1
|
Bajpai A, Li R, Chen W. The cellular mechanobiology of aging: from biology to mechanics. Ann N Y Acad Sci 2020; 1491:3-24. [PMID: 33231326 DOI: 10.1111/nyas.14529] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 10/10/2020] [Accepted: 10/21/2020] [Indexed: 12/14/2022]
Abstract
Aging is a chronic, complicated process that leads to degenerative physical and biological changes in living organisms. Aging is associated with permanent, gradual physiological cellular decay that affects all aspects of cellular mechanobiological features, including cellular cytoskeleton structures, mechanosensitive signaling pathways, and forces in the cell, as well as the cell's ability to sense and adapt to extracellular biomechanical signals in the tissue environment through mechanotransduction. These mechanobiological changes in cells are directly or indirectly responsible for dysfunctions and diseases in various organ systems, including the cardiovascular, musculoskeletal, skin, and immune systems. This review critically examines the role of aging in the progressive decline of the mechanobiology occurring in cells, and establishes mechanistic frameworks to understand the mechanobiological effects of aging on disease progression and to develop new strategies for halting and reversing the aging process. Our review also highlights the recent development of novel bioengineering approaches for studying the key mechanobiological mechanisms in aging.
Collapse
Affiliation(s)
- Apratim Bajpai
- Department of Mechanical and Aerospace Engineering, Tandon School of Engineering, New York University, Brooklyn, New York
| | - Rui Li
- Department of Mechanical and Aerospace Engineering, Tandon School of Engineering, New York University, Brooklyn, New York.,Department of Biomedical Engineering, Tandon School of Engineering, New York University, Brooklyn, New York
| | - Weiqiang Chen
- Department of Mechanical and Aerospace Engineering, Tandon School of Engineering, New York University, Brooklyn, New York.,Department of Biomedical Engineering, Tandon School of Engineering, New York University, Brooklyn, New York.,Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, New York
| |
Collapse
|
2
|
Centrosome dysfunction: a link between senescence and tumor immunity. Signal Transduct Target Ther 2020; 5:107. [PMID: 32606370 PMCID: PMC7327052 DOI: 10.1038/s41392-020-00214-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 06/08/2020] [Indexed: 12/16/2022] Open
Abstract
Centrosome aberrations are hallmarks of human cancers and contribute to the senescence process. Structural and numerical centrosome abnormalities trigger mitotic errors, cellular senescence, cell death, genomic instability and/or aneuploidy, resulting in human disorders such as aging and cancer and affecting immunity. Interestingly, centrosome dysfunction promotes the secretion of multiple inflammatory factors that act as pivotal drivers of senescence and tumor immune escape. In this review, we summarize the forms of centrosome dysfunction and further discuss recent advances indicating that centrosome defects contribute to acceleration of senescence progression and promotion of tumor cell immune evasion in different ways.
Collapse
|
3
|
Bejarano E, Murray JW, Wang X, Pampliega O, Yin D, Patel B, Yuste A, Wolkoff AW, Cuervo AM. Defective recruitment of motor proteins to autophagic compartments contributes to autophagic failure in aging. Aging Cell 2018; 17:e12777. [PMID: 29845728 PMCID: PMC6052466 DOI: 10.1111/acel.12777] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/28/2018] [Indexed: 12/11/2022] Open
Abstract
Inability to preserve proteostasis with age contributes to the gradual loss of function that characterizes old organisms. Defective autophagy, a component of the proteostasis network for delivery and degradation of intracellular materials in lysosomes, has been described in multiple old organisms, while a robust autophagy response has been linked to longevity. The molecular mechanisms responsible for defective autophagic function with age remain, for the most part, poorly characterized. In this work, we have identified differences between young and old cells in the intracellular trafficking of the vesicular compartments that participate in autophagy. Failure to reposition autophagosomes and lysosomes toward the perinuclear region with age reduces the efficiency of their fusion and the subsequent degradation of the sequestered cargo. Hepatocytes from old mice display lower association of two microtubule-based minus-end-directed motor proteins, the well-characterized dynein, and the less-studied KIFC3, with autophagosomes and lysosomes, respectively. Using genetic approaches to mimic the lower levels of KIFC3 observed in old cells, we confirmed that reduced content of this motor protein in fibroblasts leads to failed lysosomal repositioning and diminished autophagic flux. Our study connects defects in intracellular trafficking with insufficient autophagy in old organisms and identifies motor proteins as a novel target for future interventions aiming at correcting autophagic activity with anti-aging purposes.
Collapse
Affiliation(s)
- Eloy Bejarano
- Department of Developmental and Molecular Biology; Albert Einstein College of Medicine; Bronx New York
- Institute for Aging Studies; Albert Einstein College of Medicine; Bronx New York
| | - John W. Murray
- Marion Bessin Liver Research Center; Albert Einstein College of Medicine; Bronx New York
- Department of Anatomy and Structural Biology; Albert Einstein College of Medicine; Bronx New York
| | - Xintao Wang
- Marion Bessin Liver Research Center; Albert Einstein College of Medicine; Bronx New York
- Department of Anatomy and Structural Biology; Albert Einstein College of Medicine; Bronx New York
| | - Olatz Pampliega
- Institut des Maladies Neurodégénératives UMR5293; Universite de Bordeaux; Bordeaux France
- CNRS; Institut des Maladies Neurodégénératives; UMR 5293 C Bordeaux Cedex France
| | - David Yin
- Marion Bessin Liver Research Center; Albert Einstein College of Medicine; Bronx New York
| | - Bindi Patel
- Department of Developmental and Molecular Biology; Albert Einstein College of Medicine; Bronx New York
- Institute for Aging Studies; Albert Einstein College of Medicine; Bronx New York
| | - Andrea Yuste
- Department of Developmental and Molecular Biology; Albert Einstein College of Medicine; Bronx New York
- Institute for Aging Studies; Albert Einstein College of Medicine; Bronx New York
| | - Allan W. Wolkoff
- Marion Bessin Liver Research Center; Albert Einstein College of Medicine; Bronx New York
- Department of Anatomy and Structural Biology; Albert Einstein College of Medicine; Bronx New York
- Division of Hepatology, Albert Einstein College of Medicine and; Montefiore Medical Center; Bronx New York
| | - Ana Maria Cuervo
- Department of Developmental and Molecular Biology; Albert Einstein College of Medicine; Bronx New York
- Institute for Aging Studies; Albert Einstein College of Medicine; Bronx New York
- Marion Bessin Liver Research Center; Albert Einstein College of Medicine; Bronx New York
- Department of Anatomy and Structural Biology; Albert Einstein College of Medicine; Bronx New York
| |
Collapse
|
4
|
Functions and dysfunctions of the mammalian centrosome in health, disorders, disease, and aging. Histochem Cell Biol 2018; 150:303-325. [PMID: 30062583 DOI: 10.1007/s00418-018-1698-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2018] [Indexed: 01/17/2023]
Abstract
Since its discovery well over 100 years ago (Flemming, in Sitzungsber Akad Wissensch Wien 71:81-147, 1875; Van Beneden, in Bull Acad R Belg 42:35-97, 1876) the centrosome is increasingly being recognized as a most impactful organelle for its role not only as primary microtubule organizing center (MTOC) but also as a major communication center for signal transduction pathways and as a center for proteolytic activities. Its significance for cell cycle regulation has been well studied and we now also know that centrosome dysfunctions are implicated in numerous diseases and disorders including cancer, Alstrom syndrome, Bardet-Biedl syndrome, Huntington's disease, reproductive disorders, and several other diseases and disorders. The present review is meant to build on information presented in the previous review (Schatten, in Histochem Cell Biol 129:667-686, 2008) and to highlight functions of the mammalian centrosome in health, and dysfunctions in disorders, disease, and aging with six sections focused on (1) centrosome structure and functions, and new insights into the role of centrosomes in cell cycle progression; (2) the role of centrosomes in tumor initiation and progression; (3) primary cilia, centrosome-primary cilia interactions, and consequences for cell cycle functions in health and disease; (4) transitions from centrosome to non-centrosome functions during cellular polarization; (5) other centrosome dysfunctions associated with the pathogenesis of human disease; and (6) centrosome functions in oocyte germ cells and dysfunctions in reproductive disorders and reproductive aging.
Collapse
|
5
|
Dhondt I, Petyuk VA, Bauer S, Brewer HM, Smith RD, Depuydt G, Braeckman BP. Changes of Protein Turnover in Aging Caenorhabditis elegans. Mol Cell Proteomics 2017; 16:1621-1633. [PMID: 28679685 DOI: 10.1074/mcp.ra117.000049] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Indexed: 11/06/2022] Open
Abstract
Protein turnover rates severely decline in aging organisms, including C. elegans However, limited information is available on turnover dynamics at the individual protein level during aging. We followed changes in protein turnover at one-day resolution using a multiple-pulse 15N-labeling and accurate mass spectrometry approach. Forty percent of the proteome shows gradual slowdown in turnover with age, whereas only few proteins show increased turnover. Decrease in protein turnover was consistent for only a minority of functionally related protein subsets, including tubulins and vitellogenins, whereas randomly diverging turnover patterns with age were the norm. Our data suggests increased heterogeneity of protein turnover of the translation machinery, whereas protein turnover of ubiquitin-proteasome and antioxidant systems are well-preserved over time. Hence, we presume that maintenance of quality control mechanisms is a protective strategy in aging worms, although the ultimate proteome collapse is inescapable.
Collapse
Affiliation(s)
- Ineke Dhondt
- From the ‡Laboratory for Aging Physiology and Molecular Evolution, Biology Department, Ghent University, K.L. Ledeganckstraat 35, 9000 Ghent Belgium
| | - Vladislav A Petyuk
- §Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Sophie Bauer
- From the ‡Laboratory for Aging Physiology and Molecular Evolution, Biology Department, Ghent University, K.L. Ledeganckstraat 35, 9000 Ghent Belgium
| | - Heather M Brewer
- §Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Richard D Smith
- §Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Geert Depuydt
- From the ‡Laboratory for Aging Physiology and Molecular Evolution, Biology Department, Ghent University, K.L. Ledeganckstraat 35, 9000 Ghent Belgium.,¶Laboratory for Functional Genomics and Proteomics, Department of Biology, KU Leuven, Naamsestraat 59, 3000 Leuven, Belgium
| | - Bart P Braeckman
- From the ‡Laboratory for Aging Physiology and Molecular Evolution, Biology Department, Ghent University, K.L. Ledeganckstraat 35, 9000 Ghent Belgium;
| |
Collapse
|
6
|
Schatten H, Sun QY. Centrosome and microtubule functions and dysfunctions in meiosis: implications for age-related infertility and developmental disorders. Reprod Fertil Dev 2017; 27:934-43. [PMID: 25903261 DOI: 10.1071/rd14493] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 03/18/2015] [Indexed: 12/13/2022] Open
Abstract
The effects of oocyte aging on meiotic spindle dynamics have been well recognised, but the mechanisms underlying the effects are not well understood. In this paper we review the role of centrosomes and the microtubule cytoskeleton in meiotic spindle formation and maintenance, and the impact of oocyte aging on spindle integrity resulting in centrosome and microtubule dysfunctions that are associated with aneuploidy. Loss of spindle integrity includes dispersion of proteins from the centrosome core structure and loss of attachment of microtubules to centrosomes and kinetochores, which will result in abnormal chromosome separation. The inability of centrosomal proteins to accurately associate with the centrosome structure may be the result of destabilisation of the core structure itself or of microtubule destabilisation at the centrosome-facing microtubule areas that are acetylated in fresh oocytes but may not be acetylated in aging oocytes. Microtubule destabilisation prevents accurate motor-driven transport of centrosomal proteins along microtubules to form and maintain a functional centrosome. Other factors to form and maintain the MII spindle include signal transductions that affect microtubule dynamics and stability. Understanding the mechanisms underlying centrosome and microtubule dysfunctions during oocyte aging will allow diagnosis and analysis of oocyte quality and abnormalities as important aspects for targeted treatment of aging oocytes to extend or restore viability and developmental capacity. New therapeutic approaches will allow improvements in reproductive success rates in IVF clinics, as well as improvements in reproductive success rates in farm animals. This review is focused on: (1) centrosome and microtubule dynamics in fresh and aging oocytes; (2) regulation of centrosome and/or microtubule dynamics and function; and (3) possible treatments to extend the oocyte's reproductive capacity and viability span.
Collapse
Affiliation(s)
- Heide Schatten
- Department of Veterinary Pathobiology, University of Missouri, 1600 E Rollins Street, Columbia, MO 65211, USA
| | - Qing-Yuan Sun
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100080, China
| |
Collapse
|
7
|
Gribble KE, Mark Welch DB. Genome-wide transcriptomics of aging in the rotifer Brachionus manjavacas, an emerging model system. BMC Genomics 2017; 18:217. [PMID: 28249563 PMCID: PMC5333405 DOI: 10.1186/s12864-017-3540-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 02/02/2017] [Indexed: 12/22/2022] Open
Abstract
Background Understanding gene expression changes over lifespan in diverse animal species will lead to insights to conserved processes in the biology of aging and allow development of interventions to improve health. Rotifers are small aquatic invertebrates that have been used in aging studies for nearly 100 years and are now re-emerging as a modern model system. To provide a baseline to evaluate genetic responses to interventions that change health throughout lifespan and a framework for new hypotheses about the molecular genetic mechanisms of aging, we examined the transcriptome of an asexual female lineage of the rotifer Brachionus manjavacas at five life stages: eggs, neonates, and early-, late-, and post-reproductive adults. Results There are widespread shifts in gene expression over the lifespan of B. manjavacas; the largest change occurs between neonates and early reproductive adults and is characterized by down-regulation of developmental genes and up-regulation of genes involved in reproduction. The expression profile of post-reproductive adults was distinct from that of other life stages. While few genes were significantly differentially expressed in the late- to post-reproductive transition, gene set enrichment analysis revealed multiple down-regulated pathways in metabolism, maintenance and repair, and proteostasis, united by genes involved in mitochondrial function and oxidative phosphorylation. Conclusions This study provides the first examination of changes in gene expression over lifespan in rotifers. We detected differential expression of many genes with human orthologs that are absent in Drosophila and C. elegans, highlighting the potential of the rotifer model in aging studies. Our findings suggest that small but coordinated changes in expression of many genes in pathways that integrate diverse functions drive the aging process. The observation of simultaneous declines in expression of genes in multiple pathways may have consequences for health and longevity not detected by single- or multi-gene knockdown in otherwise healthy animals. Investigation of subtle but genome-wide change in these pathways during aging is an important area for future study. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3540-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kristin E Gribble
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA, 02543, USA
| | - David B Mark Welch
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA, 02543, USA.
| |
Collapse
|
8
|
Venghateri JB, Jindal B, Panda D. The centrosome: a prospective entrant in cancer therapy. Expert Opin Ther Targets 2015; 19:957-72. [PMID: 25787715 DOI: 10.1517/14728222.2015.1018823] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
INTRODUCTION The centrosome plays an essential role in the cell cycle. The centrosome and its associated proteins assist in nucleating and organizing microtubules. A structural or a functional aberration in the centrosome is known to cause abnormal cell proliferation leading to tumors. Therefore, the centrosome is considered as a promising anti-cancer target. AREAS COVERED This review begins with a brief introduction to the centrosome and its role in the cell cycle. We elaborate on the centrosome-associated proteins that regulate microtubule dynamics. In addition, we discuss the centrosomal protein kinase targets such as cyclin-dependent, polo-like and aurora kinases. Inhibitors targeting these kinases are undergoing clinical trials for cancer chemotherapy. Further, we shed light on new approaches to target the centrosomal proteins for cancer therapy. EXPERT OPINION Insights into the functioning of the centrosomal proteins will be extremely beneficial in validating the centrosome as a target in cancer therapy. New strategies either as a single entity or in combination with current chemotherapeutic agents should be researched or exploited to reveal the promises that the centrosome holds for future cancer therapy.
Collapse
Affiliation(s)
- Jubina B Venghateri
- Indian Institute of Technology Bombay, IITB-Monash Research Academy , Powai, Mumbai 400076 , India
| | | | | |
Collapse
|
9
|
Chandrashekara KT, Popli S, Shakarad MN. Curcumin enhances parental reproductive lifespan and progeny viability in Drosophila melanogaster. AGE (DORDRECHT, NETHERLANDS) 2014; 36:9702. [PMID: 25173182 PMCID: PMC4453933 DOI: 10.1007/s11357-014-9702-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 08/04/2014] [Indexed: 05/23/2023]
Abstract
Organismal lifespan is a complex trait that is governed by both its genetic makeup as well as the environmental conditions. The improved socioeconomic condition of humans has led to many lifestyle changes that in turn have altered the demography that includes postponement of procreation. Late age progeny is shown to suffer from many congenital diseases. Hence, there is a need to identify and evaluate natural molecules that could enhance reproductive health span. We have used the well-established model organism, Drosophila melanogaster, and ascertained the consequence of diet supplementation with curcumin. Flies reared on curcumin-supplemented diet had significantly higher lifespan. The progeny of flies reared on curcumin had a higher viability. The activity of a key mitochondrial enzyme-aconitase was significantly higher in flies reared on curcumin-supplemented diet. The results suggest that curcumin can not only correct a key step in the citric acid cycle and help in the release of additional energy but also permanently correct developmental and morphogenetic processes.
Collapse
Affiliation(s)
- K. T. Chandrashekara
- />Evolutionary Biology Laboratory, Department of Zoology, University of Delhi, New Delhi, 110007 India
- />Institution of Excellence, University of Mysore, Manasagangotri, Mysore, 570006 India
| | - Sonam Popli
- />Gut Biology Laboratory, Department of Zoology, University of Delhi, New Delhi, 110007 India
| | - M. N. Shakarad
- />Evolutionary Biology Laboratory, Department of Zoology, University of Delhi, New Delhi, 110007 India
| |
Collapse
|
10
|
|
11
|
Schatten H, Sun QY. The functional significance of centrosomes in mammalian meiosis, fertilization, development, nuclear transfer, and stem cell differentiation. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2009; 50:620-636. [PMID: 19402157 DOI: 10.1002/em.20493] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Centrosomes had been discovered in germ cells and germ cells continue to provide excellent but also challenging material in which to study complex centrosomal dynamics. The present review highlights the importance of centrosomes for meiotic spindle integrity and the susceptibility of meiotic spindle centrosomes to aging and drugs or toxic agents which may be associated with female infertility, aneuploidy, and developmental abnormalities. We discuss cell and molecular aspects of centrosomes during fertilization, a critical stage in which centrosomes play crucial roles in precisely organizing the sperm aster that allows apposition of male and female genomes followed by formation of the zygote aster that is important for the formation of the bipolar spindle apparatus during cell division. Development of an embryo involves sequential cell divisions in which centrosomes play a critical role in establishing asymmetry that allows differentiation of cells and targeted signal transductions for the developing embryo. Asymmetric centrosome dynamics are also critical for stem cell division to maintain one daughter cell as a stem cell while the other daughter cell undergoes centrosome growth in preparation for differentiation. This review also discusses the complex interactions of somatic cell centrosomes with the recipient oocyte in reconstructed (cloned) embryos in which centrosome remodeling is crucial to fulfill functions that are carried out by the zygote centrosome in fertilized eggs. We close our discussion with a look at centrosome dysfunctions and implications for male fertility and assisted reproduction.
Collapse
Affiliation(s)
- Heide Schatten
- Department of Veterinary Pathobiology, University of Missouri, 1600 E Rollins Street, Columbia, MO 65211, USA.
| | | |
Collapse
|
12
|
Abstract
Primarily known for its role as major microtubule organizing center, the centrosome is increasingly being recognized for its functional significance in key cell cycle regulating events. We are now at the beginning of understanding the centrosome’s functional complexities and its major impact on directing complex interactions and signal transduction cascades important for cell cycle regulation. The centrosome orchestrates entry into mitosis, anaphase onset, cytokinesis, G1/S transition, and monitors DNA damage. Recently, the centrosome has also been recognized as major docking station where regulatory complexes accumulate including kinases and phosphatases as well as numerous other cell cycle regulators that utilize the centrosome as platform to coordinate multiple cell cycle-specific functions. Vesicles that are translocated along microtubules to and away from centrosomes may also carry enzymes or substrates that use centrosomes as main docking station. The centrosome’s role in various diseases has been recognized and a wealth of data has been accumulated linking dysfunctional centrosomes to cancer, Alstrom syndrome, various neurological disorders, and others. Centrosome abnormalities and dysfunctions have been associated with several types of infertility. The present review highlights the centrosome’s significant roles in cell cycle events in somatic and reproductive cells and discusses centrosome abnormalities and implications in disease.
Collapse
Affiliation(s)
- Heide Schatten
- Department of Veterinary Pathobiology, University of Missouri, 1600 E Rollins Street, Columbia, MO 65211, USA.
| |
Collapse
|
13
|
Emdad L, Sarkar D, Su ZZ, Boukerche H, Bar-Eli M, Fisher PB. Progression elevated gene-3 (PEG-3) induces pleiotropic effects on tumor progression: Modulation of genomic stability and invasion. J Cell Physiol 2004; 202:135-46. [PMID: 15389539 DOI: 10.1002/jcp.20097] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Progression elevated gene-3 (PEG-3) is a novel rodent gene, identified and cloned by subtraction hybridization, that associates with transformation progression in virus- and oncogene-transformed rat embryo (RE) cells. Previous reports document that ectopic expression of PEG-3 in rodent or human tumor cells produces an aggressive transformed/tumorigenic phenotype. Moreover, PEG-3 expression in rodent tumor cells correlates directly with genomic instability, as indicated by chromosomal alterations and gene amplification, and it promotes angiogenesis. The present studies were designed to further elucidate the functional significance and role of PEG-3 in cancer progression with a specific focus on genomic instability and cancer invasion. Genomic instability was assessed by micronucleus assays and staining of centrosomes to define centrosomal amplification. Immunocytochemical observations revealed that overexpression of PEG-3 in transformed rodent cells induced a loss of chromosomes as established by the appearance of micronuclei and staining of the centrosomes with gamma-tubulin antibody, thereby confirming centrosome amplification. Overexpression of PEG-3 modulated the expression of several genes involved in centrosomal duplication, such as p21CIP1/WAF1/MDA-6, nucleophosmin (NPM), and aurora-A kinase. In vitro invasion of transformed rodent cells was augmented by PEG-3, which correlated with an increase in the transcription and activity of matrix metalloproteinase-2 and -9 (MMP-2 and MMP-9), which play important roles in local invasion during cancer progression. These findings demonstrate that PEG-3 plays a central role in augmenting tumor progression by modulating several critical parameters of the carcinogenic process, such as genomic stability and local tumor cell invasion.
Collapse
Affiliation(s)
- Luni Emdad
- Department of Pathology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, College of Physicians and Surgeons, New York, New York 10032, USA
| | | | | | | | | | | |
Collapse
|
14
|
Seroude L, Brummel T, Kapahi P, Benzer S. Spatio-temporal analysis of gene expression during aging in Drosophila melanogaster. Aging Cell 2002; 1:47-56. [PMID: 12882353 DOI: 10.1046/j.1474-9728.2002.00007.x] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The relationship between gene expression and the regulation of longevity is poorly understood. Previous studies focusing on microarray or tissue-specific changes in gene expression as a function of age have provided evidence that gene expression is a dynamic process which is regulated, even late in an organism's lifespan. Using the enhancer-trap technique, a systematic analysis of the spatio-temporal regulation of gene expression in tissues of adult Drosophila is presented. As many as 80% of enhancer traps analysed displayed (some form of) transcriptional change with age. In some cases the rate of change in expression was found to correlate with changes in longevity under various conditions, suggesting that they may be indicators of 'physiological age' and therefore valuable markers for dissecting the aging process. Molecular analysis of enhancer traps that showed increased activity with age was performed to identify candidate genes that may be important in the regulation of longevity; we identified changes in reporters associated with immunity, microtubule organization and muscle function.
Collapse
Affiliation(s)
- Laurent Seroude
- California Institute of Technology, Division of Biology 156-29, Pasadena, CA 91125, USA.
| | | | | | | |
Collapse
|
15
|
Krämer A, Neben K, Ho AD. Centrosome replication, genomic instability and cancer. Leukemia 2002; 16:767-75. [PMID: 11986936 DOI: 10.1038/sj.leu.2402454] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2001] [Accepted: 01/07/2002] [Indexed: 01/14/2023]
Abstract
Karyotypic alterations, including whole chromosome loss or gain, ploidy changes, and a variety of chromosome aberrations are common in cancer cells. If proliferating cells fail to coordinate centrosome duplication with DNA replication, this will inevitably lead to a change in ploidy, and the formation of monopolar or multipolar spindles will generally provoke abnormal segregation of chromosomes. Indeed, it has long been recognized that errors in the centrosome duplication cycle may be an important cause of aneuploidy and thus contribute to cancer formation. This view has recently received fresh impetus with the description of supernumerary centrosomes in almost all solid human tumors. As the primary microtubule organizing center of most eukaryotic cells, the centrosome assures symmetry and bipolarity of the cell division process, a function that is essential for accurate chromosome segregation. In addition, a growing body of evidence indicates that centrosomes might be important for initiating S phase and completing cytokinesis. Centrosomes undergo duplication precisely once before cell division. Recent reports have revealed that this process is linked to the cell division cycle via cyclin-dependent kinase (cdk) 2 activity that couples centriole duplication to the onset of DNA replication at the G(1)/S phase transition. Alterations in G(1)/S phase regulating proteins like the retinoblastoma protein, cyclins D and E, cdk4 and 6, cdk inhibitors p16(INK4A) and p15(INK4B), and p53 are among the most frequent aberrations observed in human malignancies. These alterations might not only lead to unrestrained proliferation, but also cause karyotypic instability by uncontrolled centrosome replication. Since several excellent reports on cell cycle regulation and cancer have been published, this review will focus on the role of centrosomes in cell cycle progression, as well as causes and consequences of aberrant centrosome replication in human neoplasias.
Collapse
Affiliation(s)
- A Krämer
- Medizinische Klinik und Poliklinik V, Ruprecht-Karls-Universität Heidelberg, Hospitalstrasse 3, 69115 Heidelberg, Germany
| | | | | |
Collapse
|
16
|
Kern S, Ackermann M, Stearns SC, Kawecki TJ. Decline in offspring viability as a manifestation of aging in Drosophila melianogaster. Evolution 2001; 55:1822-31. [PMID: 11681737 DOI: 10.1111/j.0014-3820.2001.tb00831.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The evolutionary explanation of senescence proposes that selection against alleles with deleterious effects manifested only late in life is weak because most individuals die earlier for extrinsic reasons. This argument also applies to alleles whose deleterious effects are nongenetically transmitted from mother to progeny, that is, that affect the performance of progeny produced at late ages rather than of the aging individuals themselves. We studied the effect of maternal age on offspring viability (egg hatching success and larva-to-adult survival) in two sets of Drosophila melanogaster lines (HAM/LAM and YOUNG/OLD), originating from two long-term selection experiments. In each set, some lines (HAM and YOUNG, respectively) have been selected for early reproduction, whereas later reproduction was favored in their counterparts (LAM and OLD). In the HAM and LAM lines, both egg hatching success and larval viability declined with mother's age and did so with accelerating rates. The hatching success declined significantly faster with maternal age in HAM than in LAM lines, according to one of two statistical approaches used. Egg hatching success also declined with maternal age in YOUNG and OLD lines, with no difference between the selection regimes. However, the relationship between mother's age and offspring larva-to-adult viability differed significantly between these two selection regimes: a decline of larval viability with maternal age occurred in YOUNG lines but not in OLD lines. This suggests that the rate with which offspring viability declines with mother's age responded to selection for early versus late reproduction. We suggest broadening the evolutionary concept of senescence to include intrinsically caused declines in offspring quality with maternal age.
Collapse
Affiliation(s)
- S Kern
- Department of Biology, University of Fribourg, Switzerland
| | | | | | | |
Collapse
|
17
|
Duensing S, Münger K. Centrosome abnormalities, genomic instability and carcinogenic progression. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1471:M81-8. [PMID: 11342187 DOI: 10.1016/s0304-419x(00)00025-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Centrosome abnormalities are a frequent finding in various malignant tumors. Since centrosomes form the poles of the mitotic spindle, these abnormalities have been implicated in chromosome missegregation and the generation of aneuploid cells which is commonly found in many human neoplasms. It is a matter of debate, however, whether centrosome alterations can drive cells into aneuploidy or simply reflect loss of genomic integrity by other mechanisms. Since these two models have fundamentally different implications for the diagnostic and prognostic value of centrosome abnormalities, we will discuss the relevance of abnormal centrosomes in the context of different oncogenic events as exemplified by high-risk human papillomavirus-associated carcinogenesis.
Collapse
Affiliation(s)
- S Duensing
- Department of Pathology and Center for Cancer Biology, Harvard Medical School, Armenise Research Building, D2 544A, 200 Longwood Avenue, Boston, MA 02115-5701, USA
| | | |
Collapse
|
18
|
Kern S, Ackermann M, Stearns SC, Kawecki TJ. DECLINE IN OFFSPRING VIABILITY AS A MANIFESTATION OF AGING IN DROSOPHILA MELANOGASTER. Evolution 2001. [DOI: 10.1554/0014-3820(2001)055[1822:diovaa]2.0.co;2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
19
|
Combelles CM, Carabatsos MJ, London SN, Mailhes JB, Albertini DF. Centrosome-specific perturbations during in vitro maturation of mouse oocytes exposed to cocaine. Exp Cell Res 2000; 260:116-26. [PMID: 11010816 DOI: 10.1006/excr.2000.5011] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previous studies indicating that cocaine may perturb meiotic chromosome segregation in mammalian oocytes prompted an analysis of the effects of cocaine on mouse oocytes matured in vitro under defined exposure conditions. Cumulus-enclosed mouse oocytes were matured in vitro in the continuous presence of cocaine and assessed for meiotic cell cycle progression and centrosome-microtubule organization using a combination of cytogenetic and fluorescence microscopic techniques. Both of these approaches demonstrated that cocaine had little effect on meiotic cell cycle progression to metaphase of meiosis-2 except at the highest dose tested (1000 microg/ml) where progression from metaphase-1 to metaphase-2 was inhibited. Cytogenetic analyses further showed that bivalent segregation was moderately affected and the incidence of premature centromere separation was significantly decreased following cocaine treatment. Under conditions of cocaine exposure, striking changes in meiotic spindle structure and cytoplasmic centrosome organization were observed. A 36% reduction in spindle length was associated with a loss of nonacetylated microtubules and fragmentation of spindle pole centrosomes. Moreover, in oocytes exposed to cocaine during maturation, a doubling in cytoplasmic centrosome number was observed. These results are discussed with respect to the relative roles of chromosomes and centrosomes in establishing and maintaining functional microtubule organization during meiosis in oocytes.
Collapse
Affiliation(s)
- C M Combelles
- Department of Anatomy and Cellular Biology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | | | | | | | |
Collapse
|
20
|
Schatten H, Hueser CN, Chakrabarti A. From fertilization to cancer: the role of centrosomes in the union and separation of genomic material. Microsc Res Tech 2000; 49:420-7. [PMID: 10842368 DOI: 10.1002/(sici)1097-0029(20000601)49:5<420::aid-jemt3>3.0.co;2-v] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Centrosomes play crucial roles in the union of sperm and egg nuclei during fertilization and in the equal separation of genomic material during cell division. While many studies in recent years have focused on the molecular composition of centrosomes, this article focuses on the structural behavior of centrosomes and on factors that play a role in centrosome functions under normal, artificially altered, and abnormal conditions. We review here how studies in the classic sea urchin egg model have contributed to our knowledge on the centrosome cycle within the cell cycle, on compaction and decompaction of centrosomal material, and on the contributions of maternal and paternal centrosomes during fertilization. Centrosome material is activated in unfertilized eggs by increasing pH with ammonium and by increasing calcium with the ionophore A23187, which are conditions that are normally induced by sperm. D(2)O and taxol also induce centrosome aggregation in the unfertilized egg. Maternal and paternal centrosome material both contribute to the formation of a functional centrosome but the formation of a bipolar centrosome requires material from the paternal centrosome. Fertilization of taxol-treated eggs reveals that the male centrosome possesses the capability to attract maternal centrosome material. When pronuclear fusion of the male and female pronuclei is inhibited with agents such as the disulfide reducing agent dithiothreitol (DTT) a bipolar mitotic apparatus is formed from the paternal centrosome. Furthermore, one centrosome of the bipolar mitotic apparatus is capable of organizing an additional half spindle that attaches to the female pronucleus indicating a functional and perhaps structural connection between centrosomes and chromatin. Sea urchin eggs are also useful to study centrosome abnormalities and consequences for the cell cycle. While classic studies by Theodor Boveri have shown that dispermic fertilization will result in abnormal cell division because of multiple centrosomes contributed by sperm, abnormal cell division can also be induced by chemical alterations of centrosomes. Compaction and decompaction of centrosome structure is studied using chloral hydrate or the chaotropic agent formamide, which reveals that centrosomes can be chemically altered to produce mono- or multipolar abnormal mitosis and unequal distribution of genomic material upon release from formamide. The patterns of abnormal centrosome reformations after recovery from formamide treatment resemble those seen in cancer cells which argues that structural defects of centrosomes can account for the formation of abnormal mitosis and multipolar cells frequently observed in cancer. In summary, the sea urchin model has been most useful to gain information on the role of centrosomes during fertilization and cell division as well as on adverse conditions that play a role in centrosome dysfunctions and in disease.
Collapse
Affiliation(s)
- H Schatten
- Department of Veterinary Pathobiology, University of Missouri-Columbia, 65211, USA.
| | | | | |
Collapse
|