z, Beale P, Chan C, Yu JQ, Proschogo N, Molloy M, Huq F. Changes in the in vitro activity of platinum drugs when administered in two aliquots. BMC Cancer 2016; 16:688. [PMID: 27566066 PMCID: PMC5002105 DOI: 10.1186/s12885-016-2731-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 06/28/2016] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND The management of ovarian cancer remains a challenge. Because of the lack of early symptoms, it is often diagnosed at a late stage when it is likely to have metastasized beyond ovaries. Currently, platinum based chemotherapy is the primary treatment for the disease. However acquired drug resistance remains an on-going problem. As cisplatin brings about apoptosis by intrinsic and extrinsic pathways, this study aimed to determine changes in activity of platinum drugs when administered in two aliquots as against a bolus and sought to determine association with changes in GSH, speciation of platinum drugs and changes in protein expression. METHODS The efficacy of administering cisplatin, carboplatin and oxaliplatin in two aliquots with a time gap was investigated in ovarian A2780, A2780(cisR), A2780(ZD0473R) and SKOV-3 cell lines. The cellular accumulation of platinum, level of platinum - DNA binding and cellular glutathione level were determined, and proteomic studies were carried out to identify key proteins associated with platinum resistance in ovarian A2780(cisR) cancer cell line. RESULTS Much greater cell kill was observed with solutions left standing at room temperature than with freshly prepared solutions, indicating that the increase in activity on ageing was related to speciation of the drug in solution. Proteomic studies identified 72 proteins that were differentially expressed in A2780 and A2780(cisR) cell lines; 22 of them were restored back to normal levels as a result of synergistic treatments, indicating their relevance in enhanced drug action. CONCLUSIONS The proteins identified are relevant to several different cellular functions including invasion and metastasis, cell cycle regulation and proliferation, metabolic and biosynthesis processes, stress-related proteins and molecular chaperones, mRNA processing, cellular organization/cytoskeleton, cellular communication and signal transduction. This highlights the multifactorial nature of platinum resistance in which many different proteins with diverse functions play key roles. This means multiple strategies can be harnessed to overcome platinum resistance in ovarian cancer. The results of the studies can be significant both from fundamental and clinical view points.
Collapse
Affiliation(s)
- Zaynab Al-Eisawi
- Discipline of Biomedical Science, Sydney Medical School, University of Sydney, Sydney, NSW 2141 Australia
- Department of Medical Laboratory Sciences, Faculty of Allied Health Science, Hashemite University, Zarqa, Hashemite Kingdom of Jordan
| | - Philip Beale
- Sydney Cancer Centre, Concord Hospital, Sydney, NSW 2139 Australia
| | - Charles Chan
- Department of Pathology, Concord Hospital, Sydney, NSW 2139 Australia
| | - Jun Qing Yu
- Discipline of Biomedical Science, Sydney Medical School, University of Sydney, Sydney, NSW 2141 Australia
| | - Nicholas Proschogo
- Mass Spectrometry Unit, School of Chemistry, University of Sydney, Sydney, NSW 2006 Australia
| | - Mark Molloy
- Australian Proteome Analysis Facility, Macquarie University, Sydney, NSW 2109 Australia
| | - Fazlul Huq
- Discipline of Biomedical Science, Sydney Medical School, University of Sydney, Sydney, NSW 2141 Australia
- Discipline of Biomedical Science, School of Medical Sciences, Sydney Medical School, The University of Sydney, Cumberland Campus C42, 75 East Street, Lidcombe, NSW 1825 Australia
| |
Collapse
|
18
|
Zhou Y, Yu Q, Qin X, Bhavsar D, Yang L, Chen Q, Zheng W, Chen L, Liu J. Improving the Anticancer Efficacy of Laminin Receptor-Specific Therapeutic Ruthenium Nanoparticles (RuBB-Loaded EGCG-RuNPs) via ROS-Dependent Apoptosis in SMMC-7721 Cells. ACS APPLIED MATERIALS & INTERFACES 2016; 8:15000-12. [PMID: 26018505 DOI: 10.1021/acsami.5b02261] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Functionalization can promote the uptake of nanoparticles into cancer cells via receptor-mediated endocytosis, enabling them to exert their therapeutic effects. In this paper, epigallocatechin gallate (EGCG), which has a high binding affinity to 67 kDa laminin receptor (67LR) overexpressed in HCC cells, was employed in the present study to functionalized ruthenium nanoparticles (RuNPs) loaded with luminescent ruthenium complexes to achieve antiliver cancer efficacy. [Ru(bpy)2(4-B)] (ClO4)2·2H2O (RuBB)-loaded EGCG-RuNPs (bpy = 2,2'-bipyridine) showed small particle size with narrow distribution, better stability, and high selectivity between liver cancer and normal cells. The internalization of RuBB-loaded EGCG-RuNPs was inhibited by 67LR-blocking antibody or laminin, suggesting that 67LR-mediated endocytosis played an important role in the uptake into HCC cells. Moreover, transmission electron microscopy and confocal microscopic images showed that RuBB-loaded EGCG-RuNPs accumulated in the cytoplasm of SMMC-7721 cells. Furthermore, our results indicated that the EGCG-functionalized nanoparticles displayed enhanced anticancer effects in a target-specific manner. Concentrations of RuBB-loaded EGCG-RuNPs, nontoxic in normal L-02 cells, showed direct reactive oxygen species-dependent cytotoxic, pro-apoptotic, and anti-invasive effects in SMMC-7721 cells. Furthermore, in vivo animal study demonstrated that RuBB-loaded EGCG-RuNPs possessed high antitumor efficacy on tumor-bearing nude mice. It is encouraging to conclude that the multifunctional RuNPs may form the basis of new strategies on the treatment of liver cancer and other malignancies.
Collapse
Affiliation(s)
- Yanhui Zhou
- Department of Chemistry, Jinan University , Guangzhou 510632, China
| | - Qianqian Yu
- Department of Chemistry, Jinan University , Guangzhou 510632, China
| | - Xiuying Qin
- Department of Chemistry, Jinan University , Guangzhou 510632, China
| | - Dhairya Bhavsar
- Department of Chemistry, Jinan University , Guangzhou 510632, China
| | - Licong Yang
- Department of Chemistry, Jinan University , Guangzhou 510632, China
| | - Qingchang Chen
- Department of Chemistry, Jinan University , Guangzhou 510632, China
| | - Wenjing Zheng
- Department of Chemistry, Jinan University , Guangzhou 510632, China
| | - Lanmei Chen
- Department of Chemistry, Jinan University , Guangzhou 510632, China
| | - Jie Liu
- Department of Chemistry, Jinan University , Guangzhou 510632, China
| |
Collapse
|
19
|
Discovery of new small molecules inhibiting 67 kDa laminin receptor interaction with laminin and cancer cell invasion. Oncotarget 2016; 6:18116-33. [PMID: 26062445 PMCID: PMC4627239 DOI: 10.18632/oncotarget.4016] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 05/18/2015] [Indexed: 01/23/2023] Open
Abstract
The 67 kDa laminin receptor (67LR) is a non-integrin receptor for laminin (LM) that derives from a 37 kDa precursor (37LRP). 67LR expression is increased in neoplastic cells and correlates with an enhanced invasive and metastatic potential. We used structure-based virtual screening (SB-VS) to search for 67LR inhibitory small molecules, by focusing on a 37LRP sequence, the peptide G, able to specifically bind LM. Forty-six compounds were identified and tested on HEK-293 cells transfected with 37LRP/67LR (LR-293 cells). One compound, NSC47924, selectively inhibited LR-293 cell adhesion to LM with IC50 and Ki values of 19.35 and 2.45 μmol/L. NSC47924 engaged residues W176 and L173 of peptide G, critical for specific LM binding. Indeed, NSC47924 inhibited in vitro binding of recombinant 37LRP to both LM and its YIGSR fragment. NSC47924 also impaired LR-293 cell migration to LM and cell invasion. A subsequent hierarchical similarity search with NSC47924 led to the identification of additional four compounds inhibiting LR-293 cell binding to LM: NSC47923, NSC48478, NSC48861, and NSC48869, with IC50 values of 1.99, 1.76, 3.4, and 4.0 μmol/L, respectively, and able to block in vitro cancer cell invasion. These compounds are promising scaffolds for future drug design and discovery efforts in cancer progression.
Collapse
|
20
|
Wang H, Liu W, Yu F, Lu L. Identification of (-)-epigallocatechin-3-gallate as a potential agent for blocking infection by grass carp reovirus. Arch Virol 2016; 161:1053-9. [PMID: 26758731 DOI: 10.1007/s00705-016-2751-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 12/31/2015] [Indexed: 10/22/2022]
Abstract
Grass carp reovirus (GCRV), the representative strain of the species Aquareovirus C, serves as a model for studying the pathogenesis of aquareoviruses. Previously, epigallocatechin gallate (EGCG) was shown to inhibit orthoreovirus infection. The aim of this study was to test its potential in blocking infection by GCRV. We show that adhesion to the CIK (Ctenopharyngodon idellus kidney) cell surface by GCRV particles is inhibited in a dose-dependent manner by EGCG, as well as by a crude extract of green tea. We also evaluated the safety of EGCG and green tea extract using CIK cells, and the results suggest that EGCG is a promising compound that may be developed as a plant-derived small molecular therapeutic agent against grass carp hemorrhagic disease caused by GCRV infection. As the ligand for the 37/67-kDa laminin receptor (LamR), EGCG's blocking effect on GCRV attachment was associated with the binding potential of GCRV particles to LamR, which was inferred from a VOPBA assay.
Collapse
Affiliation(s)
- Hao Wang
- National Pathogen Collection Center for Aquatic Animals, Key Laboratory of Freshwater Fishery Germplasm Resources, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, People's Republic of China
| | - Weisha Liu
- National Pathogen Collection Center for Aquatic Animals, Key Laboratory of Freshwater Fishery Germplasm Resources, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, People's Republic of China
| | - Fei Yu
- National Pathogen Collection Center for Aquatic Animals, Key Laboratory of Freshwater Fishery Germplasm Resources, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, People's Republic of China
| | - Liqun Lu
- National Pathogen Collection Center for Aquatic Animals, Key Laboratory of Freshwater Fishery Germplasm Resources, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, People's Republic of China.
| |
Collapse
|
21
|
Elumalai P, Jeong YJ, Park DW, Kim DH, Kim H, Kang SC, Chi KW. Antitumor and biological investigation of doubly cyclometalated ruthenium(ii) organometallics derived from benzimidazolyl derivatives. Dalton Trans 2016; 45:6667-73. [DOI: 10.1039/c5dt04400f] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
In this study, we report the synthesis, anticancer and biological properties of three doubly cyclometalated phenylbenzimidazole derived ruthenium(ii) organometallics (1–3) and their corresponding three organic ligands.
Collapse
Affiliation(s)
- Palani Elumalai
- Department of Chemistry
- University of Ulsan
- Ulsan 680-749
- Republic of Korea
| | - Yong Joon Jeong
- Department of Oriental Medicinal Material & Processing
- College of Life Science
- Kyung Hee University
- Yongin 17104
- Republic of Korea
| | - Dae Won Park
- Department of Oriental Medicinal Material & Processing
- College of Life Science
- Kyung Hee University
- Yongin 17104
- Republic of Korea
| | - Dong Hwan Kim
- Department of Chemistry
- University of Ulsan
- Ulsan 680-749
- Republic of Korea
| | - Hyunuk Kim
- Energy Materials Lab
- Korea Institute of Energy Research
- Daejeon 305-343
- Republic of Korea
| | - Se Chan Kang
- Department of Oriental Medicinal Material & Processing
- College of Life Science
- Kyung Hee University
- Yongin 17104
- Republic of Korea
| | - Ki-Whan Chi
- Department of Chemistry
- University of Ulsan
- Ulsan 680-749
- Republic of Korea
| |
Collapse
|
22
|
Alqahtani F, Mahdavi J, Wheldon LM, Vassey M, Pirinccioglu N, Royer PJ, Qarani SM, Morroll S, Stoof J, Holliday ND, Teo SY, Oldfield NJ, Wooldridge KG, Ala'Aldeen DAA. Deciphering the complex three-way interaction between the non-integrin laminin receptor, galectin-3 and Neisseria meningitidis. Open Biol 2015; 4:rsob.140053. [PMID: 25274119 PMCID: PMC4221890 DOI: 10.1098/rsob.140053] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The non-integrin laminin receptor (LAMR1/RPSA) and galectin-3 (Gal-3) are multi-functional host molecules with roles in diverse pathological processes, particularly of infectious or oncogenic origins. Using bimolecular fluorescence complementation and confocal imaging, we demonstrate that the two proteins homo- and heterodimerize, and that each isotype forms a distinct cell surface population. We present evidence that the 37 kDa form of LAMR1 (37LRP) is the precursor of the previously described 67 kDa laminin receptor (67LR), whereas the heterodimer represents an entity that is distinct from this molecule. Site-directed mutagenesis confirmed that the single cysteine (C(173)) of Gal-3 or lysine (K(166)) of LAMR1 are critical for heterodimerization. Recombinant Gal-3, expressed in normally Gal-3-deficient N2a cells, dimerized with endogenous LAMR1 and led to a significantly increased number of internalized bacteria (Neisseria meningitidis), confirming the role of Gal-3 in bacterial invasion. Contact-dependent cross-linking determined that, in common with LAMR1, Gal-3 binds the meningococcal secretin PilQ, in addition to the major pilin PilE. This study adds significant new mechanistic insights into the bacterial-host cell interaction by clarifying the nature, role and bacterial ligands of LAMR1 and Gal-3 isotypes during colonization.
Collapse
Affiliation(s)
- Fulwah Alqahtani
- School of Life Sciences, Centre for Biomolecular Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Jafar Mahdavi
- School of Life Sciences, Centre for Biomolecular Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Lee M Wheldon
- School of Life Sciences, Centre for Biomolecular Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Matthew Vassey
- School of Life Sciences, Centre for Biomolecular Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | | | - Pierre-Joseph Royer
- School of Life Sciences, Centre for Biomolecular Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Suzan M Qarani
- School of Life Sciences, Centre for Biomolecular Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Shaun Morroll
- School of Life Sciences, Centre for Biomolecular Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Jeroen Stoof
- School of Life Sciences, Centre for Biomolecular Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Nicholas D Holliday
- School of Life Sciences, Centre for Biomolecular Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Siew Y Teo
- School of Life Sciences, Centre for Biomolecular Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Neil J Oldfield
- School of Life Sciences, Centre for Biomolecular Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Karl G Wooldridge
- School of Life Sciences, Centre for Biomolecular Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Dlawer A A Ala'Aldeen
- School of Life Sciences, Centre for Biomolecular Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| |
Collapse
|
23
|
DiGiacomo V, Meruelo D. Looking into laminin receptor: critical discussion regarding the non-integrin 37/67-kDa laminin receptor/RPSA protein. Biol Rev Camb Philos Soc 2015; 91:288-310. [PMID: 25630983 DOI: 10.1111/brv.12170] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 12/04/2014] [Accepted: 12/08/2014] [Indexed: 02/06/2023]
Abstract
The 37/67-kDa laminin receptor (LAMR/RPSA) was originally identified as a 67-kDa binding protein for laminin, an extracellular matrix glycoprotein that provides cellular adhesion to the basement membrane. LAMR has evolutionary origins, however, as a 37-kDa RPS2 family ribosomal component. Expressed in all domains of life, RPS2 proteins have been shown to have remarkably diverse physiological roles that vary across species. Contributing to laminin binding, ribosome biogenesis, cytoskeletal organization, and nuclear functions, this protein governs critical cellular processes including growth, survival, migration, protein synthesis, development, and differentiation. Unsurprisingly given its purview, LAMR has been associated with metastatic cancer, neurodegenerative disease and developmental abnormalities. Functioning in a receptor capacity, this protein also confers susceptibility to bacterial and viral infection. LAMR is clearly a molecule of consequence in human disease, directly mediating pathological events that make it a prime target for therapeutic interventions. Despite decades of research, there are still a large number of open questions regarding the cellular biology of LAMR, the nature of its ability to bind laminin, the function of its intrinsically disordered C-terminal region and its conversion from 37 to 67 kDa. This review attempts to convey an in-depth description of the complexity surrounding this multifaceted protein across functional, structural and pathological aspects.
Collapse
Affiliation(s)
- Vincent DiGiacomo
- Department of Pathology, New York University School of Medicine, 180 Varick Street, New York, NY 10014, U.S.A
| | - Daniel Meruelo
- Department of Pathology, New York University School of Medicine, 180 Varick Street, New York, NY 10014, U.S.A.,NYU Cancer Institute, 550 First Avenue, New York, NY 10016, U.S.A.,NYU Gene Therapy Center, 550 First Avenue, New York, NY 10016, U.S.A
| |
Collapse
|
24
|
Zhang SC, Jin W, Liu H, Jin MJ, Chen ZX, Ding ZY, Zheng SS, Wang LJ, Yu YX, Chen K. RPSA gene mutants associated with risk of colorectal cancer among the chinese population. Asian Pac J Cancer Prev 2015; 14:7127-31. [PMID: 24460263 DOI: 10.7314/apjcp.2013.14.12.7127] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The primary aim of this study was to evaluate the relationship of single nucleotide polymorphisms (SNPs) in ribosomal protein SA (RPSA) gene with colorectal cancer (CRC). A case-control study including 388 controls and 387 patients with CRC was conducted in a Chinese population. Information about socio-demography and living behavior factors was collected by a structured questionnaire. Three SNPs (rs2133579, rs2269349, rs7641291) in RPSA gene were genotyped by Illumina SnapShot method. Multiple logistic regression models were used for assessing the joint effects between tea consumption and SNPs on CRC. The subjects with rs2269349 CC genotype had a decreased risk for CRC (OR=0.60; 95%CI = 0.37-0.99), compared with TT/CT genotype after adjustment for covariates. A similar association of rs2269349 with rectal cancer was observed (OR=0.49; 95%CI=0.24-1.00). Further analyses indicated that this SNP could modify the protective effect of tea drinking on CRC. Among the subjects with rs2269349 TT/CT or rs2133579 AA/GA, there was a marginal significantly lower risk of CRC (OR and 95%CI: 0.63 and 0.39-1.01 for rs2269349; 0.64 and 0.40-1.02 for rs2133579) in tea-drinking subjects in comparison to non-tea-drinking subjects. Mutants in the RPSA gene might be associated with genetic susceptibility to CRC and influence the protective effect of tea consumption in the Chinese population.
Collapse
Affiliation(s)
- Shan-Chun Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China E-mail :
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Kurogi M, Kawai Y, Nagatomo K, Tateyama M, Kubo Y, Saitoh O. Auto-oxidation products of epigallocatechin gallate activate TRPA1 and TRPV1 in sensory neurons. Chem Senses 2014; 40:27-46. [PMID: 25422365 DOI: 10.1093/chemse/bju057] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The sensation of astringency is elicited by catechins and their polymers in wine and tea. It has been considered that catechins in green tea are unstable and auto-oxidized to induce more astringent taste. Here, we examined how mammalian transient receptor potential V1 (TRPV1) and TRPA1, which are nociceptive sensors, are activated by green tea catechins during the auto-oxidation process. Neither TRPV1 nor TRPA1 could be activated by any of the freshly prepared catechin. When one of the major catechin, epigallocatechin gallate (EGCG), was preincubated for 3h in Hank's balanced salt solution, it significantly activated both TRP channels expressed in HEK293 cells. Even after incubation, other catechins showed much less effects. Results suggest that only oxidative products of EGCG activate both TRPV1 and TRPA1. Dorsal root ganglion (DRG) sensory neurons were also activated by the incubated EGCG through TRPV1 and TRPA1 channels. Liquid chromatography-mass spectrometry revealed that theasinensins A and D are formed during incubation of EGCG. We found that purified theasinensin A activates both TRPV1 and TRPA1, and that it stimulates DRG neurons through TRPV1 and TRPA1 channels. Results suggested a possibility that TRPV1 and TRPA1 channels are involved in the sense of astringent taste of green tea.
Collapse
Affiliation(s)
- Mako Kurogi
- Department of Animal Bio-Science, Faculty of Bio-Science, Nagahama Institute of Bio-Science and Technology, 1266 Tamura-cho, Nagahama-shi, Shiga 526-0829, Japan
| | - Yasushi Kawai
- Department of Bio-Science, Faculty of Bio-Science, Nagahama Institute of Bio-Science and Technology, 1266 Tamura-cho, Nagahama-shi, Shiga 526-0829, Japan
| | - Katsuhiro Nagatomo
- Department of Physiology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan
| | - Michihiro Tateyama
- Division of Biophysics and Neurobiology, Department of Molecular Physiology, National Institute for Physiological Sciences, Nishigohnaka 38, Myodaiji, Okazaki, Aichi 444-8585, Japan and Department of Physiological Sciences, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Hayama, Kanagawa 240-0155, Japan
| | - Yoshihiro Kubo
- Division of Biophysics and Neurobiology, Department of Molecular Physiology, National Institute for Physiological Sciences, Nishigohnaka 38, Myodaiji, Okazaki, Aichi 444-8585, Japan and Department of Physiological Sciences, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Hayama, Kanagawa 240-0155, Japan
| | - Osamu Saitoh
- Department of Animal Bio-Science, Faculty of Bio-Science, Nagahama Institute of Bio-Science and Technology, 1266 Tamura-cho, Nagahama-shi, Shiga 526-0829, Japan,
| |
Collapse
|
26
|
Abstract
INTRODUCTION Small-cell lung cancer (SCLC) is the most aggressive subtype of lung cancer, with no early detection strategy or targeted therapy currently available. We hypothesized that difference gel electrophoresis (DIGE) may identify membrane-associated proteins (MAPs) specific to SCLC, advance our understanding of SCLC biology, and discover new biomarkers of SCLC. METHODS MAP lysates were prepared from three SCLCs, three non-small-cell lung cancers, and three immortalized normal bronchial epithelial cell lines and coanalyzed by DIGE. Subsequent protein identification was performed by mass spectrometry. Proteins were submitted to Ingenuity Pathway Analysis. Candidate biomarkers were validated by Western blotting (WB) and immunohistochemistry (IHC). RESULTS Principal component analysis on the global DIGE data set demonstrated that the four replicates derived from each of the nine cell lines clustered closely, as did samples within the same histological group. One hundred thirty-seven proteins were differentially expressed in SCLC compared with non-small-cell lung cancer and immortalized normal bronchial epithelial cells. These proteins were overrepresented in cellular/tissue morphology networks. Dihydropyrimidinase-related protein 2, guanine nucleotide-binding protein alpha-q, laminin receptor 1, pontin, and stathmin 1 were selected as candidate biomarkers among MAPs overexpressed in SCLC. Overexpression of all candidates but RSSA in SCLC was verified by WB and/or IHC on tissue microarrays. These proteins were significantly associated with SCLC histology and survival in univariables analyses. CONCLUSION DIGE analysis of a membrane-associated subproteome discovered overexpression of dihydropyrimidinase-related protein 2, guanine nucleotide-binding protein alpha-q, RUVB1, and stathmin 1 in SCLC. Results were verified by WB and/or IHC in primary tumors, suggesting that investigating their functional relevance in SCLC progression is warranted. Association with survival requires further validation in larger clinical data sets.
Collapse
|
27
|
Ranzato E, Magnelli V, Martinotti S, Waheed Z, Cain SM, Snutch TP, Marchetti C, Burlando B. Epigallocatechin-3-gallate elicits Ca2+ spike in MCF-7 breast cancer cells: essential role of Cav3.2 channels. Cell Calcium 2014; 56:285-95. [PMID: 25260713 DOI: 10.1016/j.ceca.2014.09.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2014] [Revised: 05/29/2014] [Accepted: 09/01/2014] [Indexed: 12/26/2022]
Abstract
We used MCF-7 human breast cancer cells that endogenously express Cav3.1 and Cav3.2 T-type Ca(2+) channels toward a mechanistic study on the effect of EGCG on [Ca(2+)]i. Confocal Ca(2+) imaging showed that EGCG induces a [Ca(2+)]i spike which is due to extracellular Ca(2+) entry and is sensitive to catalase and to low-specificity (mibefradil) and high-specificity (Z944) T-type Ca(2+)channel blockers. siRNA knockdown of T-type Ca(2+) channels indicated the involvement of Cav3.2 but not Cav3.1. Application of EGCG to HEK cells expressing either Cav3.2 or Cav3.1 induced enhancement of Cav3.2 and inhibition of Cav3.1 channel activity. Measurements of K(+) currents in MCF-7 cells showed a reversible, catalase-sensitive inhibitory effect of EGCG, while siRNA for the Kv1.1 K(+) channel induced a reduction of the EGCG [Ca(2+)]i spike. siRNA for Cav3.2 reduced EGCG cytotoxicity to MCF-7 cells, as measured by calcein viability assay. Together, data suggest that EGCG promotes the activation of Cav3.2 channels through K(+) current inhibition leading to membrane depolarization, and in addition increases Cav3.2 currents. Cav3.2 channels are in part responsible for EGCG inhibition of MCF-7 viability, suggesting that deregulation of [Ca(2+)]i by EGCG may be relevant in breast cancer treatment.
Collapse
Affiliation(s)
- Elia Ranzato
- Dipartimento di Scienze e Innovazione Tecnologica, DiSIT, Università del Piemonte Orientale, viale T. Michel 11, 15121 Alessandria, Italy
| | - Valeria Magnelli
- Dipartimento di Scienze e Innovazione Tecnologica, DiSIT, Università del Piemonte Orientale, viale T. Michel 11, 15121 Alessandria, Italy
| | - Simona Martinotti
- Dipartimento di Scienze e Innovazione Tecnologica, DiSIT, Università del Piemonte Orientale, viale T. Michel 11, 15121 Alessandria, Italy
| | - Zeina Waheed
- Michael Smith Laboratories, University of British Columbia, Rm 219 - 2185 East Mall, Vancouver, BC, Canada V6T 1Z4
| | - Stuart M Cain
- Michael Smith Laboratories, University of British Columbia, Rm 219 - 2185 East Mall, Vancouver, BC, Canada V6T 1Z4
| | - Terrance P Snutch
- Michael Smith Laboratories, University of British Columbia, Rm 219 - 2185 East Mall, Vancouver, BC, Canada V6T 1Z4
| | - Carla Marchetti
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, via De Marini 6, 16149 Genova, Italy
| | - Bruno Burlando
- Dipartimento di Scienze e Innovazione Tecnologica, DiSIT, Università del Piemonte Orientale, viale T. Michel 11, 15121 Alessandria, Italy; Istituto di Biofisica, Consiglio Nazionale delle Ricerche, via De Marini 6, 16149 Genova, Italy.
| |
Collapse
|
28
|
New insights into the mechanisms of polyphenols beyond antioxidant properties; lessons from the green tea polyphenol, epigallocatechin 3-gallate. Redox Biol 2014; 2:187-95. [PMID: 24494192 PMCID: PMC3909779 DOI: 10.1016/j.redox.2013.12.022] [Citation(s) in RCA: 506] [Impact Index Per Article: 50.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 12/20/2013] [Accepted: 12/20/2013] [Indexed: 12/16/2022] Open
Abstract
Green tea is rich in polyphenol flavonoids including catechins. Epigallocatechin 3-gallate (EGCG) is the most abundant and potent green tea catechin. EGCG has been extensively studied for its beneficial health effects as a nutriceutical agent. Based upon its chemical structure, EGCG is often classified as an antioxidant. However, treatment of cells with EGCG results in production of hydrogen peroxide and hydroxyl radicals in the presence of Fe (III). Thus, EGCG functions as a pro-oxidant in some cellular contexts. Recent investigations have revealed many other direct actions of EGCG that are independent from anti-oxidative mechanisms. In this review, we discuss these novel molecular mechanisms of action for EGCG. In particular, EGCG directly interacts with proteins and phospholipids in the plasma membrane and regulates signal transduction pathways, transcription factors, DNA methylation, mitochondrial function, and autophagy to exert many of its beneficial biological actions. Many biological actions of EGCG are mediated by specific mechanisms other than its well-known anti-oxidant properties. EGCG is a pro-oxidant per se in some biological contexts. EGCG directly interacts with cell surface membrane proteins and specific known receptors. Treatment of cells with EGCG regulates specific intracellular signaling pathways and transcription. Specific biological actions of EGCG are regulated in a concentration-dependent manner.
Collapse
|
29
|
Khalfaoui T, Groulx JF, Sabra G, GuezGuez A, Basora N, Vermette P, Beaulieu JF. Laminin receptor 37/67LR regulates adhesion and proliferation of normal human intestinal epithelial cells. PLoS One 2013; 8:e74337. [PMID: 23991217 PMCID: PMC3750003 DOI: 10.1371/journal.pone.0074337] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 07/31/2013] [Indexed: 12/21/2022] Open
Abstract
Interactions between the cell basal membrane domain and the basement membrane are involved in several cell functions including proliferation, migration and differentiation. Intestinal epithelial cells can interact with laminin, a major intestinal basement membrane glycoprotein, via several cell-surface laminin-binding proteins including integrin and non-integrin receptors. The 37/67kDa laminin receptor (37/67LR) is one of these but its role in normal epithelial cells is still unknown. The aim of this study was to characterise the expression pattern and determine the main function of 37/67LR in the normal human small intestinal epithelium. Immunolocalization studies revealed that 37/67LR was predominantly present in the undifferentiated/proliferative region of the human intestinal crypt in both the immature and adult intestine. Using a human intestinal epithelial crypt (HIEC) cell line as experimental model, we determined that 37/67LR was expressed in proliferative cells in both the cytoplasmic and membrane compartments. Small-interfering RNA-mediated reduction of 37/67LR expression led to HIEC cell-cycle reduction and loss of the ability to adhere to laminin-related peptides under conditions not altering ribosomal function. Taken together, these findings indicate that 37/67LR regulates proliferation and adhesion in normal intestinal epithelial cells independently of its known association with ribosomal function.
Collapse
Affiliation(s)
- Taoufik Khalfaoui
- Laboratory of Intestinal Physiopathology, Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Jean-François Groulx
- Laboratory of Intestinal Physiopathology, Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Georges Sabra
- Laboratory of Bioengineering and Biophysics, Department of Chemical and Biotechnological Engineering, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Amel GuezGuez
- Laboratory of Intestinal Physiopathology, Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Nuria Basora
- Laboratory of Intestinal Physiopathology, Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Patrick Vermette
- Laboratory of Bioengineering and Biophysics, Department of Chemical and Biotechnological Engineering, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Jean-François Beaulieu
- Laboratory of Intestinal Physiopathology, Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| |
Collapse
|
30
|
Hongo K, Tsuno NH, Kawai K, Sasaki K, Kaneko M, Hiyoshi M, Murono K, Tada N, Nirei T, Sunami E, Takahashi K, Nagawa H, Kitayama J, Watanabe T. Hypoxia enhances colon cancer migration and invasion through promotion of epithelial-mesenchymal transition. J Surg Res 2012; 182:75-84. [PMID: 22959209 DOI: 10.1016/j.jss.2012.08.034] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Revised: 08/13/2012] [Accepted: 08/17/2012] [Indexed: 12/28/2022]
Abstract
BACKGROUND A hypoxic environment exists in most solid tumors because in rapidly growing tumors, the development of angiogenic vasculature is heterogenous, usually not enough to overcome the necessary oxygen supply. In an ischemic condition, cancer cells develop escape mechanisms to survive and leave the unfavorable environment. That result in the acquisition of increased potential for local invasion and evasion to distant organs. However, the escape mechanisms of cancer cells from hypoxic stress have not been fully characterized. MATERIALS AND METHODS The human colon cancer cell line LoVo was cultured in hypoxia, and the adhesive and migratory properties were analyzed. The expression of cell surface and cytoplasmic molecules was also investigated. RESULTS Under hypoxic conditions, cells developed epithelial-mesenchymal transition. The expression levels of α2, α5, and β1 integrins were significantly upregulated and, as a consequence, the ability to adhere to and migrate on collagen and fibronectin was increased. On the other hand, the expression of 67-kDa laminin receptor and the abilities to adhere to and migrate on laminin were decreased. Additionally, the expression of CXCR4 was significantly increased on cells cultured in hypoxia, and the chemotactic activity to stromal cell-derived factor 1α was remarkably increased. CONCLUSIONS Hypoxic stress induced active epithelial-mesenchymal transition in colon cancer cells, with the typical morphologic and functional changes. These morphologic and functional changes of β1 integrins, the 67-kDa laminin receptor, and CXCR4 may be essential for the acquisition of the invasive and metastatic features in colorectal cancer.
Collapse
Affiliation(s)
- Kumiko Hongo
- Department of Surgical Oncology, Faculty of Medical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Byun EB, Choi HG, Sung NY, Byun EH. Green tea polyphenol epigallocatechin-3-gallate inhibits TLR4 signaling through the 67-kDa laminin receptor on lipopolysaccharide-stimulated dendritic cells. Biochem Biophys Res Commun 2012; 426:480-5. [PMID: 22960171 DOI: 10.1016/j.bbrc.2012.08.096] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Accepted: 08/21/2012] [Indexed: 12/12/2022]
Abstract
Epigallocatechin-3-gallate (EGCG), a major active polyphenol of green tea, has been shown to down-regulate inflammatory responses in dendritic cells (DCs); however, the underlying mechanism has not been understood. Recently, we identified the 67-kDa laminin receptor (67LR) as a cell-surface EGCG receptor. In this study, we showed the molecular basis for the down-regulation of toll-like receptor 4 (TLR4) signal transduction by EGCG in DCs. The expressions of CD80, CD86, and MHC class I and II, which are molecules essential for antigen presentation by DCs, were inhibited by EGCG via 67LR. In addition, EGCG-treated DCs inhibited lipopolysaccharide (LPS)-induced production of pro-inflammatory cytokines (tumor necrosis factor [TNF]-α, interleukin [IL]-1β, and IL-6) and activation of mitogen-activated protein kinases (MAPKs), e.g., extracellular signal-regulated kinase 1/2 (ERK1/2), p38, c-Jun N-terminal kinase (JNK), and nuclear factor κB (NF-κB) p65 translocation through 67LR. Interestingly, we also found that EGCG markedly elevated the expression of the Tollip protein, a negative regulator of TLR signaling, through 67LR. These novel findings provide new insight into the understanding of negative regulatory mechanisms of the TLR4 signaling pathway and consequent inflammatory responses that are implicated in the development and progression of many chronic diseases.
Collapse
Affiliation(s)
- Eui-Baek Byun
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 580-185, Republic of Korea
| | | | | | | |
Collapse
|
32
|
Tsukamoto S, Yamashita S, Kim YH, Kumazoe M, Huang Y, Yamada K, Tachibana H. Oxygen partial pressure modulates 67-kDa laminin receptor expression, leading to altered activity of the green tea polyphenol, EGCG. FEBS Lett 2012; 586:3441-7. [PMID: 22884420 DOI: 10.1016/j.febslet.2012.07.065] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Accepted: 07/20/2012] [Indexed: 12/16/2022]
Abstract
(-)-Epigallocatechin-3-O-gallate (EGCG) exhibits anti-tumor activity mediated via the 67-kDa laminin receptor (67LR). In this study, we found that 67LR protein levels are reduced by exposure to low O(2) levels (5%), without affecting the expression of HIF-1α. We also found that EGCG-induced anti-cancer activity is abrogated under low O(2) levels (5%) in various cancer cells. Notably, treatment with the proteasome inhibitor, prevented down-regulation of 67LR and restored sensitivity to EGCG under 5% O(2). In summary, 67LR expression is highly sensitive to O(2) partial pressure, and the activity of EGCG can be regulated in cancer cells by O(2) partial pressure.
Collapse
Affiliation(s)
- Shuntaro Tsukamoto
- Laboratory of Food Chemistry, Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | | | |
Collapse
|
33
|
Fujimura Y, Sumida M, Sugihara K, Tsukamoto S, Yamada K, Tachibana H. Green tea polyphenol EGCG sensing motif on the 67-kDa laminin receptor. PLoS One 2012; 7:e37942. [PMID: 22666419 PMCID: PMC3362541 DOI: 10.1371/journal.pone.0037942] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Accepted: 04/25/2012] [Indexed: 12/31/2022] Open
Abstract
Background We previously identified the 67-kDa laminin receptor (67LR) as the cell-surface receptor conferring the major green tea polyphenol (–)-epigallocatechin-3-O-gallate (EGCG) responsiveness to cancer cells. However, the underlying mechanism for interaction between EGCG and 67LR remains unclear. In this study, we investigated the possible role of EGCG-67LR interaction responsible for its bioactivities. Methodology/Principal Findings We synthesized various peptides deduced from the extracellular domain corresponding to the 102-295 region of human 67LR encoding a 295-amino acid. The neutralizing activity of these peptides toward EGCG cell-surface binding and inhibition of cancer cell growth were assayed. Both activities were inhibited by a peptide containing the 10-amino acid residues, IPCNNKGAHS, corresponding to residues 161-170. Furthermore, mass spectrometric analysis revealed the formation of a EGCG-LR161-170 peptide complex. A study of the amino acid deletion/replacement of the peptide LR161-170 indicated that the 10-amino acid length and two basic amino acids, K166 and H169, have a critical role in neutralizing EGCG’s activities. Moreover, neutralizing activity against the anti-proliferation action of EGCG was observed in a recombinant protein of the extracellular domain of 67LR, and this effect was abrogated by a deletion of residues 161-170. These findings support that the 10 amino-acid sequence, IPCNNKGAHS, might be the functional domain responsible for the anti-cancer activity of EGCG. Conclusions/Significance Overall, our results highlight the nature of the EGCG-67LR interaction and provide novel structural insights into the understanding of 67LR-mediated functions of EGCG, and could aid in the development of potential anti-cancer compounds for chemopreventive or therapeutic uses that can mimic EGCG-67LR interactions.
Collapse
Affiliation(s)
- Yoshinori Fujimura
- Innovation Center for Medical Redox Navigation, Kyushu University, Fukuoka, Japan
| | - Mami Sumida
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Fukuoka, Japan
| | - Kaori Sugihara
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Fukuoka, Japan
| | - Shuntaro Tsukamoto
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Fukuoka, Japan
| | - Koji Yamada
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Fukuoka, Japan
| | - Hirofumi Tachibana
- Innovation Center for Medical Redox Navigation, Kyushu University, Fukuoka, Japan
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Fukuoka, Japan
- Bio-Architecture Center, Kyushu University, Fukuoka, Japan
- * E-mail:
| |
Collapse
|
34
|
An SJ, Lin QX, Chen ZH, Su J, Cheng H, Xie Z, Zhang XC, Zhou HY, Huang Y, Chen SL, Guo WB, Wu YL. Combinations of laminin 5 with PTEN, p-EGFR and p-Akt define a group of distinct molecular subsets indicative of poor prognosis in patients with non-small cell lung cancer. Exp Ther Med 2012; 4:226-230. [PMID: 23139712 DOI: 10.3892/etm.2012.577] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Accepted: 05/10/2012] [Indexed: 12/26/2022] Open
Abstract
Laminin 5 (Ln5) is an extracellular matrix protein that plays an important role in cell migration and tumor invasion. This study explored the expression of Ln5 and the role of its relationships with PTEN, phospho-EGFR (p-EGFR) and phospho-Akt (p-Akt) in the prognosis of patients with non-small cell lung cancer (NSCLC). The protein expression of Ln5, PTEN, p-EGFR and p-Akt was assessed by immunohistochemical analysis, and their relationships to prognosis were analyzed. Protein expression of Ln5, p-EGFR and p-Akt was detected in 61.2 (60/98), 60.2 (59/98) and 45.3% (43/95) of patients with NSCLC, respectively. Loss of PTEN expression was found in 67.7% of tumors (65/96). Ln5 expression was related to patient gender, histology and p-Akt expression (χ(2)=3.901, 4.549 and 6.985, respectively; P=0.048, 0.033 and 0.008, respectively). Patients with positive Ln5 expression had marginally poorer survival than Ln5-negative patients (median survival time 56.4 months vs. not reached; χ(2)=3.346; P=0.067). Overall survival was significantly different in patients with positive Ln5 expression combined with loss of PTEN, positive p-EGFR expression or positive p-Akt expression. Cox regression analysis showed that stage, co-expression of Ln5 and p-Akt, and PTEN were the three most independent prognostic factors for patients with NSCLC (χ(2)=27.906; P<0.0005). The results highlight the complex relationships between extracellular matrix proteins and key signaling pathway molecules in tumorigenesis. Changes in the expression of Ln5 plus PTEN, p-EGFR or p-Akt define a distinct subset of lung cancers. Patients with such cancers have poorer survival and require early treatment that impacts survival.
Collapse
Affiliation(s)
- She-Juan An
- Guangdong Lung Cancer Institute, Medical Research Center of Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, P.R. China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Omar A, Reusch U, Knackmuss S, Little M, Weiss SFT. Anti-LRP/LR-specific antibody IgG1-iS18 significantly reduces adhesion and invasion of metastatic lung, cervix, colon and prostate cancer cells. J Mol Biol 2012; 419:102-9. [PMID: 22391421 DOI: 10.1016/j.jmb.2012.02.035] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Revised: 02/23/2012] [Accepted: 02/24/2012] [Indexed: 11/30/2022]
Abstract
The 37-kDa/67-kDa laminin receptor [laminin receptor precursor/high-affinity laminin receptor (LRP/LR)] is thought to play a major role in invasion and adhesion, key components of metastatic cancer. Lung cancer, cervical cancer, colon cancer and prostate cancer are among the top 10 cancer types worldwide. Here, we report that LRP/LR levels on the surface of lung cancer cells, cervical cancer cells, colon cancer cells and prostate cancer cells are significantly increased compared to non-tumorigenic fibroblasts. Adhesion of lung cancer cells, cervical cancer cells, colon cancer cells and prostate cancer cells to laminin-1 is significantly reduced, employing the anti-LRP/LR-specific antibody IgG1-iS18. Invasion of these cell lines into the Matrigel™ matrix was significantly impeded with IgG1-iS18. The Pearson's correlation coefficient proves a correlation between LRP/LR cell-surface levels and invasion potential, as well as adhesion and invasion, respectively. Our findings suggest that IgG1-iS18 antibody might act as alternative therapeutic tool for treatment of various metastatic cancer types.
Collapse
Affiliation(s)
- Aadilah Omar
- School of Molecular and Cell Biology, University of the Witwatersrand, Private Bag 3, Wits 2050, Johannesburg, The Republic of South Africa
| | | | | | | | | |
Collapse
|
36
|
Extraribosomal functions associated with the C terminus of the 37/67 kDa laminin receptor are required for maintaining cell viability. Cell Death Dis 2011; 1:e42. [PMID: 21243100 PMCID: PMC3019570 DOI: 10.1038/cddis.2010.19] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The 37/67 kDa laminin receptor (LAMR) is a multifunctional protein, acting as an extracellular receptor, localizing to the nucleus, and playing roles in rRNA processing and ribosome assembly. LAMR is important for cell viability; however, it is unclear which of its functions are essential. We developed a silent mutant LAMR construct, resistant to siRNA, to rescue the phenotypic effects of knocking down endogenous LAMR, which include inhibition of protein synthesis, cell cycle arrest, and apoptosis. In addition, we generated a C-terminal-truncated silent mutant LAMR construct structurally homologous to the Archaeoglobus fulgidus S2 ribosomal protein and missing the C-terminal 75 residues of LAMR, which displays more sequence divergence. We found that HT1080 cells stably expressing either silent mutant LAMR construct still undergo arrest in the G1 phase of the cell cycle when treated with siRNA. However, the expression of full-length silent mutant LAMR rescues cell viability, whereas the expression of the C-terminal-truncated LAMR does not. Interestingly, we also found that both silent mutant constructs restore protein translation and localize to the nucleus. Our findings indicate that the ability of LAMR to regulate viability is associated with its C-terminal 75 residues. Furthermore, this function is distinct from its role in cell proliferation, independent of its ribosomal functions, and may be regulated by a nonnuclear localization.
Collapse
|
37
|
Bioactive food components, cancer cell growth limitation and reversal of glycolytic metabolism. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1807:697-706. [DOI: 10.1016/j.bbabio.2010.08.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Revised: 08/10/2010] [Accepted: 08/15/2010] [Indexed: 02/07/2023]
|
38
|
Ishizuya-Oka A. Amphibian organ remodeling during metamorphosis: Insight into thyroid hormone-induced apoptosis. Dev Growth Differ 2011; 53:202-12. [DOI: 10.1111/j.1440-169x.2010.01222.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
39
|
Byun EH, Omura T, Yamada K, Tachibana H. Green tea polyphenol epigallocatechin-3-gallate inhibits TLR2 signaling induced by peptidoglycan through the polyphenol sensing molecule 67-kDa laminin receptor. FEBS Lett 2011; 585:814-20. [PMID: 21320497 DOI: 10.1016/j.febslet.2011.02.010] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2011] [Accepted: 02/08/2011] [Indexed: 12/11/2022]
Abstract
Here we show the molecular basis for the inhibition of peptidoglycan (PGN)-induced TLR2 signaling by a major green tea polyphenol epigallocatechin-3-gallate (EGCG). Recently, we identified the 67-kDa laminin receptor (67LR) as the cell-surface EGCG receptor. Anti-67LR antibody treatment or silencing of 67LR resulted in abrogation of the inhibitory action of EGCG on PGN-induced production of pro-inflammatory mediators and activation of mitogen-activated protein kinases. Silencing of Toll-interacting protein (Tollip), a negative regulator of TLR signaling impaired the TLR2 signaling inhibitory activity of EGCG, suggesting that TLR2 response could be inhibited by EGCG via 67LR and Tollip.
Collapse
Affiliation(s)
- Eui-Hong Byun
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka 812-8581, Japan
| | | | | | | |
Collapse
|
40
|
Poon SL, Klausen C, Hammond GL, Leung PCK. 37-kDa laminin receptor precursor mediates GnRH-II-induced MMP-2 expression and invasiveness in ovarian cancer cells. Mol Endocrinol 2010; 25:327-38. [PMID: 21193558 DOI: 10.1210/me.2010-0334] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
GnRH-II enhances ovarian cancer cell invasion in an autocrine manner. We have now found that GnRH-II increases 37-kDa laminin receptor precursor (LRP) production in GnRH receptor (GnRHR)-positive OVCAR-3 and CaOV-3 ovarian cancer cells, while small interfering RNA (siRNA)-mediated depletion of GnRH-II or GnRHR mRNA abrogates this. The invasiveness of ovarian cancer cells is also reduced >85% by siRNA-mediated knockdown of LRP levels and >50% by pretreatment of Matrigel with a synthetic peptide that blocks interactions between laminin and the 67-kDa nonintegrin laminin receptor which comprises two LRP subunits. Conversely, overexpressing LRP in CaOV-3 cells increases their invasiveness 5-fold, while overexpressing LRP with a nonfunctional laminin-binding site does not. Depletion of LRP by siRNA treatment reduces CaOV-3 cell attachment to laminin-coated plates by ∼80% but only reduces their binding to Matrigel by ∼20%. Thus, while LRP influences CaOV-3 cell adhesion to laminin, LRP must act in other ways to enhance invasion. Matrix metalloproteinases (MMPs) are key mediators of invasion, and LRP siRNA treatment of OVCAR-3 and CaOV-3 cells inhibits MMP-2 but not MMP-9 mRNA levels. Overexpressing LRP in these cells increases MMP-2 production specifically, while a laminin-binding deficient LRP does not. Importantly, LRP siRNA treatment abolishes GnRH-II-induced MMP-2 production, and invasion in OVCAR-3 and CaOV-3 cells, which was also seen after MMP-2 siRNA treatment. These results suggest that GnRH-II-induced LRP expression increases the amount of the 67-kDa nonintegrin laminin receptor, which appears to interact with laminin in the extracellular matrix to promote MMP-2 expression and enhance ovarian cancer cell invasion.
Collapse
Affiliation(s)
- Song Ling Poon
- Department of Obstetrics and Gynecology, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | |
Collapse
|
41
|
Abstract
Metastasis is the most deadly aspect of cancer and results from several interconnected processes including cell proliferation, angiogenesis, cell adhesion, migration, and invasion into the surrounding tissue. The appearance of metastases in organs distant from the primary tumor is the most destructive feature of cancer. Metastasis remains the principal cause of the deaths of cancer patients despite decades of research aimed at restricting tumor growth. Therefore, inhibition of metastasis is one of the most important issues in cancer research. Several in vitro, in vivo, and epidemiological studies have reported that the consumption of green tea may decrease cancer risk. (-)-Epigallocatechin-3-gallate, major component of green tea, has been shown to inhibit tumor invasion and angiogenesis which are essential for tumor growth and metastasis. This article summarizes the effect of green tea and its major polyphenolic compounds on cancer and metastasis against most commonly diagnosed cancer sites.
Collapse
|
42
|
Davidson B. The diagnostic and molecular characteristics of malignant mesothelioma and ovarian/peritoneal serous carcinoma. Cytopathology 2010; 22:5-21. [DOI: 10.1111/j.1365-2303.2010.00829.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
43
|
|
44
|
Liu L, Sun L, Zhao P, Yao L, Jin H, Liang S, Wang Y, Zhang D, Pang Y, Shi Y, Chai N, Zhang H, Zhang H. Hypoxia promotes metastasis in human gastric cancer by up-regulating the 67-kDa laminin receptor. Cancer Sci 2010; 101:1653-60. [PMID: 20491781 PMCID: PMC11158106 DOI: 10.1111/j.1349-7006.2010.01592.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
It has been reported that the 67-kDa laminin receptor (67LR) is implicated in cancer metastasis. We recently showed that 37LRP, the 67LR precursor, is a hypoxia-inducible factor 1 (HIF-1) target gene exposed to hypoxia in gastric cancer. Here, we investigated the role of 67LR in hypoxic metastasis and invasion in gastric cancer. Immunohistochemical analysis, western blotting, and RT-PCR assays revealed that 67LR was highly expressed in metastatic gastric cancers in vivo. Knockdown of the 67LR protein by RNA interference significantly decreased the adhesive, invasive, and in vivo metastatic abilities of the gastric cancer cell lines SGC7901 and MKN-45. Western blot analysis showed that 67LR increased the expression of urokinase-type plasminogen activator (uPA) and matrix metalloproteinase (MMP)-9, and decreased tissue inhibitor of matrix metalloproteinase (TIMP)-1 protein. We further showed that hypoxia induced 67LR expression in a time-dependent manner and this induction was inhibited by HIF-1 small-interfering (si) RNA. Both ERK and JNK inhibitors significantly inhibited hypoxia-induced expression of 67LR and the subsequent expression of uPA and MMP 9. SiRNA against 67LR or antibody against MMP9 and uPA significantly inhibited hypoxia-induced in vitro invasive ability. Taken together, these results reveal that 67LR promotes the invasive and metastatic ability of the gastric cancer cells through increasing uPA and MMP 9 expression, with involvement of the ERK and JNK signal pathway in hypoxia-induced 67 LR expressions and subsequent uPA and MMP9 expression.
Collapse
Affiliation(s)
- Lili Liu
- Department of Oncology, Tangdu Hospital, Xi'an, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Park E, Choi Y, Ahn E, Park I, Yun Y. The adaptor protein LAD/TSAd mediates laminin-dependent T cell migration via association with the 67 kDa laminin binding protein. Exp Mol Med 2010; 41:728-36. [PMID: 19561400 DOI: 10.3858/emm.2009.41.10.079] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
The adaptor protein, LAD/TSAd, plays essential roles in T cell activation. To further understand the functions of this protein, we performed yeast two-hybrid screening using TSAd as bait and identified 67 kDa laminin binding protein (LBP) as the interacting partner. Subsequently, TSAd-LBP interaction was confirmed in D1.1 T cell line. Upon costimulation by T cell receptor (TCR) plus laminin crosslinking or TCR plus integrin alpha6 crosslinking, LBP was coimmunoprecipitated with TSAd. Moreover, TCR plus laminin costimulation-dependent T cell migration was enhanced in D1.1 T cells overexpressing TSAd but was disrupted in D1.1 cells overexpressing dominant negative form of TSAd or TSAd shRNA. These data show that, upon TCR plus integrin costimulation, TSAd associates with LBP and mediates T lymphocyte migration.
Collapse
Affiliation(s)
- Eunkyung Park
- Department of Life Science, Ewha Womans' University, Seoul 120-750, Korea
| | | | | | | | | |
Collapse
|
46
|
Lee JH, Kishikawa M, Kumazoe M, Yamada K, Tachibana H. Vitamin A enhances antitumor effect of a green tea polyphenol on melanoma by upregulating the polyphenol sensing molecule 67-kDa laminin receptor. PLoS One 2010; 5:e11051. [PMID: 20548792 PMCID: PMC2883578 DOI: 10.1371/journal.pone.0011051] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2010] [Accepted: 05/21/2010] [Indexed: 11/19/2022] Open
Abstract
Background Green tea consumption has been shown to have cancer preventive qualities. Among the constituents of green tea, (-)-Epigallocatechin-3-O-gallate (EGCG) is the most effective at inhibiting carcinogenesis. However, the concentrations of EGCG that are required to elicit the anticancer effects in a variety of cancer cell types are much higher than the peak plasma concentration that occurs after drinking an equivalent of 2–3 cups of green tea. To obtain the anticancer effects of EGCG when consumed at a reasonable concentration in daily life, we investigated the combination effect of EGCG and food ingredient that may enhance the anticancer activity of EGCG on subcutaneous tumor growth in C57BL/6N mice challenged with B16 melanoma cells. Methodology/Principal Findings All-trans-retinoic acid (ATRA) enhanced the expression of the 67-kDa laminin receptor (67LR) and increased EGCG-induced cell growth inhibition in B16 melanoma cells. The cell growth inhibition seen with the combined EGCG and ATRA treatment was abolished by treatment with an anti-67LR antibody. In addition, the combined EGCG and ATRA treatment significantly suppressed the melanoma tumor growth in mice. Expression of 67LR in the tumor increased upon oral administration of ATRA or a combined treatment of EGCG and ATRA treatment. Furthermore, RNAi-mediated silencing of the retinoic acid receptor (RAR) α attenuated the ATRA-induced enhancement of 67LR expression in the melanoma cells. An RAR agonist enhanced the expression levels of 67LR and increased EGCG-induced cell growth inhibition. Conclusions/Significance Our findings provide a molecular basis for the combination effect seen with dietary components, and indicate that ATRA may be a beneficial food component for cancer prevention when combined with EGCG.
Collapse
Affiliation(s)
- Ju Hye Lee
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Hakozaki, Japan
| | - Mutsumi Kishikawa
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Hakozaki, Japan
| | - Motofumi Kumazoe
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Hakozaki, Japan
| | - Koji Yamada
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Hakozaki, Japan
| | - Hirofumi Tachibana
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Hakozaki, Japan
- Laboratory of Functional Food Design, Department of Functional Metabolic Design, Bio-Architecture Center, Kyushu University, Fukuoka, Japan
- * E-mail:
| |
Collapse
|
47
|
Hong Byun E, Fujimura Y, Yamada K, Tachibana H. TLR4 signaling inhibitory pathway induced by green tea polyphenol epigallocatechin-3-gallate through 67-kDa laminin receptor. THE JOURNAL OF IMMUNOLOGY 2010; 185:33-45. [PMID: 20511545 DOI: 10.4049/jimmunol.0903742] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Epigallocatechin-3-gallate (EGCG), a major active polyphenol of green tea, has been shown to downregulate inflammatory responses in macrophages; however, the underlying mechanism has not been understood. Recently, we identified the 67-kDa laminin receptor (67LR) as a cell-surface EGCG receptor that mediates the anticancer action of EGCG at physiologically relevant concentrations (0.1-1 microM). In this study, we show the molecular basis for the downregulation of TLR4 signal transduction by EGCG at 1 microM in macrophages. Anti-67LR Ab treatment or RNA interference-mediated silencing of 67LR resulted in abrogation of the inhibitory action of EGCG on LPS-induced activation of downstream signaling pathways and target gene expressions. Additionally, we found that EGCG reduced the TLR4 expression through 67LR. Interestingly, EGCG induced a rapid upregulation of Toll-interacting protein (Tollip), a negative regulator of TLR signaling, and this EGCG action was prevented by 67LR silencing or anti-67LR Ab treatment. RNA interference-mediated silencing of Tollip impaired the TLR4 signaling inhibitory activity of EGCG. Taken together, these findings demonstrate that 67LR plays a critical role in mediating anti-inflammatory action of a physiologically relevant EGCG, and Tollip expression could be modulated through 67LR. These results provide a new insight into the understanding of negative regulatory mechanisms for the TLR4 signaling pathway and consequent inflammatory responses that are implicated in the development and progression of many chronic diseases.
Collapse
Affiliation(s)
- Eui Hong Byun
- Laboratory of Food Chemistry, Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | | | | | | |
Collapse
|
48
|
Britschgi A, Simon HU, Tobler A, Fey MF, Tschan MP. Epigallocatechin-3-gallate induces cell death in acute myeloid leukaemia cells and supports all-transretinoic acid-induced neutrophil differentiation via death-associated protein kinase 2. Br J Haematol 2010; 149:55-64. [DOI: 10.1111/j.1365-2141.2009.08040.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
49
|
Mathew S, Fu L, Hasebe T, Ishizuya-Oka A, Shi YB. Tissue-dependent induction of apoptosis by matrix metalloproteinase stromelysin-3 during amphibian metamorphosis. BIRTH DEFECTS RESEARCH. PART C, EMBRYO TODAY : REVIEWS 2010; 90:55-66. [PMID: 20301218 PMCID: PMC3412310 DOI: 10.1002/bdrc.20170] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Matrix metalloproteinases (MMPs) are a superfamily of Zn(2+)-dependent proteases that are capable of cleaving the proteinaceous component of the extracellular matrix (ECM). The ECM is a critical medium for cell-cell interactions and can also directly signal cells through cell surface ECM receptors, such as integrins. In addition, many growth factors and signaling molecules are stored in the ECM. Thus, ECM remodeling and/or degradation by MMPs are expected to affect cell fate and behavior during many developmental and pathological processes. Numerous studies have shown that the expression of MMP mRNAs and proteins associates tightly with diverse developmental and pathological processes, such as tumor metastasis and mammary gland involution. In vivo evidence to support the roles of MMPs in these processes has been much harder to get. Here, we will review some of our studies on MMP11, or stromelysin-3, during the thyroid hormone-dependent amphibian metamorphosis, a process that resembles the so-called postembryonic development in mammals (from a few months before to several months after birth in humans when organ growth and maturation take place). Our investigations demonstrate that stromelysin-3 controls apoptosis in different tissues via at least two distinct mechanisms.
Collapse
Affiliation(s)
- Smita Mathew
- Section on Molecular Morphogenesis, Laboratory of Gene Regulation and Development, Program in Cellular Regulation and Metabolism (PCRM), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland, 20892
| | - Liezhen Fu
- Section on Molecular Morphogenesis, Laboratory of Gene Regulation and Development, Program in Cellular Regulation and Metabolism (PCRM), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland, 20892
| | - Takashi Hasebe
- Department of Biology, Nippon Medical School, Kawasaki, Kanagawa 211-0063, Japan
| | - Atsuko Ishizuya-Oka
- Department of Biology, Nippon Medical School, Kawasaki, Kanagawa 211-0063, Japan
| | - Yun-Bo Shi
- Section on Molecular Morphogenesis, Laboratory of Gene Regulation and Development, Program in Cellular Regulation and Metabolism (PCRM), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland, 20892
| |
Collapse
|
50
|
Orihuela CJ, Mahdavi J, Thornton J, Mann B, Wooldridge KG, Abouseada N, Oldfield NJ, Self T, Ala'Aldeen DAA, Tuomanen EI. Laminin receptor initiates bacterial contact with the blood brain barrier in experimental meningitis models. J Clin Invest 2009; 119:1638-46. [PMID: 19436113 DOI: 10.1172/jci36759] [Citation(s) in RCA: 214] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2008] [Accepted: 03/04/2009] [Indexed: 12/31/2022] Open
Abstract
A diverse array of infectious agents, including prions and certain neurotropic viruses, bind to the laminin receptor (LR), and this determines tropism to the CNS. Bacterial meningitis in childhood is almost exclusively caused by the respiratory tract pathogens Streptococcus pneumoniae, Neisseria meningitidis, and Haemophilus influenzae, but the mechanism by which they initiate contact with the vascular endothelium of the blood brain barrier (BBB) is unknown. We hypothesized that an interaction with LR might underlie their CNS tropism. Using affinity chromatography, coimmunoprecipitation, retagging, and in vivo imaging approaches, we identified 37/67-kDa LR as a common receptor for all 3 bacteria on the surface of rodent and human brain microvascular endothelial cells. Mutagenesis studies indicated that the corresponding bacterial LR-binding adhesins were pneumococcal CbpA, meningococcal PilQ and PorA, and OmpP2 of H. influenzae. The results of competitive binding experiments suggest that a common adhesin recognition site is present in the carboxyl terminus of LR. Together, these findings suggest that disruption or modulation of the interaction of bacterial adhesins with LR might engender unexpectedly broad protection against bacterial meningitis and may provide a therapeutic target for the prevention and treatment of disease.
Collapse
Affiliation(s)
- Carlos J Orihuela
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|