1
|
Jones NC, Hudson M, Foreman J, Rind G, Hill R, Manning EE, Buuse M. Brain‐derived neurotrophic factor haploinsufficiency impairs high‐frequency cortical oscillations in mice. Eur J Neurosci 2017; 48:2816-2825. [DOI: 10.1111/ejn.13722] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 08/30/2017] [Accepted: 09/13/2017] [Indexed: 12/31/2022]
Affiliation(s)
- Nigel C. Jones
- Department of Medicine Melbourne Brain Centre Royal Melbourne Hospital University of Melbourne Parkville Vic. 3052 Australia
- Department of Neuroscience Central Clinical School Monash University Melbourne Vic. Australia
- Department of Neurology The Alfred Hospital Melbourne Vic. Australia
| | - Matthew Hudson
- Department of Medicine Melbourne Brain Centre Royal Melbourne Hospital University of Melbourne Parkville Vic. 3052 Australia
| | - Joshua Foreman
- Department of Medicine Melbourne Brain Centre Royal Melbourne Hospital University of Melbourne Parkville Vic. 3052 Australia
| | - Gil Rind
- Department of Medicine Melbourne Brain Centre Royal Melbourne Hospital University of Melbourne Parkville Vic. 3052 Australia
| | - Rachel Hill
- Department of Psychiatry Monash University Melbourne Vic. Australia
- Melbourne Brain Centre Florey Institutes of Neuroscience and Mental Health University of Melbourne Parkville Vic. Australia
| | - Elizabeth E. Manning
- Melbourne Brain Centre Florey Institutes of Neuroscience and Mental Health University of Melbourne Parkville Vic. Australia
| | - Maarten Buuse
- Melbourne Brain Centre Florey Institutes of Neuroscience and Mental Health University of Melbourne Parkville Vic. Australia
- School of Psychology and Public Health La Trobe University Melbourne Vic. Australia
- Department of Pharmacology University of Melbourne Melbourne Vic. Australia
- The College of Public Health, Medical and Veterinary Sciences James Cook University Townsville QLD Australia
| |
Collapse
|
2
|
A nociceptive stress model of adolescent physical abuse induces contextual fear and cingulate nociceptive neuroplasticities. Brain Struct Funct 2017; 223:429-448. [PMID: 28861709 DOI: 10.1007/s00429-017-1502-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 08/18/2017] [Indexed: 10/19/2022]
Abstract
Adolescent physical abuse impairs emotional development and evokes cingulate pathologies, but its neuronal and circuit substrates are unknown. Conditioning adolescent rabbits with noxious colorectal distension for only 2 h over 3 weeks simulated the human child abuse in amplitude, frequency, and duration. Thermal withdrawal thresholds were unchanged suggesting that sensitized spinal mechanisms may not be operable. Unchanged weight, stools, colorectal histology, and no evidence of abdominal pain argue against tissue injury or irritable bowel syndrome. Contextual fear was amplified as they avoided the site of their abuse. Conditioning impacted anterior cingulate and anterior midcingulate (ACC, aMCC) neuron excitability: (1) more neurons responded to cutaneous and visceral (VNox) noxious stimuli than controls engaging latent nociception (present but not manifest in controls). (2) Rear paw stimulation increased responses over forepaws with shorter onsets and longer durations, while forepaw responses were of higher amplitude. (3) There were more VNox responses with two excitatory phases and longer durations. (4) Some had unique three-phase excitatory responses. (5) Long-duration VNox stimuli did not inhibit neurons as in controls, suggesting the release of an inhibitory circuit. (6) aMCC changes in cutaneous but not visceral nociception confirmed its role in cutaneous nociception. For the first time, we report neuroplasticities that may be evoked by adolescent physical abuse and reflect psychogenic pain: i.e., no ongoing peripheral pain and altered ACC nociception. These limbic responses may be a cognitive trace of abuse and may shed light on impaired human emotional development and sexual function.
Collapse
|
3
|
Ghosh F, Taylor L, Arnér K. Exogenous Glutamate Modulates Porcine Retinal Development in vitro. Dev Neurosci 2012; 34:428-39. [DOI: 10.1159/000343721] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Accepted: 09/27/2012] [Indexed: 12/27/2022] Open
|
4
|
Cysneiros RM, Ferrari D, Arida RM, Terra VC, de Almeida ACG, Cavalheiro EA, Scorza FA. Qualitative analysis of hippocampal plastic changes in rats with epilepsy supplemented with oral omega-3 fatty acids. Epilepsy Behav 2010; 17:33-8. [PMID: 19969506 DOI: 10.1016/j.yebeh.2009.11.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Revised: 11/10/2009] [Accepted: 11/12/2009] [Indexed: 10/20/2022]
Abstract
Studies have provided evidence of the important effects of omega-3 fatty acid on the brain in neurological conditions, including epilepsy. Previous data have indicated that omega-3 fatty acids lead to prevention of status epilepticus-associated neuropathological changes in the hippocampal formation of rats with epilepsy. Omega-3 fatty acid supplementation has resulted in extensive preservation of GABAergic cells in animals with epilepsy. This study investigated the interplay of these effects with neurogenesis and brain-derived neurotrophic factor (BDNF). The results clearly showed a positive effect of long-term omega-3 fatty acid supplementation on brain plasticity in animals with epilepsy. Enhanced hippocampal neurogenesis and BDNF levels and preservation of interneurons expressing parvalbumin were observed. Parvalbumin-positive cells were identified as surviving instead of newly formed cells. Additional investigations are needed to determine the electrophysiological properties of the newly formed cells and to clarify whether the effects of omega-3 fatty acids on brain plasticity are accompanied by functional gain in animals with epilepsy.
Collapse
Affiliation(s)
- Roberta M Cysneiros
- Programa de Pós-graduação em Distúrbios do Desenvolvimento da Universidade Presbiteriana Mackenzie, São Paulo, SP, Brazil
| | | | | | | | | | | | | |
Collapse
|
5
|
Cell death and proliferation in acute slices and organotypic cultures of mammalian CNS. Prog Neurobiol 2009; 88:221-45. [DOI: 10.1016/j.pneurobio.2009.01.002] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2008] [Revised: 12/09/2008] [Accepted: 01/07/2009] [Indexed: 11/24/2022]
|
6
|
Huang AS, Lee DA, Blackshaw S. d-Aspartate and d-aspartate oxidase show selective and developmentally dynamic localization in mouse retina. Exp Eye Res 2008; 86:704-9. [DOI: 10.1016/j.exer.2008.01.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2008] [Revised: 01/14/2008] [Accepted: 01/16/2008] [Indexed: 10/22/2022]
|
7
|
Berghuis P, Dobszay MB, Sousa KM, Schulte G, Mager PP, Härtig W, Görcs TJ, Zilberter Y, Ernfors P, Harkany T. Brain-derived neurotrophic factor controls functional differentiation and microcircuit formation of selectively isolated fast-spiking GABAergic interneurons. Eur J Neurosci 2004; 20:1290-306. [PMID: 15341601 DOI: 10.1111/j.1460-9568.2004.03561.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
GABAergic interneurons with high-frequency firing, fast-spiking (FS) cells, form synapses on perisomatic regions of principal cells in the neocortex and hippocampus to control the excitability of cortical networks. Brain-derived neurotrophic factor (BDNF) is essential for the differentiation of multiple interneuron subtypes and the formation of their synaptic contacts. Here, we examined whether BDNF, alone or in conjunction with sustained KCl-induced depolarization, drives functional FS cell differentiation and the formation of inhibitory microcircuits. Homogeneous FS cell cultures were established by target-specific isolation using the voltage-gated potassium channel 3.1b subunit as the selection marker. Isolated FS cells expressed parvalbumin, were surrounded by perineuronal nets, formed immature inhibitory connections and generated slow action potentials at 12 days in vitro. Brain-derived neurotrophic factor (BDNF) promoted FS cell differentiation by increasing the somatic diameter, dendritic branching and the frequency of action potential firing. In addition, BDNF treatment led to a significant up-regulation of synaptophysin and vesicular GABA transporter expression, components of the synaptic machinery critical for GABA release, which was paralleled by an increase in synaptic strength. Long-term membrane depolarization alone was detrimental to dendritic branching. However, we observed that BDNF and KCl exerted additive effects, as reflected by the significantly accelerated maturation of synaptic contacts and high discharge frequencies, and was required for the formation of reciprocal connections between FS cells. Our results show that BDNF, along with membrane depolarization, is critical for FS cells to establish inhibitory circuitries during corticogenesis.
Collapse
Affiliation(s)
- Paul Berghuis
- Laboratory of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Scheeles väg 1:A1, Karolinska Institutet, S-17177 Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Pinzón-Duarte G, Arango-González B, Guenther E, Kohler K. Effects of brain-derived neurotrophic factor on cell survival, differentiation and patterning of neuronal connections and Muller glia cells in the developing retina. Eur J Neurosci 2004; 19:1475-84. [PMID: 15066144 DOI: 10.1111/j.1460-9568.2004.03252.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The aim of the present study was to determine the influence of brain-derived neurotrophic factor (BDNF) on survival, phenotype differentiation and network formation of retinal neurons and glia cells. To achieve a defined concentration and constant level of BDNF over several days, experiments were performed in an organotypic culture of the developing rat retina. After 6 days in vitro, apoptosis in the different cell layers was determined by TUNEL staining and cell-type-specific antibodies were used to identify distinct neuronal cell types and Müller cells. Cultured retinas treated with BDNF (100 ng BDNF/mL medium) were compared with untreated as well as with age-matched in vivo retinas. Quantitative morphometry was carried out using confocal microscopy. BDNF promoted the in vitro development and differentiation of the retina in general, i.e. the number of cells in the nuclear layers and the thickness of the plexiform layers were increased. For all neurons, the number of cells and the complexity of arborizations in the synaptic layers were clearly up-regulated by BDNF. In control cultures, the synaptic stratification of cone bipolar cells within the On- and Off-layer of the inner plexiform layer was disturbed and a strong reactivity of Müller cell glia was observed. These effects were not present in BDNF-treated cultures. Our data show that BDNF promotes the survival of retinal interneurons and plays an important role in establishing the phenotypes and the synaptic connections of a large number of neuronal types in the developing retina. Moreover, we show an effect of BDNF on Müller glia cells.
Collapse
Affiliation(s)
- Germán Pinzón-Duarte
- Experimental Ophthalmology, University Eye Hospital, Röntgenweg 11, 72076 Tübingen, Germany
| | | | | | | |
Collapse
|
9
|
Cellerino A, Arango-González B, Pinzón-Duarte G, Kohler K. Brain-derived neurotrophic factor regulates expression of vasoactive intestinal polypeptide in retinal amacrine cells. J Comp Neurol 2003; 467:97-104. [PMID: 14574682 DOI: 10.1002/cne.10908] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Brain-derived neurotrophic-factor (BDNF) is expressed in the retina and controls the development of subtypes of amacrine cells. In the present study we investigated the effects of BDNF on amacrine cells expressing vasoactive intestinal polypeptide (VIP). Rats received three intraocular injections of BDNF on postnatal days (P) 16, 18, and 20. The animals were sacrificed on P22, P40, P60, P80, and P120, and VIP expression in their retinas was detected by immunohistochemistry (P22, P40) and by radioimmunoassay (RIA; P22, P40, P60, P80, P120) to assess the time course of BDNF effects on VIP. A significant increase in the density of VIP-positive amacrine cells was detected in BDNF-treated retinas, and VIP concentration was up-regulated by 150% both at P22 and at P40 with respect to untreated controls. VIP concentration then slowly declined in the treated retinas over a period of 3 months; however, a statistically significant increase of 50% was still detectable on P120. The impact of endogenous BDNF on the regulation of VIP expression in the retina was analyzed in mice homozygous for a targeted deletion of the BDNF gene locus (bdnf-/-). VIP immunohistochemistry revealed a marked reduction of VIP-positive amacrine cells and of VIP-immunopositive processes in the inner plexiform layer of the BDNF knockout mice. Mice lacking BDNF expressed only 5% of the VIP protein in their retinas compared with the retinas of wild-type mice as measured by RIA. Our data show that BDNF is a major regulator of VIP expression in retinal amacrine cells and exerts long-lasting effects on VIP content.
Collapse
Affiliation(s)
- Alessandro Cellerino
- Scuola Normale Superiore and Istituto di Neurofisiologia, Consiglio Nazionale delle Ricerche, I-56100 Pisa, Italy
| | | | | | | |
Collapse
|
10
|
Cusato K, Stagg SB, Reese BE. Two phases of increased cell death in the inner retina following early elimination of the ganglion cell population. J Comp Neurol 2001; 439:440-9. [PMID: 11596065 DOI: 10.1002/cne.1361] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Neurons in the inner nuclear layer (INL) of the vertebrate retina undergo considerable programmed cell death during development, but the determinants of this cell death remain largely unknown. The present study examines the role of retinal ganglion cells in support of INL neurons in the developing ferret retina. The retinal ganglion cell population was eliminated by optic nerve transection at postnatal day (P) 2, and the incidence of cell death was examined using terminal deoxytransferase dUTP nick-end labelling (TUNEL) at various ages during the first 3 postnatal weeks. Significant increases in TUNEL-positive cells were observed in the neuroblast layer (NBL) as early as P3, prior to synapse formation within the inner plexiform layer (IPL), and again in the INL at P22, the normal peak of naturally occurring cell death within the ferret's INL. A decrease in TUNEL-positive cells was found in the NBL at P8. These results show three phases of response to the loss of retinal ganglion cells and suggest that cells in the NBL/INL are normally dependent on retinal ganglion cells for their survival. Recent studies have shown that certain populations of retinal neurons are reduced in adult animals that had lost the population of ganglion cells during early development, so the present study also examined when this reduction could first be detected. The number of parvalbumin-immunoreactive amacrine cells was decreased significantly in the NBL of the manipulated eye as early as P8, when we could first label this population, and this difference persisted through adulthood. The fact that cell death in the NBL has already increased within 24 hours of ganglion cell elimination, coupled with the specificity of this effect on the adult complement of INL cell types, shows that cell-cell interactions controlling survival are already highly specific for particular types of retinal neuron early in development
Collapse
Affiliation(s)
- K Cusato
- Neuroscience Research Institute and Department of Psychology, University of California at Santa Barbara, Santa Barbara, California 93106-5060, USA
| | | | | |
Collapse
|
11
|
Fischer F, Kneussel M, Tintrup H, Haverkamp S, Rauen T, Betz H, Wässle H. Reduced synaptic clustering of GABA and glycine receptors in the retina of the gephyrin null mutant mouse. J Comp Neurol 2000; 427:634-48. [PMID: 11056469 DOI: 10.1002/1096-9861(20001127)427:4<634::aid-cne10>3.0.co;2-x] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Clustering of neurotransmitter receptors in postsynaptic densities involves proteins that aggregate the receptors and link them to the cytoskeleton. In the case of glycine and GABA(A) receptors, gephyrin has been shown to serve this function. However, it is unknown whether gephyrin is involved in the clustering of all glycine and GABA(A) receptors or whether it interacts only with specific isoforms. This was studied in the retinae of mice, whose gephyrin gene was disrupted, with immunocytochemistry and antibodies that recognize specific subunits of glycine and GABA(A) receptors. Because homozygous (geph -/-) mutants die around birth, an organotypic culture system of the mouse retina was established to study the clustering of gephyrin and the receptors in vitro. We found that all gephyrin and all glycine receptor clusters (hot spots) were abolished in the geph (-/-) mouse retina. In the case of GABA(A) receptors, there was a significant reduction of clusters incorporating the gamma2, alpha2, and alpha3 subunits; however, a substantial number of hot spots was still present in geph (-/-) mutant retinae. This shows that gephyrin interacts with all glycine receptor isoforms but with only certain forms of GABA(A) receptors. In heterozygous geph (+/-) mutants, no reduction of hot spots was observed in the retina in vivo, but a significant reduction was found in the organotypic cultures. This suggests that mechanisms may exist in vivo that allow for the compensation of a partial gephyrin deficit.
Collapse
Affiliation(s)
- F Fischer
- Department of Neuroanatomy, Max-Planck-Institut für Hirnforschung, D-60528 Frankfurt, Germany
| | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
The rodent retina is a particularly attractive model for the study of neuronal developmental processes since considerable neurogenesis, cellular migration, phenotypic differentiation of retinal cell types and synaptogenesis occurs postnatally. In addition, the retina is readily accessible to surgical intervention, pharmacological manipulation, and local suppression of gene expression-tools that can be utilized to study mechanisms underlying the development of retinal neurons and their interconnections that form distinct functional circuits. Here, I review our studies describing the ontogeny of a specific retinal interneuron, the AII amacrine cell, an integral element in the rod (scotopic) pathway. Specifically, we used a number of approaches to examine the potential role of neurotrophic factors on the morphological and neurochemical differentiation of the AII.
Collapse
Affiliation(s)
- D W Rickman
- Department of Ophthalmology and Visual Sciences, University of Iowa College of Medicine, Iowa City, Iowa.
| |
Collapse
|
13
|
Johansson K, Bruun A, Grasbon T, Ehinger B. Growth of postnatal rat retina in vitro. Development of neurotransmitter systems. J Chem Neuroanat 2000; 19:117-28. [PMID: 10936747 DOI: 10.1016/s0891-0618(00)00058-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
In this study, we demonstrate that explanted neonatal rat retina can be maintained in culture for periods up to 3 weeks. The cultured retinas displayed a distinct layering that was almost identical to litter-matched retinas of the same age, but the majority of the ganglion cells did not survive and photoreceptor outer segments did not develop properly. Distinct synaptophysin immunoreactivity was expressed in both the inner and outer plexiform layers of cultured retina and the pattern mimicked that one observed in vivo. After 2-3 weeks in vitro, the inner retina expressed immunoreactivities to various components of the cholinergic and nitrergic transmitter systems, including nitric oxide activated cyclic GMP immunoreactivity. The investigated cell populations displayed similar distribution patterns as in situ, but morphological differences appeared in vitro. Such differences were mainly observed as irregularities in the arborization patterns in the inner part of the inner plexiform layer. We suggest that these discrepancies may arise as a result of reduced ganglion cell survival. Our observations demonstrate that some neurotransmitter systems develop in vitro and their neural circuitry appears similar to the in vivo situation. The presence of synapses, receptor proteins and transmitter substances implies that neural communication can occur in cultured retinas.
Collapse
Affiliation(s)
- K Johansson
- Department of Ophthalmology, Wallenberg Retina Center, Lund University Hospital, SE-221 85 Lund, Sweden.
| | | | | | | |
Collapse
|