1
|
Marcelli M, Stenoien DL, Szafran AT, Simeoni S, Agoulnik IU, Weigel NL, Moran T, Mikic I, Price JH, Mancini MA. Quantifying effects of ligands on androgen receptor nuclear translocation, intranuclear dynamics, and solubility. J Cell Biochem 2006; 98:770-88. [PMID: 16440331 DOI: 10.1002/jcb.20593] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Using manual and automated high throughput microscopy (HTM), ligand-dependent trafficking of green fluorescent protein-androgen receptor (GFP-AR) was analyzed in fixed and living cells to determine its spatial distribution, solubility, mobility, and co-activator interactions. Within minutes, addition of the agonist R1881 resulted translocation of GFP-AR from the cytoplasm to the nucleus, where it displayed a hyperspeckled pattern and extraction resistance in low expressing cells. AR antagonists (Casodex, hydroxyflutamide) also caused nuclear translocation, however, the antagonist-bound GFP-AR had a more diffuse nuclear distribution, distinct from the agonist-bound GFP-AR, and was completely soluble; overexpressed GFP-AR in treated cells was extraction resistant, independent of ligand type. To more dramatically show the different effects of ligand on AR distribution, we utilized an AR with a mutation in the DNA binding domain (ARC619Y) that forms distinct foci upon exposure to agonists but retains a diffuse nuclear distribution in the presence of antagonists. Live-cell imaging of this mutant demonstrated that cytoplasmic foci formation occurs immediately upon agonist but not antagonist addition. Fluorescence recovery after photobleaching (FRAP) revealed that agonist-bound GFP-AR exhibited reduced mobility relative to unliganded or antagonist-bound GFP-AR. Importantly, agonist-bound GFP-AR mobility was strongly affected by protein expression levels in transiently transfected cells, and displayed reduced mobility even in slightly overexpressing cells. Cyan fluorescent protein-AR (CFP-AR) and yellow fluorescent protein-CREB binding protein (YFP-CBP) in the presence of agonists and antagonists were used to demonstrate that CFP-AR specifically co-localizes with YFP-CBP in an agonist dependent manner. Dual FRAP experiments demonstrated that CBP mobility mirrored AR mobility only in the presence of agonist. HTM enabled simultaneous studies of the sub-cellular distribution of GFP-AR and ARC619Y in response to a range of concentrations of agonists and antagonists (ranging from 10(-12) to 10(-5)) in thousands of cells. These results further support the notion that ligand specific interactions rapidly affect receptor and co-factor organization, solubility, and molecular dynamics, and each can be aberrantly affected by mutation and overexpression.
Collapse
Affiliation(s)
- Marco Marcelli
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Dinić S, Bogojević D, Petrović M, Poznanović G, Ivanovic-Matić S, Mihailović M. C/EBP alpha and C/EBP beta regulate haptoglobin gene expression during rat liver development and the acute-phase response. Mol Biol Rep 2006; 32:141-7. [PMID: 16172914 DOI: 10.1007/s11033-005-0750-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2005] [Indexed: 10/25/2022]
Abstract
The participation of C/EBP alpha and C/EBP beta in the transcriptional regulation of the haptoglobin (Hp) gene throughout liver development and the acute-phase (AP) response was examined. Western immunoblot analysis revealed that the relative concentrations of C/EBP alpha and C/EBP beta increased during differentiation in two nuclear protein fractions - the nuclear extract and nuclear matrix. The AP reaction was accompanied by a decrease of the relative concentration of C/EBP alpha and an increase of C/EBP beta during development in both protein fractions. Using Western analysis after DNA-affinity chromatography it was observed that a 45 kDa C/EBP alpha isoform displayed a binding affinity towards the Hp gene hormone responsive element (HRE) in both pre- and postnatal livers. In the course of the AP response DNA binding of the 45 kDa isoform was detected only in the adult, when its binding affinity decreased. The 35 kDa C/EBP beta isoform exhibited a binding affinity towards the Hp HRE after the second week from birth, whereas the AP response promoted an enhanced binding of 35 kDa isoform after the first postnatal week. These results indicate that Hp gene transcription is regulated by C/EBP alpha during normal liver development, whereas C/EBP beta is involved in the AP regulation during the later phase of differentiation and in the adult.
Collapse
Affiliation(s)
- Svetlana Dinić
- Department of Molecular Biology, Institute for Biological Research, Despot Stefan Blvd 142, Belgrade 11060, Serbia and Montenegro
| | | | | | | | | | | |
Collapse
|
3
|
Stein GS, Lian JB, Stein JL, van Wijnen AJ, Javed A, Montecino M, Zaidi SK, Young DW, Choi JY, Pratap J. Combinatorial organization of the transcriptional regulatory machinery in biological control and cancer. ACTA ACUST UNITED AC 2005; 45:136-54. [PMID: 16135382 DOI: 10.1016/j.advenzreg.2005.02.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The architecturally associated subnuclear organization of nucleic acids and cognate regulatory factors suggests functional interrelationships between nuclear structure and gene expression. Mechanisms that contribute to the spatial distribution of transcription factors within the three dimensional context of nuclear architecture control the sorting and integration of regulatory information as well as the combinatorial assembly, organization and activities of transcriptional machinery at scaffold-associated subnuclear sites that support gene expression. During the past several years our laboratory has been addressing intranuclear trafficking mechanisms that direct transcription factors to transcriptionally active nuclear microenvironments. We are pursuing these studies using the AML/Runx/Cbfa transcription factors that govern hematopoietic and bone-specific transcription as a paradigm. Our objective is to gain insight into linkage of intranuclear organization of genes, transcripts, and regulatory proteins with fidelity of biological control and contributions of aberrant nuclear structure/function relationships to the onset and progression of tumorigenesis.
Collapse
Affiliation(s)
- Gary S Stein
- Department of Cell Biology and Cancer Center, University of Massachusetts Medical School, 55 Lake Ave. North, Worcester, MA 01655, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Ogawa H, Yu RT, Haraguchi T, Hiraoka Y, Nakatani Y, Morohashi KI, Umesono K. Nuclear structure-associated TIF2 recruits glucocorticoid receptor and its target DNA. Biochem Biophys Res Commun 2004; 320:218-25. [PMID: 15207724 DOI: 10.1016/j.bbrc.2004.05.161] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2004] [Indexed: 10/26/2022]
Abstract
Assembly of multi-protein complexes on promoter and enhancer elements is a prerequisite for onset of gene transcription. At the beginning of this process, transcription factors are thought to act as nucleating centers for complex formation through the binding of their target DNA sequences, and thereafter recruit coactivators. Here, we investigated this process of assembly by determining the distribution of the glucocorticoid receptor (GR) and its coactivator, TIF2. Both endogenously and ectopically expressed TIF2 were shown to form foci in the nucleus, and GR could be recruited to the TIF2 foci upon GR agonist but not antagonist treatment. Moreover, we show that the coactivators, p300 and PCAF, are also recruited to the TIF2 foci. The TIF2 foci could recruit GR carrying a microinjected GR responsive element. We propose that TIF2 provides a nuclear compartment that allows the assembly of multi-protein complexes required for GR-mediated gene activation.
Collapse
Affiliation(s)
- Hidesato Ogawa
- Department of Biochemistry, Institute for Virus Research, Kyoto University, Japan.
| | | | | | | | | | | | | |
Collapse
|
5
|
Zaidi SK, Young DW, Choi JY, Pratap J, Javed A, Montecino M, Stein JL, Lian JB, van Wijnen AJ, Stein GS. Intranuclear trafficking: organization and assembly of regulatory machinery for combinatorial biological control. J Biol Chem 2004; 279:43363-6. [PMID: 15277516 DOI: 10.1074/jbc.r400020200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The molecular logistics of nuclear regulatory processes necessitate temporal and spatial regulation of protein-protein and protein-DNA interactions in response to physiological cues. Biochemical, in situ, and in vivo genetic evidence demonstrates the requirement for intranuclear localization of regulatory complexes that functionally couple cellular responses to signals that mediate combinatorial control of gene expression. We have summarized evidence that subnuclear targeting of transcription factors mechanistically links gene expression with architectural organization and assembly of nuclear regulatory machinery for biological control. The compromised intranuclear targeting of regulatory proteins under pathological conditions provides options for the diagnosis and treatment of disease.
Collapse
Affiliation(s)
- Sayyed K Zaidi
- Department of Cell Biology, University of Massachusetts Medical School, Worcester 01655, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Zaidi SK, Young DW, Pockwinse SM, Javed A, Lian JB, Stein JL, van Wijnen AJ, Stein GS. Mitotic partitioning and selective reorganization of tissue-specific transcription factors in progeny cells. Proc Natl Acad Sci U S A 2003; 100:14852-7. [PMID: 14657346 PMCID: PMC299826 DOI: 10.1073/pnas.2533076100] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2003] [Indexed: 11/18/2022] Open
Abstract
Postmitotic gene expression requires restoration of nuclear organization and assembly of regulatory complexes. The hematopoietic and osteogenic Runx (Cbfa/AML) transcription factors are punctately organized in the interphase nucleus and provide a model for understanding the subnuclear organization of tissue-specific regulatory proteins after mitosis. Here we have used quantitative in situ immunofluorescence microscopy and quantitative image analysis to show that Runx factors undergo progressive changes in cellular localization during mitosis while retaining a punctate distribution. In comparison, the acetyl transferase p300 and acetylated histone H4 remain localized with DNA throughout mitosis while the RNA processing factor SC35 is excluded from mitotic chromatin. Subnuclear organization of Runx foci is completely restored in telophase, and Runx proteins are equally partitioned into progeny nuclei. In contrast, subnuclear organization of SC35 is restored subsequent to telophase. Our results show a sequential reorganization of Runx and its coregulatory proteins that precedes restoration of RNA processing speckles. Thus, mitotic partitioning and spatiotemporal reorganization of regulatory proteins together render progeny cells equivalently competent to support phenotypic gene expression.
Collapse
Affiliation(s)
- Sayyed K Zaidi
- Department of Cell Biology and Cancer Center, University of Massachusetts Medical School, Worcester, MA 01655-0105, USA
| | | | | | | | | | | | | | | |
Collapse
|
7
|
DeSousa D, Mukhopadhyay M, Pelka P, Zhao X, Dey BK, Robert V, Pélisson A, Bucheton A, Campos AR. A novel double-stranded RNA-binding protein, disco interacting protein 1 (DIP1), contributes to cell fate decisions during Drosophila development. J Biol Chem 2003; 278:38040-50. [PMID: 12829713 DOI: 10.1074/jbc.m303512200] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We report the identification of the Disco Interacting Protein 1 (DIP1) gene isolated in a yeast interaction trap screen using the zinc finger protein disconnected (disco) as a bait. DIP1 encodes a protein containing two double-stranded RNA binding domains (dsRBD). Consistent with the presence of dsRBD, DIP1 binds dsRNA or structured RNAs in Northwestern assays. DIP1 is found in nuclear subdomains resembling speckles known to accumulate transcription and splicing factors. In early embryos, nuclear localization of DIP1 protein coincides with the onset of zygotic gene expression. Later in development DIP1 expression is decreased in dividing cells in different tissues. Overexpression of DIP1 in the eye-antennal imaginal disc, early in embryonic and larval development, causes the formation of supernumerary structures in the head capsule. A role for DIP1 in epigenetic mechanisms that lead to the establishment and/or maintenance of cell fate specification is discussed.
Collapse
Affiliation(s)
- Dorothy DeSousa
- Department of Biology, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Stein GS, Lian JB, Stein JL, van Wijnen AJ, Montecino M, Pratap J, Choi J, Zaidi SK, Javed A, Gutierrez S, Harrington K, Shen J, Young D. Intranuclear organization of RUNX transcriptional regulatory machinery in biological control of skeletogenesis and cancer. Blood Cells Mol Dis 2003; 30:170-6. [PMID: 12732180 DOI: 10.1016/s1079-9796(03)00029-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
RUNX (AML/CBFA/PEBP2) transcription factors serve as paradigms for obligatory relationships between nuclear structure and physiological control of phenotypic gene expression. The RUNX proteins contribute to tissue restricted transcription by sequence-specific binding to promoter elements of target genes and serving as scaffolds for the assembly of coregulatory complexes that mediate biochemical and architectural control of activity. We will present an overview of approaches we are pursuing to address: (1) the involvement of RUNX proteins in governing competency for protein/DNA and protein/protein interactions at promoter regulatory sequences; (2) the recruitment of RUNX factors to subnuclear sites where the machinery for expression or repression of target genes is organized; and (3) the trafficking and integration of regulatory signals that control RUNX-mediated transcription.
Collapse
Affiliation(s)
- Gary S Stein
- Department of Cell Biology and Cancer Center, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Stein GS, Lian JB, Stein JL, Wijnen AJV, Montecino M, Javed A, Pratap J, Choi J, Zaidi SK, Gutierrez S, Harrington K, Shen J, Young D. Intranuclear trafficking of transcription factors: Requirements for vitamin D-mediated biological control of gene expression. J Cell Biochem 2003; 88:340-55. [PMID: 12520536 DOI: 10.1002/jcb.10364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The architecturally associated subnuclear organization of nucleic acids and cognate regulatory factors suggest functional interrelationships between nuclear structure and gene expression. Mechanisms that contribute to the spatial distribution of transcription factors within the three-dimensional context of nuclear architecture control the sorting of regulatory information as well as the assembly and activities of sites within the nucleus that support gene expression. Vitamin D control of gene expression serves as a paradigm for experimentally addressing mechanisms that govern the intranuclear targeting of regulatory factors to nuclear domains where transcription of developmental and tissue-specific genes occur. We will present an overview of molecular, cellular, genetic, and biochemical approaches that provide insight into the trafficking of regulatory factors that mediate vitamin D control of gene expression to transcriptionally active subnuclear sites. Examples will be presented that suggest modifications in the intranuclear targeting of transcription factors abrogate competency for vitamin D control of skeletal gene expression during development and fidelity of gene expression in tumor cells.
Collapse
Affiliation(s)
- Gary S Stein
- Department of Cell Biology, University of Massachusetts Medical School, 55 Lake Ave. North, Worcester, Massachusetts 01655, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Aesøy R, Mellgren G, Morohashi KI, Lund J. Activation of cAMP-dependent protein kinase increases the protein level of steroidogenic factor-1. Endocrinology 2002; 143:295-303. [PMID: 11751621 DOI: 10.1210/endo.143.1.8599] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The orphan nuclear receptor steroidogenic factor 1 (SF-1) is an essential regulator of endocrine organogenesis, sexual differentiation, and steroidogenesis. SF-1 is a transcriptional regulator of cAMP responsive genes, but the exact mechanisms by which cAMP-dependent PKA modulates SF-1 dependent transcription leading to increased steroidogenic output have not been determined. In this report the effects of PKA activation on SF-1 in living cells have been examined by the use of full-length SF-1 cDNA fused to the cDNA encoding green fluorescent protein (GFP). The GFP-SF-1 fusion protein localized to the nucleus of both steroidogenic Y1 cells and nonsteroidogenic COS-1 cells, and the functional properties of wild-type SF-1 were conserved. When the catalytic subunit of PKA was coexpressed with GFP-SF-1, we observed that the fluorescence emission was markedly elevated. These findings were confirmed by Western blot analysis, showing that stimulation of PKA increased SF-1 protein levels. The PKA- induced expression of SF-1 protein was not accompanied by an increase in SF-1 mRNA levels. However, pulse-chase studies showed a decrease in SF-1 degradation rate in response to activation of PKA, indicating that PKA elevates the level of SF-1 by increasing the stability of SF-1 protein.
Collapse
Affiliation(s)
- Reidun Aesøy
- Department of Anatomy and Cell Biology, University of Bergen, Aarstadveien 19, N-5009 Bergen, Norway.
| | | | | | | |
Collapse
|
11
|
Jiang M, Axe T, Holgate R, Rubbi CP, Okorokov AL, Mee T, Milner J. p53 binds the nuclear matrix in normal cells: binding involves the proline-rich domain of p53 and increases following genotoxic stress. Oncogene 2001; 20:5449-58. [PMID: 11571642 DOI: 10.1038/sj.onc.1204705] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2001] [Revised: 05/31/2001] [Accepted: 06/08/2001] [Indexed: 11/09/2022]
Abstract
The tumour suppressor p53 is a multifunctional protein important for the maintenance of genomic integrity. It is able to form molecular complexes with different DNA targets and also with cellular proteins involved in DNA transcription and DNA repair. In mammalian cells the biochemical processing of DNA occurs on a nuclear sub-structure termed the nuclear matrix. Previously Deppert and co-workers have identified p53 in association with the nuclear matrix in viral- and non-viral transformed cell lines. In the present study we demonstrate, for the first time, that p53 is bound to the nuclear matrix in primary cultures of normal mammalian cells and that this binding increases following DNA damage. Analysis of cell lines expressing structural mutants of p53 revealed that association with the nuclear matrix is independent of the tertiary and quaternary structure of p53. However, the proline-rich domain towards the N-terminus of p53 (residues 67 to 98) appeared important for binding to the nuclear matrix. This was demonstrated by TET-ON regulated expression of p53-derived constructs in p53(-/-) murine embryonic fibroblasts (MEF p53(-/-)). The proline-rich domain of p53 has potential for SH3 protein-protein interaction, and has a role in p53-mediated apoptosis and possibly base excision repair of DNA damage. We discuss our observations in relation to the ability of p53 to facilitate DNA repair and also review evidence indicating that matrix-bound p53 in SV40-transformed cells may facilitate the transforming potential of SV40 large T antigen.
Collapse
Affiliation(s)
- M Jiang
- YCR P53 Research Group, Department of Biology, University of York, YO10 5DD, UK
| | | | | | | | | | | | | |
Collapse
|
12
|
Mattick JS, Gagen MJ. The evolution of controlled multitasked gene networks: the role of introns and other noncoding RNAs in the development of complex organisms. Mol Biol Evol 2001; 18:1611-30. [PMID: 11504843 DOI: 10.1093/oxfordjournals.molbev.a003951] [Citation(s) in RCA: 295] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Eukaryotic phenotypic diversity arises from multitasking of a core proteome of limited size. Multitasking is routine in computers, as well as in other sophisticated information systems, and requires multiple inputs and outputs to control and integrate network activity. Higher eukaryotes have a mosaic gene structure with a dual output, mRNA (protein-coding) sequences and introns, which are released from the pre-mRNA by posttranscriptional processing. Introns have been enormously successful as a class of sequences and comprise up to 95% of the primary transcripts of protein-coding genes in mammals. In addition, many other transcripts (perhaps more than half) do not encode proteins at all, but appear both to be developmentally regulated and to have genetic function. We suggest that these RNAs (eRNAs) have evolved to function as endogenous network control molecules which enable direct gene-gene communication and multitasking of eukaryotic genomes. Analysis of a range of complex genetic phenomena in which RNA is involved or implicated, including co-suppression, transgene silencing, RNA interference, imprinting, methylation, and transvection, suggests that a higher-order regulatory system based on RNA signals operates in the higher eukaryotes and involves chromatin remodeling as well as other RNA-DNA, RNA-RNA, and RNA-protein interactions. The evolution of densely connected gene networks would be expected to result in a relatively stable core proteome due to the multiple reuse of components, implying that cellular differentiation and phenotypic variation in the higher eukaryotes results primarily from variation in the control architecture. Thus, network integration and multitasking using trans-acting RNA molecules produced in parallel with protein-coding sequences may underpin both the evolution of developmentally sophisticated multicellular organisms and the rapid expansion of phenotypic complexity into uncontested environments such as those initiated in the Cambrian radiation and those seen after major extinction events.
Collapse
Affiliation(s)
- J S Mattick
- Centre for Functional and Applied Genomics, Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia.
| | | |
Collapse
|
13
|
Cocco L, Martelli AM, Barnabei O, Manzoli FA. Nuclear inositol lipid signaling. ADVANCES IN ENZYME REGULATION 2001; 41:361-84. [PMID: 11384755 DOI: 10.1016/s0065-2571(00)00017-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- L Cocco
- Cellular Signaling Laboratory, Department of Anatomical Sciences, University of Bologna, Via Irnerio, 48, I-40126, Bologna, Italy
| | | | | | | |
Collapse
|
14
|
Stenoien DL, Nye AC, Mancini MG, Patel K, Dutertre M, O'Malley BW, Smith CL, Belmont AS, Mancini MA. Ligand-mediated assembly and real-time cellular dynamics of estrogen receptor alpha-coactivator complexes in living cells. Mol Cell Biol 2001; 21:4404-12. [PMID: 11390668 PMCID: PMC87100 DOI: 10.1128/mcb.21.13.4404-4412.2001] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Studies with live cells demonstrate that agonist and antagonist rapidly (within minutes) modulate the subnuclear dynamics of estrogen receptor alpha (ER) and steroid receptor coactivator 1 (SRC-1). A functional cyan fluorescent protein (CFP)-tagged lac repressor-ER chimera (CFP-LacER) was used in live cells to discretely immobilize ER on stably integrated lac operator arrays to study recruitment of yellow fluorescent protein (YFP)-steroid receptor coactivators (YFP-SRC-1 and YFP-CREB binding protein [CBP]). In the absence of ligand, YFP-SRC-1 is found dispersed throughout the nucleoplasm, with a surprisingly high accumulation on the CFP-LacER arrays. Agonist addition results in the rapid (within minutes) recruitment of nucleoplasmic YFP-SRC-1, while antagonist additions diminish YFP-SRC-1-CFP-LacER associations. Less ligand-independent colocalization is observed with CFP-LacER and YFP-CBP, but agonist-induced recruitment occurs within minutes. The agonist-induced recruitment of coactivators requires helix 12 and critical residues in the ER-SRC-1 interaction surface, but not the F, AF-1, or DNA binding domains. Fluorescence recovery after photobleaching indicates that YFP-SRC-1, YFP-CBP, and CFP-LacER complexes undergo rapid (within seconds) molecular exchange even in the presence of an agonist. Taken together, these data suggest a dynamic view of receptor-coregulator interactions that is now amenable to real-time study in living cells.
Collapse
Affiliation(s)
- D L Stenoien
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Philimonenko VV, Flechon JE, Hozák P. The nucleoskeleton: a permanent structure of cell nuclei regardless of their transcriptional activity. Exp Cell Res 2001; 264:201-10. [PMID: 11262177 DOI: 10.1006/excr.2001.5150] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Nuclear matrix or nucleoskeleton is thought to provide structural basis for intranuclear order. However, the nature of this structure is still uncertain because of numerous technical difficulties in its visualization. To reveal the "real" morphology of the nucleoskeleton, and to identify possible sources of structural artifacts, three methods of nucleoskeleton preparations were compared. The nucleoskeleton visualized by all these techniques consists of identical elements: nuclear lamina and an inner network comprising core filaments and the "diffuse" nucleoskeleton. We then tested if the nucleoskeleton is a stable structure or a transient transcription-dependent structure. Incubation with transcription inhibitors (alpha-amanitin, actinomycin D, and DRB) for various periods of time had no obvious effect on the morphology of the nucleoskeleton. A typical nucleoskeleton structure was observed also in a physiological model-in transcriptionally inactive mouse 2-cell embryos and in active 8- to 16-cell embryos. Our data suggest that the nucleoskeleton is a permanent structure of the cell nucleus regardless of the nuclear transcriptional state, and the principal architecture of the nucleoskeleton is identical throughout the interphase.
Collapse
Affiliation(s)
- V V Philimonenko
- Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Vídenská 1083, Prague 4-Krc, 142 20, Czech Republic
| | | | | |
Collapse
|
16
|
Djabali K, Aita VM, Christiano AM. Hairless is translocated to the nucleus via a novel bipartite nuclear localization signal and is associated with the nuclear matrix. J Cell Sci 2001; 114:367-76. [PMID: 11148138 DOI: 10.1242/jcs.114.2.367] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hair follicle cycling is an exquisitely regulated and dynamic process consisting of phases of growth, regression and quiescence. The transitions between the phases are governed by a growing number of regulatory proteins, including transcription factors. The hairless (hr) gene encodes a putative transcription factor that is highly expressed in the skin, where it appears to be an essential regulator during the regression of the catagen hair follicle. In hairless mice, as well as humans with congenital atrichia, the absence of hr gene function initiates a premature and abnormal catagen due to a dysregulation of apoptosis and cell adhesion, and defects in the signaling required for hair follicle remodeling. Here, we report structure-function studies of the hairless gene product, in which we identify a novel bipartite nuclear localization signal (NLS) of the form KRA(X13) PKR. Deletion analysis of the mouse hr gene mapped the NLS to amino acid residues 409–427. Indirect immunofluorescence microscopy of cells transiently transfected with hairless-green fluorescent fusion proteins demonstrated that these amino acid residues are necessary and sufficient for nuclear localization. Furthermore, nuclear fractionation analysis revealed that the hr protein is associated with components of the nuclear matrix.
Collapse
Affiliation(s)
- K Djabali
- Departments of Dermatology and Genetics & Development, Columbia University, College of Physicians & Surgeons, New York, New York, USA
| | | | | |
Collapse
|
17
|
Stein GS, van Wijnen AJ, Stein JL, Lian JB, Montecino M, Zaidi K, Javed A. Subnuclear organization and trafficking of regulatory proteins: Implications for biological control and cancer. J Cell Biochem 2001. [DOI: 10.1002/1097-4644(2000)79:35+<84::aid-jcb1130>3.0.co;2-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
18
|
Staal A, Enserink JM, Stein JL, Stein GS, van Wijnen AJ. Molecular characterization of celtix-1, a bromodomain protein interacting with the transcription factor interferon regulatory factor 2. J Cell Physiol 2000; 185:269-79. [PMID: 11025449 DOI: 10.1002/1097-4652(200011)185:2<269::aid-jcp12>3.0.co;2-l] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Transcriptional control at the G1/S-phase transition of the cell cycle requires functional interactions of multimeric promoter regulatory complexes that contain DNA binding proteins, transcriptional cofactors, and/or chromatin modifying enzymes. Transcriptional regulation of the human histone H4/n gene (FO108) is mediated by Interferon Regulatory Factor-2 (IRF-2), as well as other histone gene promoter factors. To identify proteins that interact with cell-cycle regulatory factors, we performed yeast two-hybrid analysis with IRF-2 and identified a novel human protein termed Celtix-1 which binds to IRF-2. Celtix-1 contains several phylogenetically conserved domains, including a bromodomain, which is found in a number of transcriptional cofactors. Using a panel of IRF-2 deletion mutants in yeast two-hybrid assays, we established that Celtix-1 contacts the C-terminus of IRF-2. Celtix-1 directly interacts with IRF-2 based on binding studies with glutathione S-transferase (GST)/IRF-2 fusion proteins, and immunofluorescence studies suggest that Celtix-1 and IRF-2 associate in situ. Celtix-1 is distributed throughout the nucleus in a heterodisperse pattern. A subset of Celtix-1 colocalizes with the hyperacetylated forms of histones H3 and H4, as well as with the hyperphosphorylated, transcriptionally active form of RNA polymerase II. We conclude that the bromodomain protein Celtix-1 is a novel IRF-2 interacting protein that associates with transcriptionally active chromatin in situ.
Collapse
Affiliation(s)
- A Staal
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | | | | | | | | |
Collapse
|
19
|
Davie JR, Spencer VA. Signal transduction pathways and the modification of chromatin structure. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2000; 65:299-340. [PMID: 11008491 DOI: 10.1016/s0079-6603(00)65008-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Mechanical and chemical signaling pathways are involved in transmitting information from the exterior of a cell to its chromatin. The mechanical signaling pathway consists of a tissue matrix system that links together the three-dimensional skeletal networks, the extracellular matrix, cytoskeleton, and karyoskeleton. The tissue matrix system governs cell and nuclear shape and forms a structural and functional connection between the cell periphery and chromatin. Further, this mechanical signaling pathway has a role in controlling cell cycle progression and gene expression. Chemical signaling pathways such as the Ras/mitogen-activated protein kinase (MAPK) pathway can stimulate the activity of kinases that modify transcription factors, nonhistone chromosomal proteins, and histones. Activation of the Ras/MAPK pathway results in the alteration of chromatin structure and gene expression. The tissue matrix and chemical signaling pathways are not independent and one signaling pathway can affect the other. In this chapter, we will review chromatin organization, histone variants and modifications, and the impact that signaling pathways have on chromatin structure and function.
Collapse
Affiliation(s)
- J R Davie
- Manitoba Institute of Cell Biology, University of Manitoba, Winnipeg, Canada
| | | |
Collapse
|
20
|
Stein GS, van Wijnen AJ, Stein JL, Lian JB, Montecino M, Choi J, Zaidi K, Javed A. Intranuclear trafficking of transcription factors: implications for biological control. J Cell Sci 2000; 113 ( Pt 14):2527-33. [PMID: 10862710 DOI: 10.1242/jcs.113.14.2527] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The subnuclear organization of nucleic acids and cognate regulatory factors suggests that there are functional interrelationships between nuclear structure and gene expression. Nuclear proteins that are localized in discrete domains within the nucleus include the leukemia-associated acute myelogenous leukemia (AML) and promyelocytic leukemia (PML) factors, the SC-35 RNA-processing factors, nucleolar proteins and components of both transcriptional and DNA replication complexes. Mechanisms that control the spatial distribution of transcription factors within the three-dimensional context of the nucleus may involve the sorting of regulatory information, as well as contribute to the assembly and activity of sites that support gene expression. Molecular, cellular, genetic and biochemical approaches have identified distinct protein segments, termed intranuclear-targeting signals, that are responsible for directing regulatory factors to specific subnuclear sites. Gene rearrangements that remove or alter intranuclear-targeting signals are prevalent in leukemias and have been linked to altered localization of regulatory factors within the nucleus. These modifications in the intranuclear targeting of transcription factors might abrogate fidelity of gene expression in tumor cells by influencing the spatial organization and/or assembly of machineries involved in the synthesis and processing of gene transcripts.
Collapse
Affiliation(s)
- G S Stein
- Department of Cell Biology and Cancer Center, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA
| | | | | | | | | | | | | | | |
Collapse
|
21
|
von Mikecz A, Zhang S, Montminy M, Tan EM, Hemmerich P. CREB-binding protein (CBP)/p300 and RNA polymerase II colocalize in transcriptionally active domains in the nucleus. J Cell Biol 2000; 150:265-73. [PMID: 10893273 PMCID: PMC2185550 DOI: 10.1083/jcb.150.1.265] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The spatial organization of transcription- associated proteins is an important control mechanism of eukaryotic gene expression. Here we analyzed the nuclear distribution of the transcriptional coactivators CREB-binding protein (CBP)/p300 in situ by confocal laser scanning microscopy, and in vivo complex formation by coimmunoprecipitation. A subpopulation of CBP and p300 is targeted to active sites of transcription and partially colocalizes with hyper- and hypophosphorylated RNA polymerase II (pol II) in discrete regions of variable size throughout the nucleus. However, the coactivators were found in tight association with hypophosphorylated, but not hyperphosphorylated pol II. Transcriptional inhibition induced a relocation of CBP/p300 and pol II into speckles. Moreover, double and triple immunofluorescence analyses revealed the presence of CBP, p300, and pol II in a subset of promyelocytic leukemia (PML) bodies. Our results provide evidence for a dynamic spacial link between coactivators of transcription and the basal transcription machinery in discrete nuclear domains dependent upon the transcriptional activity of the cell. The identification of pol II in CBP/PML-containing nuclear bodies supports the idea that transcription takes place at PML bodies.
Collapse
Affiliation(s)
- Anna von Mikecz
- Junior Research Group of Molecular Cell Biology, Medizinisches Institut für Umwelthygiene, Heinrich-Heine-Universät Düsseldorf, 40225 Düsseldorf, Germany
- Department of Experimental Medicine, The Scripps Research Institute, La Jolla, California 92037
| | - Suisheng Zhang
- Department of Biochemistry, Institut für Molekulare Biotechnologie, 07745 Jena, Germany
| | | | - Eng M. Tan
- Department of Experimental Medicine, The Scripps Research Institute, La Jolla, California 92037
| | - Peter Hemmerich
- Department of Molecular Biology, Institut für Molekulare Biotechnologie, 07745 Jena, Germany
- Department of Experimental Medicine, The Scripps Research Institute, La Jolla, California 92037
| |
Collapse
|
22
|
Stenoien DL, Mancini MG, Patel K, Allegretto EA, Smith CL, Mancini MA. Subnuclear trafficking of estrogen receptor-alpha and steroid receptor coactivator-1. Mol Endocrinol 2000; 14:518-34. [PMID: 10770489 DOI: 10.1210/mend.14.4.0436] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
We have analyzed ligand-dependent, subnuclear movements of the estrogen receptor-alpha (ERalpha) in terms of both spatial distribution and solubility partitioning. Using a transcriptionally active green fluorescent protein-ERalpha chimera (GFP-ERalpha), we find that 17beta-estradiol (E2) changes the normally diffuse nucleoplasmic pattern of GFP-ERalpha to a hyperspeckled distribution within 10-20 min. A similar reorganization occurs with the partial antagonist 4-hydroxytamoxifen; only a subtle effect was observed with the pure antagonist ICI 182,780. To examine the influence of ligand upon ERalpha association with nuclear structure, MCF-7 cells were extracted to reveal the nuclear matrix (NM). Addition of E2, 4-hydroxytamoxifen, or ICI 182,780 causes ERalpha to partition with the NM-bound fraction on a similar time course (10-20 min) as the spatial reorganization suggesting that the two events are related. To determine the effects of E2 on the redistribution and solubility of GFP-ERalpha, individual cells were directly examined during both hormone addition and NM extraction and showed that GFP-ERalpha movement and NM association were coincident. Colocalization experiments were performed with antibodies to identify sites of transcription (RNA pol Ilo) and splicing domains (SRm160). Using E2 treated MCF-7 cells, minor overlap was observed with transcription sites and a small amount of the total ERalpha pool. Experiments performed with bioluminescent derivatives of ERalpha and steroid receptor coactivator-1 (SRC-1) demonstrated both proteins colocalize to the same NM-bound foci in response to E2 but not the antagonists tested. Deletion mutagenesis and in situ analyses indicate intranuclear colocalization requires a central SRC-1 domain containing LXXLL motifs. Collectively, our data suggest that ERalpha transcription function is dependent upon dynamic early events including intranuclear rearrangement, NM association, and SRC-1 interactions.
Collapse
Affiliation(s)
- D L Stenoien
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | |
Collapse
|
23
|
Mitani Y, Zaidi SH, Dufourcq P, Thompson K, Rabinovitch M. Nitric oxide reduces vascular smooth muscle cell elastase activity through cGMP-mediated suppression of ERK phosphorylation and AML1B nuclear partitioning. FASEB J 2000; 14:805-14. [PMID: 10744637 DOI: 10.1096/fasebj.14.5.805] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Nitric oxide (NO) reduces the severity of pulmonary vascular disease in rats as do elastase inhibitors. We therefore hypothesized that NO inhibits elastase by suppressing mitogen-activated protein kinases that trans-activate AML1B, a transcription factor for elastase. We used cultured pulmonary artery smooth muscle cells in which serum-treated elastin (STE) induces a > threefold increase in elastase activity as evaluated by solubilization of [(3)H]-elastin. NO donors (SNAP and DETA NONOate) inhibited elastase in a dose-dependent manner as did a cGMP mimetic (8-pCPT-cGMP). SNAP inhibition of elastase was reversed by coadministration of a cGMP-PKG inhibitor (Rp-8-pCPT-cGMP). The STE-induced increase in phospho-ERK was suppressed by NO donors and the cGMP mimetic, and reversed by cGMP-PKG inhibitor, as was expression of AML1B and DNA binding in nuclear extracts. A concomitant increase in p38 phosphorylation was also inhibited by SNAP, but whereas MEK inhibitor (PD98059) suppressed elastase and AML1B-DNA binding, a p38 inhibitor (SB202190) did not. Our study uniquely links NO with inhibition of elastase-dependent matrix remodeling in vascular disease by suggesting a cGMP-PKG-related mechanism suppressing ERK-mediated partitioning of AML1B in nuclear extracts.
Collapse
Affiliation(s)
- Y Mitani
- Division of Cardiovascular Research, The Hospital for Sick Children, Department of Laboratory Medicine and Pathobiology, and Medicine, University of Toronto, Toronto, Canada
| | | | | | | | | |
Collapse
|
24
|
Rubbi CP, Milner J. Non-activated p53 co-localizes with sites of transcription within both the nucleoplasm and the nucleolus. Oncogene 2000; 19:85-96. [PMID: 10644983 DOI: 10.1038/sj.onc.1203378] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The p53 tumour suppressor functions as a sensor of genotoxic stress and, once activated, induces cell growth arrest or apoptosis. The precise intranuclear localization of latent p53 protein in non-stressed cells is unknown. Such information is essential in order to understand how relatively few molecules of p53 can detect and respond to DNA damage. Here we present the first detailed supramolecular localization of p53 in the nuclei of cells under normal conditions of growth. We show that soluble, non-bound p53 is released by permeabilization, leaving structurally bound p53 in both the nucleus and nucleolus. In situ biochemical studies reveal (i) that nuclear-bound p53 is tethered by RNA (directly or indirectly) and (ii) that a sub-population of nuclear-bound p53 co-localizes with sites of RNA synthesis. Transcriptional co-localization appeared to be independent of p53 conformation but dependent upon its quaternary structure. In the nucleolus p53 was observed at sites of rRNA synthesis and also adjacent to such sites. In contrast, nucleolar hdm-2 (shown by others to complex p53 and 5S RNA) was excluded from sites of rRNA synthesis. Our discovery that p53 is physically linked with sites of transcription may explain how relatively few p53 protein molecules can monitor genetic stress and respond preferentially to damage of actively transcribed genes.
Collapse
Affiliation(s)
- C P Rubbi
- YCR p53 Research Group, Biology Department, University of York, York YO1 5DD, UK
| | | |
Collapse
|
25
|
Affiliation(s)
- G S Stein
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA.
| | | | | | | | | |
Collapse
|
26
|
Davie JR, Samuel SK, Spencer VA, Holth LT, Chadee DN, Peltier CP, Sun JM, Chen HY, Wright JA. Organization of chromatin in cancer cells: role of signalling pathways. Biochem Cell Biol 1999. [DOI: 10.1139/o99-044] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The role of mechanical and chemical signalling pathways in the organization and function of chromatin is the subject of this review. The mechanical signalling pathway consists of the tissue matrix system that links together the three-dimensional skeletal networks, the extracellular matrix, cytoskeleton, and nuclear matrix. Intermediate filament proteins are associated with nuclear DNA, suggesting that intermediate filaments may have a role in the organization of chromatin. In human hormone-dependent breast cancer cells, the interaction between cytokeratins and chromatin is regulated by estrogens. Transcription factors, histone acetyltransferases, and histone deacetylases, which are associated with the nuclear matrix, are components of the mechanical signalling pathway. Recently, we reported that nuclear matrix-bound human and chicken histone deacetylase 1 is associated with nuclear DNA in situ, suggesting that histone deacetylase has a role in the organization of nuclear DNA. Chemical signalling pathways such as the Ras/mitogen-activated protein kinase (Ras/MAPK) pathway stimulate the activity of kinases that modify transcription factors, nonhistone chromosomal proteins, and histones. The levels of phosphorylated histones are increased in mouse fibroblasts transformed with oncogenes, the products of which stimulate the Ras/MAPK pathway. Histone phosphorylation may lead to decondensation of chromatin, resulting in aberrant gene expression.Key words: histone acetylation, histone phosphorylation, nuclear matrix, cytoskeleton, histone deacetylase, cancer.
Collapse
|
27
|
Yu S, Davis AT, Guo C, Green JE, Ahmed K. Differential targeting of protein kinase CK2 to the nuclear matrix upon transient overexpression of its subunits. J Cell Biochem 1999. [DOI: 10.1002/(sici)1097-4644(19990701)74:1<127::aid-jcb14>3.0.co;2-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
28
|
Hendzel MJ, Boisvert F, Bazett-Jones DP. Direct visualization of a protein nuclear architecture. Mol Biol Cell 1999; 10:2051-62. [PMID: 10359614 PMCID: PMC25413 DOI: 10.1091/mbc.10.6.2051] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Whether the cell nucleus is organized by an underlying architecture analagous to the cytoskeleton has been a highly contentious issue since the original isolation of a nuclease and salt-resistant nuclear matrix. Despite electron microscopy studies that show that a nuclear architecture can be visualized after fractionation, the necessity to elute chromatin to visualize this structure has hindered general acceptance of a karyoskeleton. Using an analytical electron microscopy method capable of quantitative elemental analysis, electron spectroscopic imaging, we show that the majority of the fine structure within interchromatin regions of the cell nucleus in fixed whole cells is not nucleoprotein. Rather, this fine structure is compositionally similar to known protein-based cellular structures of the cytoplasm. This study is the first demonstration of a protein network in unfractionated and uninfected cells and provides a method for the ultrastructural characterization of the interaction of this protein architecture with chromatin and ribonucleoprotein elements of the cell nucleus.
Collapse
Affiliation(s)
- M J Hendzel
- Department of Cell Biology and Anatomy, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada T2N 4N1
| | | | | |
Collapse
|
29
|
Stein GS, van Wijnen AJ, Stein JL, Lian JB, McNeil S, Pockwinse SM. Transcriptional control within the three-dimensional context of nuclear architecture: Requirements for boundaries and direction. J Cell Biochem 1999. [DOI: 10.1002/(sici)1097-4644(1999)75:32+<24::aid-jcb4>3.0.co;2-v] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
30
|
|