1
|
Pishas KI, Cowley KJ, Pandey A, Hoang T, Beach JA, Luu J, Vary R, Smith LK, Shembrey CE, Rashoo N, White MO, Simpson KJ, Bild A, Griffiths JI, Cheasley D, Campbell I, Bowtell DDL, Christie EL. Phenotypic Consequences of SLC25A40-ABCB1 Fusions beyond Drug Resistance in High-Grade Serous Ovarian Cancer. Cancers (Basel) 2021; 13:cancers13225644. [PMID: 34830797 PMCID: PMC8616176 DOI: 10.3390/cancers13225644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/05/2021] [Accepted: 11/05/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Among the plethora of malignancies affecting the female reproductive tract, those concerning the ovary are the most frequently fatal. In particular, chemotherapy-resistant High-Grade Serous Ovarian Cancer (HGSOC) remains a clinically intractable disease with a high rate of mortality. We previously identified SLC25A40-ABCB1 transcriptional fusions as the driving force behind drug resistance in HGSOC. As success in the clinical arena will only be achieved by enhancing our fundamental understanding of the drivers that mediate cellular drug resistance, this report sought to elucidate the phenotypic, metabolomic and transcriptional consequences of SLC25A40-ABCB1 fusions beyond drug resistance. High-throughput FDA drug screening was also undertaken to identify new therapeutic avenues against drug-resistant cellular populations. Abstract Despite high response rates to initial chemotherapy, the majority of women diagnosed with High-Grade Serous Ovarian Cancer (HGSOC) ultimately develop drug resistance within 1–2 years of treatment. We previously identified the most common mechanism of acquired resistance in HGSOC to date, transcriptional fusions involving the ATP-binding cassette (ABC) transporter ABCB1, which has well established roles in multidrug resistance. However, the underlying biology of fusion-positive cells, as well as how clonal interactions between fusion-negative and positive populations influences proliferative fitness and therapeutic response remains unknown. Using a panel of fusion-negative and positive HGSOC single-cell clones, we demonstrate that in addition to mediating drug resistance, ABCB1 fusion-positive cells display impaired proliferative capacity, elevated oxidative metabolism, altered actin cellular morphology and an extracellular matrix/inflammatory enriched transcriptional profile. The co-culture of fusion-negative and positive populations had no effect on cellular proliferation but markedly altered drug sensitivity to doxorubicin, paclitaxel and cisplatin. Finally, high-throughput screening of 2907 FDA-approved compounds revealed 36 agents that induce equal cytotoxicity in both pure and mixed ABCB1 fusion populations. Collectively, our findings have unraveled the underlying biology of ABCB1 fusion-positive cells beyond drug resistance and identified novel therapeutic agents that may significantly improve the prognosis of relapsed HGSOC patients.
Collapse
Affiliation(s)
- Kathleen I. Pishas
- Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; (K.I.P.); (A.P.); (T.H.); (J.A.B.); (L.K.S.); (C.E.S.); (N.R.); (M.O.W.); (D.C.); (I.C.); (D.D.L.B.)
- The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC 3010, Australia;
| | - Karla J. Cowley
- Victorian Centre for Functional Genomics, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; (K.J.C.); (J.L.); (R.V.)
| | - Ahwan Pandey
- Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; (K.I.P.); (A.P.); (T.H.); (J.A.B.); (L.K.S.); (C.E.S.); (N.R.); (M.O.W.); (D.C.); (I.C.); (D.D.L.B.)
| | - Therese Hoang
- Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; (K.I.P.); (A.P.); (T.H.); (J.A.B.); (L.K.S.); (C.E.S.); (N.R.); (M.O.W.); (D.C.); (I.C.); (D.D.L.B.)
| | - Jessica A. Beach
- Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; (K.I.P.); (A.P.); (T.H.); (J.A.B.); (L.K.S.); (C.E.S.); (N.R.); (M.O.W.); (D.C.); (I.C.); (D.D.L.B.)
| | - Jennii Luu
- Victorian Centre for Functional Genomics, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; (K.J.C.); (J.L.); (R.V.)
| | - Robert Vary
- Victorian Centre for Functional Genomics, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; (K.J.C.); (J.L.); (R.V.)
| | - Lorey K. Smith
- Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; (K.I.P.); (A.P.); (T.H.); (J.A.B.); (L.K.S.); (C.E.S.); (N.R.); (M.O.W.); (D.C.); (I.C.); (D.D.L.B.)
- The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC 3010, Australia;
| | - Carolyn E. Shembrey
- Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; (K.I.P.); (A.P.); (T.H.); (J.A.B.); (L.K.S.); (C.E.S.); (N.R.); (M.O.W.); (D.C.); (I.C.); (D.D.L.B.)
- Department of Clinical Pathology, Faculty of Medicine, Dentistry, and Health Science, The University of Melbourne, Melbourne, VIC 3000, Australia
| | - Nineveh Rashoo
- Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; (K.I.P.); (A.P.); (T.H.); (J.A.B.); (L.K.S.); (C.E.S.); (N.R.); (M.O.W.); (D.C.); (I.C.); (D.D.L.B.)
| | - Madelynne O. White
- Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; (K.I.P.); (A.P.); (T.H.); (J.A.B.); (L.K.S.); (C.E.S.); (N.R.); (M.O.W.); (D.C.); (I.C.); (D.D.L.B.)
| | - Kaylene J. Simpson
- The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC 3010, Australia;
- Victorian Centre for Functional Genomics, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; (K.J.C.); (J.L.); (R.V.)
| | - Andrea Bild
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA 91010, USA; (A.B.); (J.I.G.)
| | - Jason I. Griffiths
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA 91010, USA; (A.B.); (J.I.G.)
| | - Dane Cheasley
- Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; (K.I.P.); (A.P.); (T.H.); (J.A.B.); (L.K.S.); (C.E.S.); (N.R.); (M.O.W.); (D.C.); (I.C.); (D.D.L.B.)
- The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC 3010, Australia;
| | - Ian Campbell
- Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; (K.I.P.); (A.P.); (T.H.); (J.A.B.); (L.K.S.); (C.E.S.); (N.R.); (M.O.W.); (D.C.); (I.C.); (D.D.L.B.)
- The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC 3010, Australia;
| | - David D. L. Bowtell
- Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; (K.I.P.); (A.P.); (T.H.); (J.A.B.); (L.K.S.); (C.E.S.); (N.R.); (M.O.W.); (D.C.); (I.C.); (D.D.L.B.)
- The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC 3010, Australia;
| | - Elizabeth L. Christie
- Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; (K.I.P.); (A.P.); (T.H.); (J.A.B.); (L.K.S.); (C.E.S.); (N.R.); (M.O.W.); (D.C.); (I.C.); (D.D.L.B.)
- The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC 3010, Australia;
- Correspondence:
| |
Collapse
|
2
|
Robey RW, Pluchino KM, Hall MD, Fojo AT, Bates SE, Gottesman MM. Revisiting the role of ABC transporters in multidrug-resistant cancer. Nat Rev Cancer 2018; 18:452-464. [PMID: 29643473 PMCID: PMC6622180 DOI: 10.1038/s41568-018-0005-8] [Citation(s) in RCA: 1145] [Impact Index Per Article: 190.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Most patients who die of cancer have disseminated disease that has become resistant to multiple therapeutic modalities. Ample evidence suggests that the expression of ATP-binding cassette (ABC) transporters, especially the multidrug resistance protein 1 (MDR1, also known as P-glycoprotein or P-gp), which is encoded by ABC subfamily B member 1 (ABCB1), can confer resistance to cytotoxic and targeted chemotherapy. However, the development of MDR1 as a therapeutic target has been unsuccessful. At the time of its discovery, appropriate tools for the characterization and clinical development of MDR1 as a therapeutic target were lacking. Thirty years after the initial cloning and characterization of MDR1 and the implication of two additional ABC transporters, the multidrug resistance-associated protein 1 (MRP1; encoded by ABCC1)), and ABCG2, in multidrug resistance, interest in investigating these transporters as therapeutic targets has waned. However, with the emergence of new data and advanced techniques, we propose to re-evaluate whether these transporters play a clinical role in multidrug resistance. With this Opinion article, we present recent evidence indicating that it is time to revisit the investigation into the role of ABC transporters in efficient drug delivery in various cancer types and at the blood-brain barrier.
Collapse
Affiliation(s)
- Robert W Robey
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Kristen M Pluchino
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Matthew D Hall
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Antonio T Fojo
- Division of Hematology/Oncology, Department of Medicine, Columbia University/New York Presbyterian Hospital, Manhattan, NY, USA
- James J. Peters VA Medical Center, Bronx, NY, USA
| | - Susan E Bates
- Division of Hematology/Oncology, Department of Medicine, Columbia University/New York Presbyterian Hospital, Manhattan, NY, USA
- James J. Peters VA Medical Center, Bronx, NY, USA
| | - Michael M Gottesman
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
3
|
Genovese I, Ilari A, Assaraf YG, Fazi F, Colotti G. Not only P-glycoprotein: Amplification of the ABCB1- containing chromosome region 7q21 confers multidrug resistance upon cancer cells by coordinated overexpression of an assortment of resistance-related proteins. Drug Resist Updat 2017; 32:23-46. [DOI: 10.1016/j.drup.2017.10.003] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 10/01/2017] [Accepted: 10/11/2017] [Indexed: 02/07/2023]
|
4
|
Atlasi Y, Looijenga L, Fodde R. Cancer stem cells, pluripotency, and cellular heterogeneity: a WNTer perspective. Curr Top Dev Biol 2014; 107:373-404. [PMID: 24439813 DOI: 10.1016/b978-0-12-416022-4.00013-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cancer stem cells (CSCs) are thought to represent the "beating heart" of malignant growth as they continuously fuel tumors through their ability to self-renew and differentiate. Moreover, they are also believed to underlie malignant behavior, local invasion, and metastasis in distal organ sites upon reversible epithelial-to-mesenchymal transitions (EMTs). Nevertheless, the CSC concept has been the object of controversy, mainly due to the absence of robust operational definitions and to the lack of consistency in the use of the often incorrect nomenclature employed to refer to these cells. Notwithstanding the controversies, it is now generally accepted that primary cancers are organized in hierarchical fashion with neoplastic stem-like cells able to give rise to new CSCs and to more committed malignant cells. Notably, these hierarchical structures are not unidirectional, but are rather characterized by a more dynamic equilibrium where stem-like and more committed cancer cells transit from one meta-state to the other partly because of cues from the microenvironment (niche), but also because of intrinsic and yet incompletely understood characteristics in the activation/silencing of specific signal transduction pathways. Here, we will focus on the Wnt/β-catenin signaling pathway as one of the major regulator of stemness in homeostasis and cancer, and on germ cell tumors as the type of malignancy that most closely mimics normal embryonic development and as such serve as a unique model to study the role of stem cells in neoplasia.
Collapse
Affiliation(s)
- Yaser Atlasi
- Department of Pathology, Josephine Nefkens Institute, Erasmus MC, Rotterdam, The Netherlands
| | - Leendert Looijenga
- Department of Pathology, Josephine Nefkens Institute, Erasmus MC, Rotterdam, The Netherlands
| | - Riccardo Fodde
- Department of Pathology, Josephine Nefkens Institute, Erasmus MC, Rotterdam, The Netherlands.
| |
Collapse
|
5
|
Integrative genomic and transcriptomic analysis identified candidate genes implicated in the pathogenesis of hepatosplenic T-cell lymphoma. PLoS One 2014; 9:e102977. [PMID: 25057852 PMCID: PMC4109958 DOI: 10.1371/journal.pone.0102977] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 06/23/2014] [Indexed: 12/20/2022] Open
Abstract
Hepatosplenic T-cell lymphoma (HSTL) is an aggressive lymphoma cytogenetically characterized by isochromosome 7q [i(7)(q10)], of which the molecular consequences remain unknown. We report here results of an integrative genomic and transcriptomic (expression microarray and RNA-sequencing) study of six i(7)(q10)-positive HSTL cases, including HSTL-derived cell line (DERL-2), and three cases with ring 7 [r(7)], the recently identified rare variant aberration. Using high resolution array CGH, we profiled all cases and mapped the common deleted region (CDR) at 7p22.1p14.1 (34.88 Mb; 3506316-38406226 bp) and the common gained region (CGR) at 7q22.11q31.1 (38.77 Mb; 86259620–124892276 bp). Interestingly, CDR spans a smaller region of 13 Mb (86259620–99271246 bp) constantly amplified in cases with r(7). In addition, we found that TCRG (7p14.1) and TCRB (7q32) are involved in formation of r(7), which seems to be a byproduct of illegitimate somatic rearrangement of both loci. Further transcriptomic analysis has not identified any CDR-related candidate tumor suppressor gene. Instead, loss of 7p22.1p14.1 correlated with an enhanced expression of CHN2 (7p14.1) and the encoded β2-chimerin. Gain and amplification of 7q22.11q31.1 are associated with an increased expression of several genes postulated to be implicated in cancer, including RUNDC3B, PPP1R9A and ABCB1, a known multidrug resistance gene. RNA-sequencing did not identify any disease-defining mutation or gene fusion. Thus, chromosome 7 imbalances remain the only driver events detected in this tumor. We hypothesize that the Δ7p22.1p14.1-associated enhanced expression of CHN2/β2-chimerin leads to downmodulation of the NFAT pathway and a proliferative response, while upregulation of the CGR-related genes provides growth advantage for neoplastic δγT-cells and underlies their intrinsic chemoresistance. Finally, our study confirms the previously described gene expression profile of HSTL and identifies a set of 24 genes, including three located on chromosome 7 (CHN2, ABCB1 and PPP1R9A), distinguishing HSTL from other malignancies.
Collapse
|
6
|
Xu B, Song X, Yip NC, Xiao P, Zhang Y, Wang W, Zhou S. Simultaneous detection of MDR1 and WT1 gene expression to predict the prognosis of adult acute lymphoblastic leukemia. Hematology 2013; 15:74-80. [PMID: 20423567 DOI: 10.1179/102453310x12583347009937] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Bing Xu
- Department of HematologyNanfang Hospital, The Southern Medical University, Guangzhou 510515, China
| | - Xiaoyan Song
- Department of HematologyNanfang Hospital, The Southern Medical University, Guangzhou, China
| | - Nga Chi Yip
- Research Institute in Healthcare Science, School of Applied Sciences, University of Wolverhampton, Wolverhampton, UK
| | - Pingnan Xiao
- Department of HematologyNanfang Hospital, The Southern Medical University, Guangzhou, China
| | - Yanyan Zhang
- Department of HematologyNanfang Hospital, The Southern Medical University, Guangzhou, China
| | - Weiguang Wang
- Research Institute in Healthcare Science, School of Applied Sciences, University of Wolverhampton, Wolverhampton, UK
| | - Shuyun Zhou
- Department of HematologyNanfang Hospital, The Southern Medical University, Guangzhou, China
| |
Collapse
|
7
|
Nieth C, Lage H. Induction of the ABC-Transporters Mdr1/P-gp (Abcb1), Mrp1 (Abcc1), and Bcrp (Abcg2) during Establishment of Multidrug Resistance Following Exposure to Mitoxantrone. J Chemother 2013; 17:215-23. [PMID: 15920909 DOI: 10.1179/joc.2005.17.2.215] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Resistance to mitoxantrone is often associated with enhanced drug efflux mediated by members of the superfamily of adenosinetriphosphate-binding cassette (ABC) transporters, i.e. MDR1/P-gp (ABCB1), MRP1 (ABCC1), or BCRP (ABCG2). So far it is unclear whether the same ABC-transporter is always activated from the beginning of mitoxantrone treatment to the end of drug exposure. Here, we demonstrate that the expression of all three extrusion pumps is induced by increasing levels of mitoxantrone resistance, but in the end, merely the overexpression of a dominant single drug transporter, i.e. Mdr1/P-gp, is realized. This upregulation of Mdr1/P-gp was reflected by amplification of the Mdr1/P-gp encoding gene. Short mitoxantrone exposure demonstrated that upregulation of two different transporters, Mdr1/P-gp and Bcrp, was induced. The data indicate that mitoxantrone treatment influences the expression of several ABC-transporters, but in the end, merely a single extrusion pump will be dominant.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily G, Member 2
- ATP-Binding Cassette Transporters/drug effects
- ATP-Binding Cassette Transporters/genetics
- Animals
- Antineoplastic Agents/pharmacology
- Blotting, Northern
- Blotting, Southern
- Blotting, Western
- Cell Line, Tumor
- Cricetinae
- Cricetulus
- DNA, Bacterial/analysis
- Drug Resistance, Neoplasm/genetics
- Female
- Flow Cytometry
- Gene Expression Regulation
- Genes, MDR/drug effects
- Genes, MDR/genetics
- Membrane Transport Proteins/drug effects
- Membrane Transport Proteins/genetics
- Mitoxantrone/pharmacology
- Neoplasm Proteins/drug effects
- Neoplasm Proteins/genetics
- Ovary/cytology
- Reverse Transcriptase Polymerase Chain Reaction
- Sensitivity and Specificity
- Up-Regulation
Collapse
Affiliation(s)
- C Nieth
- Charité Campus Mitte, Institute of Pathology, Schumannstr. 20/21, D-10117 Berlin, Germany
| | | |
Collapse
|
8
|
Abstract
Cancer stem cells (CSCs) represent a subpopulation of tumour cells endowed with self-renewal and multi-lineage differentiation capacity but also with an innate resistance to cytotoxic agents, a feature likely to pose major clinical challenges towards the complete eradication of minimal residual disease in cancer patients. Operationally, CSCs are defined by their tumour-propagating ability when serially transplanted into immune-compromised mice and by their capacity to fully recapitulate the original heterogeneity of cell types observed in the primary lesions they are derived from. CSCs were first identified in haematopoietic malignancies and later in a broad spectrum of solid tumours including those of the breast, colon and brain. Notably, several CSC characteristics are relevant to metastasis, such as motility, invasiveness and, as mentioned above, resistance to DNA damage-induced apoptosis. Here, we have reviewed the current literature on the relation between CSCs and metastasis formation. Preliminary studies on cancer cell lines and patient-derived material suggest a rate-limiting role for stem-like cells in the processes of tumour cell dissemination and metastasis formation. However, additional studies are needed to deliver formal proof of their identity as the cell of origin of recurrences at distant organ sites. Nevertheless, several studies have already provided pre-clinical evidence of the efficacy of novel therapies directed against disseminated CSCs.
Collapse
|
9
|
Sleeman JP, Christofori G, Fodde R, Collard JG, Berx G, Decraene C, Rüegg C. Concepts of metastasis in flux: the stromal progression model. Semin Cancer Biol 2012; 22:174-86. [PMID: 22374376 DOI: 10.1016/j.semcancer.2012.02.007] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 02/14/2012] [Indexed: 12/11/2022]
Abstract
The ability of tumor cells to leave a primary tumor, to disseminate through the body, and to ultimately seed new secondary tumors is universally agreed to be the basis for metastasis formation. An accurate description of the cellular and molecular mechanisms that underlie this multistep process would greatly facilitate the rational development of therapies that effectively allow metastatic disease to be controlled and treated. A number of disparate and sometimes conflicting hypotheses and models have been suggested to explain various aspects of the process, and no single concept explains the mechanism of metastasis in its entirety or encompasses all observations and experimental findings. The exciting progress made in metastasis research in recent years has refined existing ideas, as well as giving rise to new ones. In this review we survey some of the main theories that currently exist in the field, and show that significant convergence is emerging, allowing a synthesis of several models to give a more comprehensive overview of the process of metastasis. As a result we postulate a stromal progression model of metastasis. In this model, progressive modification of the tumor microenvironment is equally as important as genetic and epigenetic changes in tumor cells during primary tumor progression. Mutual regulatory interactions between stroma and tumor cells modify the stemness of the cells that drive tumor growth, in a manner that involves epithelial-mesenchymal and mesenchymal-epithelial-like transitions. Similar interactions need to be recapitulated at secondary sites for metastases to grow. Early disseminating tumor cells can progress at the secondary site in parallel to the primary tumor, both in terms of genetic changes, as well as progressive development of a metastatic stroma. Although this model brings together many ideas in the field, there remain nevertheless a number of major open questions, underscoring the need for further research to fully understand metastasis, and thereby identify new and effective ways of treating metastatic disease.
Collapse
Affiliation(s)
- Jonathan P Sleeman
- Universitätsmedizin Mannheim, University of Heidelberg, Centre for Biomedicine and Medical Technology Mannheim (CBTM), TRIDOMUS-Gebäude Haus C, Ludolf-Krehl-Str. 13-17, D-68167 Mannheim, Germany.
| | | | | | | | | | | | | |
Collapse
|
10
|
Marquez B, Ameye G, Vallet CM, Tulkens PM, Poirel HA, Van Bambeke F. Characterization of Abcc4 gene amplification in stepwise-selected mouse J774 macrophages resistant to the topoisomerase II inhibitor ciprofloxacin. PLoS One 2011; 6:e28368. [PMID: 22162766 PMCID: PMC3230599 DOI: 10.1371/journal.pone.0028368] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Accepted: 11/07/2011] [Indexed: 11/18/2022] Open
Abstract
Exposure of J774 mouse macrophages to stepwise increasing concentrations of ciprofloxacin, an antibiotic inhibiting bacterial topoisomerases, selects for resistant cells that overexpress the efflux transporter Abcc4 (Marquez et al. [2009] Antimicrob. Agents Chemother. 53: 2410-2416), encoded by the Abcc4 gene located on Chromosome 14qE4. In this study, we report the genomic alterations occurring along the selection process. Abcc4 expression progressively increased upon selection rounds, with exponential changes observed between cells exposed to 150 and 200 µM of ciprofloxacin, accompanied by a commensurate decrease in ciprofloxacin accumulation. Molecular cytogenetics experiments showed that this overexpression is linked to Abcc4 gene overrepresentation, grading from a partial trisomy of Chr 14 at the first step of selection (cells exposed to 100 µM ciprofloxacin), to low-level amplifications (around three copies) of Abcc4 locus on 1 or 2 Chr 14 (cells exposed to 150 µM ciprofloxacin), followed by high-level amplification of Abcc4 as homogeneous staining region (hsr), inserted on 3 different derivative Chromosomes (cells exposed to 200 µM ciprofloxacin). In revertant cells obtained after more than 60 passages of culture without drug, the Abcc4 hsr amplification was lost in approx. 70% of the population. These data suggest that exposing cells to sufficient concentrations of an antibiotic with low affinity for eukaryotic topoisomerases can cause major genomic alterations that may lead to the overexpression of the transporter responsible for its efflux. Gene amplification appears therefore as a mechanism of resistance that can be triggered by non-anticancer agents but contribute to cross-resistance, and is partially and slowly reversible.
Collapse
Affiliation(s)
- Béatrice Marquez
- Université catholique de Louvain, Louvain Drug Research Institute, Pharmacologie cellulaire et moléculaire, Brussels, Belgium
| | - Geneviève Ameye
- Université catholique de Louvain, Cliniques universitaires Saint-Luc, Centre de Génétique humaine, Brussels, Belgium
| | - Coralie M. Vallet
- Université catholique de Louvain, Louvain Drug Research Institute, Pharmacologie cellulaire et moléculaire, Brussels, Belgium
| | - Paul M. Tulkens
- Université catholique de Louvain, Louvain Drug Research Institute, Pharmacologie cellulaire et moléculaire, Brussels, Belgium
| | - Hélène A. Poirel
- Université catholique de Louvain, Cliniques universitaires Saint-Luc, Centre de Génétique humaine, Brussels, Belgium
| | - Françoise Van Bambeke
- Université catholique de Louvain, Louvain Drug Research Institute, Pharmacologie cellulaire et moléculaire, Brussels, Belgium
- * E-mail:
| |
Collapse
|
11
|
|
12
|
Dorsey JF, Dowling ML, Kim M, Voong R, Solin LJ, Kao GD. Modulation of the anti-cancer efficacy of microtubule-targeting agents by cellular growth conditions. Cancer Biol Ther 2011; 9:809-18. [PMID: 20234172 DOI: 10.4161/cbt.9.10.11453] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Mitotic spindle-disrupting agents target and disrupt microtubule dynamics. These agents include clinically important chemotherapies, including taxanes (paclitaxel (Taxol), docetaxel (Taxotere)) and vinca alkaloids (vincristine (Oncovin), vinblastine). Taxanes are a standard component of treatment for many malignancies, often in conjunction with other cytotoxic agents. However, the optimal sequencing of these treatments and whether efficacy may be influenced by in vitro cellular growth conditions remain incompletely investigated. Yet such preclinical investigations may guide clinical decision making. We therefore studied the effect of cell density on rapid killing by paclitaxel and vincristine. Breast, ovarian and prostate cancer cells were sensitive to rapid killing by either agent when grown at low density, but were markedly resistant when grown at high density, i.e. nearly confluent. The resistance of densely growing cells to rapid killing by these drugs translated to increased clonogenic survival. Pretreatment of densely growing cancer cells with cisplatin followed by paclitaxel, partially reversed the treatment resistance. Gene ontology associations from microarray analyses of cells grown at low and high density, suggested roles for membrane signal transduction and adhesion, but potentially also DNA damage repair and metabolism. Taken together, the treatment resistance at higher cell density may be associated with a lower proportion of active cycling in cells growing at high density as well as transduction of survival signals induced by increased cell-cell adhesion. Collectively these findings suggest mechanisms by which growth conditions may contribute to resistance to rapid killing by microtubule-disrupting drugs.
Collapse
Affiliation(s)
- Jay F Dorsey
- Department of Radiation Oncology and Radiation Biology and Imaging Program, Abramson Comprehensive Cancer Center, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | | | | | | | | | | |
Collapse
|
13
|
Brózik A, Hegedüs C, Erdei Z, Hegedus T, Özvegy-Laczka C, Szakács G, Sarkadi B. Tyrosine kinase inhibitors as modulators of ATP binding cassette multidrug transporters: substrates, chemosensitizers or inducers of acquired multidrug resistance? Expert Opin Drug Metab Toxicol 2011; 7:623-42. [PMID: 21410427 DOI: 10.1517/17425255.2011.562892] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Anticancer tyrosine kinase inhibitors (TKIs) are small molecule hydrophobic compounds designed to arrest aberrant signaling pathways in malignant cells. Multidrug resistance (MDR) ATP binding cassette (ABC) transporters have recently been recognized as important determinants of the general ADME-Tox (absorption, distribution, metabolism, excretion, toxicity) properties of small molecule TKIs, as well as key factors of resistance against targeted anticancer therapeutics. AREAS COVERED The article summarizes MDR-related ABC transporter interactions with imatinib, nilotinib, dasatinib, gefitinib, erlotinib, lapatinib, sunitinib and sorafenib, including in vitro and in vivo observations. An array of methods developed to study such interactions is presented. Transporter-TKI interactions relevant to the ADME-Tox properties of TKI drugs, primary or acquired cancer TKI resistance, and drug-drug interactions are also reviewed. EXPERT OPINION Based on the concept presented in this review, TKI anticancer drugs are considered as compounds recognized by the cellular mechanisms handling xenobiotics. Accordingly, novel anticancer therapies should equally focus on the effectiveness of target inhibition and exploration of potential interactions of the designed molecules by membrane transporters. Thus, targeted hydrophobic small molecule compounds should also be screened to evade xenobiotic-sensing cellular mechanisms.
Collapse
Affiliation(s)
- Anna Brózik
- Hungarian Academy of Sciences and Semmelweis University, Membrane Biology, Budapest, Hungary
| | | | | | | | | | | | | |
Collapse
|
14
|
Matsuki E, Miyakawa Y, Asakawa S, Tsukada Y, Yamada T, Yokoyama K, Kudoh J, Ikeda Y, Okamoto S. Identification of Loss of p16 Expression and Upregulation of MDR-1 as Genetic Events Resulting from Two Novel Chromosomal Translocations Found in a Plasmablastic Lymphoma of the Uterus. Clin Cancer Res 2011; 17:2101-9. [DOI: 10.1158/1078-0432.ccr-10-2945] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
15
|
Kitada K, Yamasaki T, Aikawa S. Amplification of the ABCB1 region accompanied by a short sequence of 200bp from chromosome 2 in lung cancer cells. ACTA ACUST UNITED AC 2009; 194:4-11. [PMID: 19737648 DOI: 10.1016/j.cancergencyto.2009.05.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2009] [Revised: 04/28/2009] [Accepted: 05/04/2009] [Indexed: 10/20/2022]
Abstract
Lung cancer sublines No15-80-1 and No15-80-6 were selected by treatment of cell line NCI-H460 with paclitaxel at stepwise increasing concentrations from 50 nmol/L to 800 nmol/L. The two sublines exhibited amplifications of the ABCB1 region (previously MDR1) with different copy number profiles, but shared a common amplification pattern, which has been observed in amplification mediated by the breakage-fusion-bridge (BFB) cycle. Sequence analysis of the distal ends of the amplified regions, which were probably generated in a break-and-fusion of the initial round of the BFB cycle, revealed a head-to-head fused sequence of chromosome 7. The sequence was identical in the two sublines. A short sequence of 200bp derived from chromosome 2 was incorporated, suggesting translocation between chromosomes 2 and 7. The copy number of the short sequence was comparable to that of the neighboring sequence, suggesting coamplification. The timing of the occurrence of the putative translocation and the initiation of BFB-cycle-driven amplification during the stepwise selection were determined by using the unique junction sequences specific to these events as indicators. The results demonstrated that the translocation occurred at the step of 100 nmol/L treatment and the BFB cycle initiated in the step of 400 nmol/L-treatment. It is likely that the translocation, preceding amplification by several selection steps, activated ABCB1 gene expression. The diversity in amplification profiles between the two sublines was generated by the separately operating BFB cycles, after an initial break-and-fusion that probably occurred in a single cell.
Collapse
Affiliation(s)
- Kunio Kitada
- Kamakura Research Laboratories, Chugai Pharmaceutical Company, 200-Kajiwara, Kamakura, Kanagawa, Japan
| | | | | |
Collapse
|
16
|
Kim DH, Lee NY, Kim JG, Sohn SK, Won DI, Suh JS, Lee GS, Chae SC, Lee KB. Daunorubicin efflux assay in determining multidrug resistance of patients with acute myeloid leukemia. Leuk Lymphoma 2009; 46:63-70. [PMID: 15621782 DOI: 10.1080/10428190400010759] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
We evaluated the predictive value of mdr1 mRNA RT-PCR, P-glycoprotein (Pgp), and Daunorubicin efflux assays as regards achieving complete remission (CR), overall survival (OS), and leukemia-free survival (LFS) in 72 patients with AML. mdr1 mRNA, Pgp, and Efflux were expressed in 55.6%, 36.1%, and 33.3%. Efflux+ was associated with a lower CR rate (P = 0.006). A multivariate analysis of OS identified 3 prognostic factors: WBC (P = 0.028), age (P = 0.002), and Efflux (P = 0.005), while those of LFS identified 2 prognostic factors: age (P = 0.021) and Efflux (P < 0.001). Efflux was the most reliable method in predicting an achievement of CR and stratifying the patients according to the prognosis in terms of OS and LFS in AML.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- Adolescent
- Adult
- Aged
- Daunorubicin/metabolism
- Daunorubicin/pharmacokinetics
- Disease-Free Survival
- Drug Resistance, Multiple
- Drug Resistance, Neoplasm
- Female
- Genes, MDR/genetics
- Humans
- Leukemia, Myeloid, Acute/diagnosis
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Male
- Middle Aged
- Prognosis
- RNA, Messenger/analysis
- RNA, Messenger/genetics
- Reverse Transcriptase Polymerase Chain Reaction
- Survival Rate
- Treatment Outcome
Collapse
Affiliation(s)
- Dong Hwan Kim
- Department of Internal Medicine, Kyungpook National University Hospital, Daegu, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Lee HW, Lee HW, Park DJ, Moon SO, Ahn JH, Kim MJ, Kim SD, Kim JE, Yoon YR. The effects of fexofenadine at steady-state on sleep architecture: a study using polysomnography in healthy Korean volunteers. Expert Opin Pharmacother 2008; 9:1655-65. [PMID: 18570599 DOI: 10.1517/14656566.9.10.1655] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
OBJECTIVES To compare the effects of a first-generation antihistamine, chlorpheniramine, with those of the second-generation antihistamine, fexofenadine, at steady-state, on nocturnal sleep architecture in healthy Korean volunteers using polysomnography and the Multiple Sleep Latency Test. We evaluated whether a genetic polymorphism of multi-drug resistance 1 gene (MDR1) could produce variations in pharmacokinetic and pharmacodynamic parameters of fexofenadine. DESIGN/METHODS Ten healthy male volunteers received one capsule of fexofenadine 180 mg once each morning or chlorpheniramine 6 mg (2 mg in the morning and 4 mg after 12 h) for 3 days, in a single-site, randomized, double-blind, two-treatment, multiple-dosing, two-way crossover study, with a washout period of 7 days. Overnight polysomnography was measured on the second night of the treatment period. The Multiple Sleep Latency Test was carried out the next morning. Blood samples were taken for the assessment of fexofenadine pharmacokinetics and MDR1 genotyping on the third day. RESULTS Compared with baseline and fexofenadine, chlorpheniramine significantly increased the latency in rapid eye movement (REM) sleep, with no significant decrease in the percentage of REM sleep. No significant change in latency for REM sleep or percentage REM sleep after dosing with fexofenadine was observed. There was no significant change in the daytime sleepiness with fexofenadine and chlorpheniramine. The effects of MDR1 genotypes and haplotypes on the pharmacokinetics and pharmacodynamics of fexofenadine were not significant. CONCLUSIONS Our findings suggest that fexofenadine and chlorpheniramine at steady-state have no significant effect on nocturnal sleep variables and daytime sleepiness, when compared to baseline.
Collapse
Affiliation(s)
- Ho-Won Lee
- Kyungpook National University Hospital, Department of Neurology, 50 Samduk-dong 2 Ga, Jung-gu, Daegu, 700-721, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Regulation of ABCG2 expression at the 3' untranslated region of its mRNA through modulation of transcript stability and protein translation by a putative microRNA in the S1 colon cancer cell line. Mol Cell Biol 2008; 28:5147-61. [PMID: 18573883 DOI: 10.1128/mcb.00331-08] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
ABCG2 is recognized as an important efflux transporter in clinical pharmacology and is potentially important in resistance to chemotherapeutic drugs. To identify epigenetic mechanisms regulating ABCG2 mRNA expression at its 3' untranslated region (3'UTR), we performed 3' rapid amplification of cDNA ends with the S1 parental colon cancer cell line and its drug-resistant ABCG2-overexpressing counterpart. We found that the 3'UTR is >1,500 bp longer in parental cells and, using the miRBase TARGETs database, identified a putative microRNA (miRNA) binding site, distinct from the recently reported hsa-miR520h site, in the portion of the 3'UTR missing from ABCG2 mRNA in the resistant cells. We hypothesized that the binding of a putative miRNA at the 3'UTR of ABCG2 suppresses the expression of ABCG2. In resistant S1MI80 cells, the miRNA cannot bind to ABCG2 mRNA because of the shorter 3'UTR, and thus, mRNA degradation and/or repression on protein translation is relieved, contributing to overexpression of ABCG2. This hypothesis was rigorously tested by reporter gene assays, mutational analysis at the miRNA binding sites, and forced expression of miRNA inhibitors or mimics. The removal of this epigenetic regulation by miRNA could be involved in the overexpression of ABCG2 in drug-resistant cancer cells.
Collapse
|
19
|
Polgar O, Robey RW, Bates SE. ABCG2: structure, function and role in drug response. Expert Opin Drug Metab Toxicol 2008; 4:1-15. [PMID: 18370855 DOI: 10.1517/17425255.4.1.1] [Citation(s) in RCA: 165] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
ABCG2 was discovered in multi-drug-resistant cancer cells, with the identification of chemotherapeutic agents, such as mitoxantrone, flavopiridol, methotrexate and irinotecan as substrates. Later, drugs from other therapeutic groups were also described as substrates, including antibiotics, antivirals, HMG-CoA reductase inhibitors and flavonoids. An expanding list of compounds inhibiting ABCG2 has also been generated. The wide variety of drugs transported by ABCG2 and its normal tissue distribution with highest levels in the placenta, intestine and liver, suggest a role in protection against xenobiotics. ABCG2 also has an important role in the pharmacokinetics of its substrates. Single nucleotide polymorphisms of the gene were shown to alter either plasma concentrations of substrate drugs or levels of resistance against chemotherapeutic agents in cell lines. ABCG2 was also described as the determinant of the side population of stem cells. All these aspects of the transporter warrant further research aimed at understanding ABCG2's structure, function and regulation of expression.
Collapse
Affiliation(s)
- Orsolya Polgar
- National Cancer Institute, Medical Oncology Branch, Center for Cancer Research, NIH, 9000 Rockville Pike, Building 10, Room 13N240, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
20
|
Selvarajah S, Yoshimoto M, Prasad M, Shago M, Squire JA, Zielenska M, Somers GR. Characterization of trisomy 8 in pediatric undifferentiated sarcomas using advanced molecular cytogenetic techniques. ACTA ACUST UNITED AC 2007; 174:35-41. [PMID: 17350464 DOI: 10.1016/j.cancergencyto.2006.11.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2006] [Revised: 11/13/2006] [Accepted: 11/21/2006] [Indexed: 01/13/2023]
Abstract
Pediatric undifferentiated soft tissue sarcomas (USTS) are a rare group of neoplasms that are unclassifiable despite the application of immunohistochemical, cytogenetic, and molecular techniques. To date, there is a dearth of studies looking at the cytogenetic and molecular genetic alterations in such tumors. Trisomy 8, a frequent molecular alteration in neoplasia, is seen in several soft tissue sarcomas, including Ewing sarcoma/primitive neuroectodermal tumor (ES/PNET), synovial sarcoma, and leiomyosarcoma. Because USTS share several clinicobiological features with the aforementioned tumors, the occurrence of alterations in chromosome 8 was studied in 11 pediatric USTS using a combination of interphase fluorescence in situ hybridization (FISH), spectral karyotyping (SKY), and genomic profiling with oligonucleotide array comparative genomic hybridization (aCGH). The copy number status of MYC was also assessed on the same tumors using dual-color FISH, with the aim of delineating the degree and intratumoral distribution of MYC amplification in this tumor. A near-uniform presence of an increase in MYC copy number was observed, along with an increase in chromosome 8 copy number in all the tumors. SKY and aCGH analysis of tumors exhibiting trisomy 8 confirmed the numerical imbalances. The occurrence of trisomy 8 in a subset of pediatric USTS confirms a shared genomic alteration with several other soft tissue sarcomas. Further studies are required to determine the clinical implications of such a finding.
Collapse
Affiliation(s)
- Shamini Selvarajah
- Department of Pathology and Laboratory Medicine, The Hospital for Sick Children, 555 University Avenue, Room 3-206, Toronto, Ontario M5G 1X8, Canada
| | | | | | | | | | | | | |
Collapse
|
21
|
Golalipour M, Mahjoubi F, Sanati MH, Alimoghaddam K, Kamran A. Gene Dosage Is Not Responsible for the Upregulation of MRP1 Gene Expression in Adult Leukemia Patients. Arch Med Res 2007; 38:297-304. [PMID: 17350479 DOI: 10.1016/j.arcmed.2006.10.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2006] [Accepted: 10/25/2006] [Indexed: 12/20/2022]
Abstract
BACKGROUND Upregulation of multidrug resistance-associated protein (MRP1) gene has been detected in many in vitro systems and could be the basis of the drug resistance phenotype in vivo. Increase in gene dosage and overexpression are two major mechanisms for increasing MRP1 expression level. In many drug resistant cell lines, MRP1 gene amplification has been detected. However, it is not yet known whether gene amplification plays a role in inducing the multidrug resistance phenotype clinically. METHODS To establish whether MRP1 gene copy number is a common feature of the upregulation of MRP1 expression in cancer patients, we studied the MRP1 gene copy number in leukemia patients by fluorescent in situ hybridization (FISH) and real-time PCR. This involved determination of the MRP1 gene copy number and mRNA level in the peripheral blood of 52 adult leukemic patients and ten healthy volunteers. The leukemic CCRF-CEM cell line (drug sensitive) and its drug-resistant subline CCRF-E1000, which has MRP1 overexpression, were used as controls. RESULTS The MRP1 gene copy number in CCRF-CEM was normal but increased significantly in CCRF-E1000 cell line. However, in the presence or absence of MRP1 overexpression, increase in gene dosage was not detected in patients. CONCLUSIONS Our data suggest that the increase in MRP1 gene dosage observed in resistant cell lines is not responsible for the upregulation of MRP1 expression in leukemic patients.
Collapse
Affiliation(s)
- Masoud Golalipour
- Clinical Genetics Department, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | | | | | | | | |
Collapse
|
22
|
Sarkadi B, Homolya L, Szakács G, Váradi A. Human multidrug resistance ABCB and ABCG transporters: participation in a chemoimmunity defense system. Physiol Rev 2006; 86:1179-236. [PMID: 17015488 DOI: 10.1152/physrev.00037.2005] [Citation(s) in RCA: 540] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In this review we give an overview of the physiological functions of a group of ATP binding cassette (ABC) transporter proteins, which were discovered, and still referred to, as multidrug resistance (MDR) transporters. Although they indeed play an important role in cancer drug resistance, their major physiological function is to provide general protection against hydrophobic xenobiotics. With a highly conserved structure, membrane topology, and mechanism of action, these essential transporters are preserved throughout all living systems, from bacteria to human. We describe the general structural and mechanistic features of the human MDR-ABC transporters and introduce some of the basic methods that can be applied for the analysis of their expression, function, regulation, and modulation. We treat in detail the biochemistry, cell biology, and physiology of the ABCB1 (MDR1/P-glycoprotein) and the ABCG2 (MXR/BCRP) proteins and describe emerging information related to additional ABCB- and ABCG-type transporters with a potential role in drug and xenobiotic resistance. Throughout this review we demonstrate and emphasize the general network characteristics of the MDR-ABC transporters, functioning at the cellular and physiological tissue barriers. In addition, we suggest that multidrug transporters are essential parts of an innate defense system, the "chemoimmunity" network, which has a number of features reminiscent of classical immunology.
Collapse
Affiliation(s)
- Balázs Sarkadi
- National Medical Center, Institute of Hematology and Immunology, Membrane Research Group, Budapest, Hungary.
| | | | | | | |
Collapse
|
23
|
Leschziner GD, Andrew T, Pirmohamed M, Johnson MR. ABCB1 genotype and PGP expression, function and therapeutic drug response: a critical review and recommendations for future research. THE PHARMACOGENOMICS JOURNAL 2006; 7:154-79. [PMID: 16969364 DOI: 10.1038/sj.tpj.6500413] [Citation(s) in RCA: 213] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The product of the ABCB1 gene, P-glycoprotein (PGP), is a transmembrane active efflux pump for a variety of drugs. It is a putative mechanism of multidrug resistance in a range of diseases. It is postulated that ABCB1 polymorphisms contribute to variability in PGP function, and that therefore multidrug resistance is, at least in part, genetically determined. However, studies of ABCB1 genotype or haplotype and PGP expression, activity or drug response have produced inconsistent results. This critical review of ABCB1 genotype and PGP function, including mRNA expression, PGP-substrate drug pharmacokinetics and drug response, highlights methodological limitations of existing studies, including inadequate power, potential confounding by co-morbidity and co-medication, multiple testing, poor definition of disease phenotype and outcomes, and analysis of multiple drugs that might not be PGP substrates. We have produced recommendations for future research that will aid clarification of the association between ABCB1 genotypes and factors related to PGP activity.
Collapse
Affiliation(s)
- G D Leschziner
- Division of Neurosciences, Imperial College, London, UK.
| | | | | | | |
Collapse
|
24
|
Wang YC, Juric D, Francisco B, Yu RX, Duran GE, Chen KG, Chen X, Sikic BI. Regional activation of chromosomal arm 7q with and without gene amplification in taxane-selected human ovarian cancer cell lines. Genes Chromosomes Cancer 2006; 45:365-74. [PMID: 16382445 DOI: 10.1002/gcc.20300] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Taxanes are important drugs in the treatment of ovarian and other cancers, but their efficacy is limited by intrinsic and acquired drug resistance. Expression of the multidrug transporter P-glycoprotein, encoded by the MDR1 (ABCB1) gene, is one of the causes of clinical drug resistance to taxanes. To study the mechanisms of MDR1 activation related to taxanes, we established 11 multidrug-resistant variants from six ovarian cancer cell lines by continuous exposure to either paclitaxel or docetaxel. We profiled gene expression and gene copy number alterations in these cell lines using cDNA microarrays and identified a cluster of genes coactivated with MDR1 in 7q21.11-13. Regional activation was evident in nine resistant variants displaying a coexpression pattern of up to 22 genes over an 8-Mb area, including SRI, MGC4175, CLDN12, CROT, and CDK6. In six of these variants, regional activation was driven by gene copy number alterations, with low-level gains or high-level amplifications spanning the involved region. However, three variants displayed regional increases in gene expression even without concomitant gene copy number changes. These results suggest that regional gene activation may be a fundamental mechanism for acquired drug resistance, with or without changes in gene dosage. In addition to numerical and structural chromosomal changes driven by genome instability in cancer cells, other mechanisms might be involved in MDR1 regional activation, such as chromatin remodeling and DNA or histone modifications of the 7q21 region.
Collapse
Affiliation(s)
- Yan C Wang
- Oncology Division, Department of Medicine, Stanford University School of Medicine, Stanford, California 94305, USA
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Dey S. Single nucleotide polymorphisms in human P-glycoprotein: its impact on drug delivery and disposition. Expert Opin Drug Deliv 2006; 3:23-35. [PMID: 16370938 DOI: 10.1517/17425247.3.1.23] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Drug efflux pumps belong to a large family of ATP-binding cassette transporter proteins. These pumps bind their substrate and export it through the membrane using energy derived from ATP hydrolysis. P-glycoprotein, the main efflux pump in this family, is expressed not only in tumour cells but also in normal tissues with excretory function (liver, kidney and the intestine). It has a broad specificity of substrates and plays an important role in drug delivery and disposition. Recently, genetic screening of P-glycoprotein has yielded multiple single nucleotide polymorphisms, which seem to alter transporter function and expression. This review discusses the various polymorphisms of this gene and its impact on drug disposition and diseases.
Collapse
Affiliation(s)
- Surajit Dey
- College of Pharmacy, University of Southern Nevada, 11 Sunset Way, Henderson, NV 89014, USA.
| |
Collapse
|
26
|
Desper R, Difilippantonio MJ, Ried T, Schäffer AA. A comprehensive continuous-time model for the appearance of CGH signal due to chromosomal missegregations during mitosis. Math Biosci 2005; 197:67-87. [PMID: 16043196 PMCID: PMC1356526 DOI: 10.1016/j.mbs.2005.05.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2004] [Revised: 03/31/2005] [Accepted: 05/16/2005] [Indexed: 11/27/2022]
Abstract
Aneuploidy, the gain or loss of large regions of the genome, is a common feature in cancer cells. Irregularities in chromosomal copy number caused by missegregations of chromosomes during mitosis can be visualized by cytogenetic techniques including fluorescence in situ hybridization (FISH), spectral karyotyping (SKY) and comparative genomic hybridization (CGH). In the current work, we consider the propagation of irregular copy numbers throughout a cell population as the individual cells progress through ordinary mitotic cell cycles. We use an algebraic model to track the different copy numbers as states in a stochastic process, based on the model of chromosome instability of Gusev, Kagansky, and Dooley, and consider the average copy number of a particular chromosome within a cell population as a function of the cell division rate. We review a number of mathematical models for determining the length of the cell cycle, including the Smith-Martin transition probability model and the 'sloppy size' model of Wheals, Tyson and Diekmann. The program MITOSIM simulates the growth of a population of cells using the aforementioned models of the cell cycle. MITOSIM allows the cell population to grow, with occasional resampling, until the average copy number of a given chromosome in the population reaches a preset threshold signifying a positive copy number alteration in this region. MITOSIM calculates the relationship between the missegregation rate and the growth rate of the cell population. This allows the user to test hypotheses regarding the effect chromosomal aberrations have upon the cell cycle, cell growth rates, and time to population dominance.
Collapse
Affiliation(s)
- Richard Desper
- Computational Biology Branch, National Center for Biotechnology Information, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA
- Present affiliation: Department of Biology, University College London, UK
| | - Michael J. Difilippantonio
- Section of Cancer Genomics, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA
| | - Thomas Ried
- Section of Cancer Genomics, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA
| | - Alejandro A. Schäffer
- Computational Biology Branch, National Center for Biotechnology Information, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA
- *Address for Correspondence: Alejandro A. Schäffer, NCBI/NLM/NIH, Building 38A, Room 6S608, 8600 Rockville Pike, Bethesda, MD 20894 USA, E-mail:, FAX: 301-480-2288
| |
Collapse
|
27
|
Rao VK, Knutsen T, Ried T, Wangsa D, Flynn BM, Langham G, Egorin MJ, Cole D, Balis F, Steinberg SM, Bates S, Fojo T. The extent of chromosomal aberrations induced by chemotherapy in non-human primates depends on the schedule of administration. Mutat Res 2005; 583:105-19. [PMID: 15927870 DOI: 10.1016/j.mrgentox.2005.01.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2004] [Revised: 12/10/2004] [Accepted: 01/26/2005] [Indexed: 05/02/2023]
Abstract
We utilized a non-human primate model, the rhesus monkey (Macaca mulatta), to quantitate the extent of chromosomal damage in bone marrow cells following chemotherapy. Thiotepa, etoposide, and paclitaxel were chosen as the chemotherapy agents due to their distinct mechanisms of action. Chromosomal aberrations were quantitated using traditional Giemsa stain. We sought to evaluate the extent to which genotoxicity was dependent on the schedule of administration by giving chemotherapy as either a bolus or a 96 h continuous infusion. Neutropenia and areas under the concentration curve (AUCs) were monitored to ensure comparable cytotoxicity and dose administered. At least 100 metaphases were scored in each marrow sample by an investigator unaware of the treatment history of the animals. All three drugs produced a statistically significant higher percentage of abnormal metaphases following bolus chemotherapy (p<0.0001, p=0.0015 and p<0.0001 for thiotepa, etoposide and paclitaxel, respectively). We conclude that infusional administration of thiotepa, etoposide and paclitaxel is less genotoxic to normal bone marrow cells than is bolus administration. These results suggest infusional regimens may be considered where there are concerns about long-term genotoxic sequelae, including secondary cancer, teratogenicity, or possibly the development of drug resistance. We believe this approach provides a reproducible model in which drugs and eventually, regimens can be compared.
Collapse
Affiliation(s)
- V Koneti Rao
- Center for Cancer Research, National Cancer Institute, NIH, Building 10, Rm 12N226, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Tönnies H, Lage H. Chromosomal imbalances associated with drug resistance and thermoresistance in human pancreatic carcinoma cells. Eur J Cell Biol 2005; 83:591-601. [PMID: 15679104 DOI: 10.1078/0171-9335-00414] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Resistance to therapeutic treatment is the major obstacle to advances in the successful management of pancreatic cancer. To characterize chromosomal alterations associated with different phenotypes of acquired multidrug resistance (MDR) and thermoresistance, comparative genomic hybridization (CGH) was applied to compare human pancreatic carcinoma-derived cells. This panel of cell lines consists of the parental, drug- and thermosensitive pancreatic carcinoma cell line EPP85 - 181P, its atypical MDR variant EPP85-181RNOV, the classical MDR subline EPP85-181RDB, and their thermoresistant counterparts EPP85-181P-TR, EPP85-181RNOV-TR, and EPP85 - 181RDB-TR, respectively. CGH using genomic DNA prepared from these cell lines as probes successfully identified genomic gains and/or losses in chromosomal regions encoding putative genes associated with drug resistance and/or thermoresistance. These genes included 23 members of the family of ABC transporters, 27 members of the family of cytochrome P450 (CYP) monooxygenases, various molecular chaperones, DNA repair enzymes, and factors involved in the regulation of cell cycle and apoptosis. The importance of these cell variant-specific genomic imbalances in the development of MDR and thermoresistance is discussed and remains to be elucidated.
Collapse
Affiliation(s)
- Holger Tönnies
- Institute of Human Genetics, Humboldt University Berlin, Charité Campus Virchow-Klinikum, Berlin, Germany
| | | |
Collapse
|
29
|
McDonald SL, Stevenson DAJ, Moir SE, Hutcheon AW, Haites NE, Heys SD, Schofield AC. Genomic changes identified by comparative genomic hybridisation in docetaxel-resistant breast cancer cell lines. Eur J Cancer 2005; 41:1086-94. [PMID: 15862759 DOI: 10.1016/j.ejca.2005.01.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2004] [Revised: 11/29/2004] [Accepted: 01/27/2005] [Indexed: 11/18/2022]
Abstract
Docetaxel is one of the most effective chemotherapeutic agents in the treatment of breast cancer. Breast cancers can have an inherent or acquired resistance to docetaxel but the causes of this resistance remain unclear. In this study high-level, docetaxel-resistant human breast cancer cell lines (MCF-7 and MDA-MB-231) were created, and comparative genomic hybridisation was used to identify genomic regions associated with resistance to docetaxel. MCF-7 resistant cells showed an amplification of chromosomes 7q21.11-q22.1, 17q23-q24.3, 18, and deletion of chromosomes 6p, 10q11.2-qter and 12p. MDA-MB-231 resistant cells showed a gain of chromosomes 5p, 7q11.1-q35, 9, and loss of chromosomes 4, 8q24.1-qter, 10, 11q23.1-qter, 12q15-q24.31, 14q and 18. Whole chromosome paints confirmed these findings. Amplification of 7q21 and loss of 10q may represent a common mechanism of acquired docetaxel resistance in breast cancer cells. This study is the first description of a genomic approach specifically to identify genomic regions involved in resistance to docetaxel.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B, Member 1/antagonists & inhibitors
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- Antineoplastic Agents, Phytogenic/therapeutic use
- Breast Neoplasms/drug therapy
- Breast Neoplasms/genetics
- Calcium Channel Blockers/pharmacology
- Cell Line, Tumor
- Chromosome Aberrations
- Chromosomes, Human, Pair 7/genetics
- Docetaxel
- Drug Resistance, Neoplasm/genetics
- Female
- Genome, Human
- Humans
- Nucleic Acid Hybridization
- Taxoids/therapeutic use
- Verapamil/pharmacology
Collapse
Affiliation(s)
- Sarah L McDonald
- School of Medicine, College of Life Sciences and Medicine, University of Aberdeen, Medical School, Foresterhill, Aberdeen AB25 2ZD, Scotland, UK
| | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
The contribution of tumorigenic stem cells to haematopoietic cancers has been established for some time, and cells possessing stem-cell properties have been described in several solid tumours. Although chemotherapy kills most cells in a tumour, it is believed to leave tumour stem cells behind, which might be an important mechanism of resistance. For example, the ATP-binding cassette (ABC) drug transporters have been shown to protect cancer stem cells from chemotherapeutic agents. Gaining a better insight into the mechanisms of stem-cell resistance to chemotherapy might therefore lead to new therapeutic targets and better anticancer strategies.
Collapse
Affiliation(s)
- Michael Dean
- Laboratory of Genomic Diversity, National Cancer Institute-Frederick, Frederick, Maryland 21702, USA.
| | | | | |
Collapse
|
31
|
Raguz S, Tamburo De Bella M, Tripuraneni G, Slade MJ, Higgins CF, Coombes RC, Yagüe E. Activation of the MDR1 upstream promoter in breast carcinoma as a surrogate for metastatic invasion. Clin Cancer Res 2004; 10:2776-83. [PMID: 15102684 DOI: 10.1158/1078-0432.ccr-03-0517] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Activation of the MDR1 upstream promoter (USP) has been described previously in four lymphoblastic leukemia patients, where it is the major MDR1 promoter associated with P-glycoprotein overexpression. We asked whether MDR1 USP-derived transcripts were also present in breast carcinoma and assessed their potential as a biomarker. EXPERIMENTAL DESIGN We developed a sensitive method for detecting transcripts derived from the MDR1 USP and used it to identify MDR1 USP-derived transcripts in cell model systems, in 61 breast carcinoma biopsies of the primary tumor, and in isolated malignant epithelial cells both from the primary tumor and from the associated invaded lymph nodes. RESULTS The MDR1 USP was not active in several independent leukemic and breast cancer cell lines or nucleated peripheral blood cells (n = 9). However, transcripts derived from the MDR1 USP were detected in some drug-resistant cell lines and a high proportion of primary breast tumors (71.6%; n = 61), whereas they were present at low frequency in normal breast tissue (10%; n = 10). Activation of MDR1 USP was not due to chromosomal amplifications or rearrangements at the MDR1 locus. Transcription from the MDR1 USP correlated with metastatic node invasion [N = 0-3 versus N > 3 (N = number of lymph nodes invaded); Fisher's exact test, P = 0.011] and was detected in malignant epithelial cells from the primary tumor and those that metastasized to the lymph nodes. CONCLUSIONS MDR1 USP activation is a surrogate marker for breast carcinoma progression and can be used as a marker to study breast cancer susceptibility.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- Adult
- Aged
- Aged, 80 and over
- Alternative Splicing
- Biomarkers, Tumor
- Blotting, Southern
- Breast/pathology
- Breast Neoplasms/genetics
- Cell Line, Tumor
- Epithelial Cells/metabolism
- Female
- Genes, MDR/genetics
- Humans
- Leukemia, Lymphoid/genetics
- Lymphatic Metastasis
- Middle Aged
- Models, Genetic
- Neoplasm Metastasis
- Phenotype
- Promoter Regions, Genetic
- RNA/metabolism
- RNA, Messenger/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
Collapse
Affiliation(s)
- Selina Raguz
- Clinical Sciences Centre, Medical Research Council, Imperial College, Hammersmith Hospital, London, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
32
|
Lee EA, Keutmann MK, Dowling ML, Harris E, Chan G, Kao GD. Inactivation of the mitotic checkpoint as a determinant of the efficacy of microtubule-targeted drugs in killing human cancer cells. Mol Cancer Ther 2004. [DOI: 10.1158/1535-7163.661.3.6] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
Drugs that disrupt microtubule dynamics include some of the most important of cancer chemotherapies. While these drugs, which include paclitaxel (Taxol), are known to invoke the mitotic checkpoint, the factors that determine cancer cell killing remain incompletely characterized. Cells that are relatively resistant to killing by these drugs block robustly in mitosis, whereas cells sensitive to killing block only transiently in mitosis before undergoing nuclear fragmentation and death. Passage through mitosis was an absolute requirement of drug-induced death, because death was markedly reduced in cells blocked at both G1-S and G2. Cell killing was at least in part linked to the absence or inactivation of BubR1, a kinetochore-associated phosphoprotein that mediates the mitotic checkpoint. Sensitivity to paclitaxel correlated with decreased BubR1 protein expression in human cancer cell lines, including those derived from breast and ovarian cancers. Silencing of BubR1 via RNA interference inactivated the mitotic checkpoint in drug-resistant cells, and reversed resistance to paclitaxel and nocodazole. Together, these results suggest that the mitotic checkpoint is an important determinant of the efficacy of microtubule-targeting drugs in killing cancer cells, potentially providing novel targets for increasing treatment efficacy.
Collapse
Affiliation(s)
- Eric A. Lee
- 1Department of Radiation Oncology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania and
| | - Michael K. Keutmann
- 1Department of Radiation Oncology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania and
| | - Melissa L. Dowling
- 1Department of Radiation Oncology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania and
| | - Eleanor Harris
- 1Department of Radiation Oncology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania and
| | - Gordon Chan
- 2Experimental Oncology, Cross Cancer Institute, Edmonton, Alberta, Canada
| | - Gary D. Kao
- 1Department of Radiation Oncology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania and
| |
Collapse
|
33
|
Abstract
P-glycoprotein, the founding member of the ATP-binding cassette (ABC) family of drug transporters, was first identified almost three decades ago and shown to confer resistance to multiple chemotherapeutic agents when overexpressed in human tumors. Subsequent years have witnessed a tremendous effort to characterize the function and regulation of P-glycoprotein, initially spurred by the hope that its inhibition was the key to overcoming clinical resistance to multiple anticancer agents. However, the identification of MRP1, another member of the ABC drug transporter family, led to the realization that the multidrug resistance (MDR) phenotype is considerably more complex than initially believed. Indeed, at the present time at least 10 members of the ABC transporter family have been implicated in an MDR phenotype, and it is likely that more will be added to this list as studies progress. With this complexity comes the imperative to improve our understanding of the function of individual transporters, as well as to delineate the mechanisms underlying their expression in normal and tumor cells, particularly those that may be amenable to therapeutic intervention. Several articles within this volume address the structure and function of drug transporters. This review will focus on our current understanding of the regulation of ABC drug transporters at the level of transcription.
Collapse
Affiliation(s)
- Kathleen W Scotto
- Department of Pharmacology, Fox Chase Cancer Center, 7701 Burholme Avenue, Philadelphia, PA 19111, USA.
| |
Collapse
|
34
|
Zhang H, Yao M, Morrison RA, Chong S. Commonly used surfactant, Tween 80, improves absorption of P-glycoprotein substrate, digoxin, in rats. Arch Pharm Res 2003; 26:768-72. [PMID: 14560928 DOI: 10.1007/bf02976689] [Citation(s) in RCA: 166] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Tween 80 (Polysorbate 80) is a hydrophilic nonionic surfactant commonly used as an ingredient in dosing vehicles for pre-clinical in vivo studies (e.g., pharmacokinetic studies, etc.). Tween 80 increased apical to basolateral permeability of digoxin in Caco-2 cells suggesting that Tween 80 is an in vitro inhibitor of P-gp. The overall objective of the present study was to investigate whether an inhibition of P-gp by Tween 80 can potentially influence in vivo absorption of P-gp substrates by evaluating the effect of Tween 80 on the disposition of digoxin (a model P-gp substrate with minimum metabolism) after oral administration in rats. Rats were dosed orally with digoxin (0.2 mg/kg) formulated in ethanol (40%, v/v) and saline mixture with and without Tween 80 (1 or 10%, v/v). Digoxin oral AUC increased 30 and 61% when dosed in 1% and 10% Tween 80, respectively, compared to control (P < 0.05). To further examine whether the increase in digoxin AUC after oral administration of Tween 80 is due, in part, to a systemic inhibition of digoxin excretion in addition to an inhibition of P-gp in the GI tract, a separate group of rats received digoxin intravenously (0.2 mg/kg) and Tween 80 (10% v/v) orally. No significant changes in digoxin IV AUC was noted when Tween 80 was administered orally. In conclusion, Tween 80 significantly increased digoxin AUC and Cmax after oral administration, and the increased AUC is likely to be due to an inhibition of P-gp in the gut (i.e., improved absorption). Therefore, Tween 80 is likely to improve systemic exposure of P-gp substrates after oral administration. Comparing AUC after oral administration with and without Tween 80 may be a viable strategy in evaluating whether oral absorption of P-gp substrates is potentially limited by P-gp in the gut.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B, Member 1/antagonists & inhibitors
- ATP Binding Cassette Transporter, Subfamily B, Member 1/drug effects
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- Administration, Oral
- Animals
- Area Under Curve
- Chromatography, Liquid/methods
- Digoxin/administration & dosage
- Digoxin/blood
- Digoxin/pharmacokinetics
- Drug Evaluation, Preclinical/methods
- Drug Therapy, Combination
- Forecasting
- Half-Life
- Injections, Intravenous
- Intestinal Absorption/drug effects
- Intestinal Absorption/physiology
- Intubation, Gastrointestinal
- Male
- Mass Spectrometry/methods
- Pharmaceutical Preparations
- Pharmaceutical Vehicles/administration & dosage
- Pharmaceutical Vehicles/chemistry
- Pharmaceutical Vehicles/pharmacokinetics
- Polysorbates/administration & dosage
- Polysorbates/chemistry
- Polysorbates/pharmacokinetics
- Rats
- Rats, Sprague-Dawley
- Surface-Active Agents/administration & dosage
- Surface-Active Agents/chemistry
- Surface-Active Agents/pharmacokinetics
Collapse
Affiliation(s)
- Hongjian Zhang
- Department of Metabolism and Pharmacokinetics, Bristol-Myers Squibb Pharmaceutical Research Institute, P.O. Box 4000, Princeton, NJ 08543, USA
| | | | | | | |
Collapse
|
35
|
Yague E, Armesilla AL, Harrison G, Elliott J, Sardini A, Higgins CF, Raguz S. P-glycoprotein (MDR1) expression in leukemic cells is regulated at two distinct steps, mRNA stabilization and translational initiation. J Biol Chem 2003; 278:10344-52. [PMID: 12525496 DOI: 10.1074/jbc.m211093200] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Multidrug resistance in acute myeloid leukemia is often conferred by overexpression of P-glycoprotein, encoded by the MDR1 gene. We have characterized the key regulatory steps in the development of multidrug resistance in K562 myelogenous leukemic cells. Unexpectedly, up-regulation of MDR1 levels was not due to transcriptional activation but was achieved at two distinct post-transcriptional steps, mRNA turnover and translational regulation. The short-lived (half-life 1 h) MDR1 mRNA of naive cells (not exposed to drugs) was stabilized (half-life greater than 10 h) following short-term drug exposure. However, this stabilized mRNA was not associated with translating polyribosomes and did not direct P-glycoprotein synthesis. Selection for drug resistance, by long-term exposure to drug, led to resistant lines in which the translational block was overcome such that the stabilized mRNA was translated and P-glycoprotein expressed. The absence of a correlation between steady-state MDR1 mRNA and P-glycoprotein levels was not restricted to K562 cells but was found in other lymphoid cell lines. These findings have implications for the avoidance or reversal of multidrug resistance in the clinic.
Collapse
Affiliation(s)
- Ernesto Yague
- Medical Research Council Clinical Sciences Centre, Imperial College Faculty of Medicine, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
36
|
Kotchetkov R, Cinatl J, Blaheta R, Vogel JU, Karaskova J, Squire J, Hernáiz Driever P, Klingebiel T, Cinatl J. Development of resistance to vincristine and doxorubicin in neuroblastoma alters malignant properties and induces additional karyotype changes: a preclinical model. Int J Cancer 2003; 104:36-43. [PMID: 12532417 DOI: 10.1002/ijc.10917] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Cytotoxic drug treatment of neuroblastoma often leads to the development of drug resistance and may be associated with increased malignancy. To study the effects of long-term cytotoxic treatment on malignant properties of tumor cells, we established 2 neuroblastoma cell sublines resistant to vincristine (VCR) and doxorubicin (DOX). Both established cell lines (UKF-NB-2(r)VCR(20) and UKF-NB-2(r)DOX(100)) were highly resistant to VCR, DOX and vice-versa but retained their sensitivity to cisplatin. UKF-NB-2(r)VCR(20) and UKF-NB-2(r)DOX(100) expressed significant amounts of P-glycoprotein, while parental cells were P-glycoprotein negative. GD2 expression was upregulated, whereas NCAM expression was decreased in both resistant cells. Spectral karyotype (SKY) analysis revealed complex aberrant karyotypes in all cell lines and additional acquired karyotype changes in both resistant cells. All cell lines harbored high levels of N-myc amplification. Compared to parental cells, UKF-NB-2(r)VCR(20) and UKF-NB-2(r)DOX(100) exhibited more than 2-fold increase in clonal growth in vitro, accelerated adhesion and transendothelial penetration and higher tumorigenicity in vivo. We conclude that development of drug resistance and acquisition of certain karyotypic alterations is associated with an increase of additional malignant properties that may contribute to the poor prognosis in advanced forms of NB. The 2 novel neuroblastoma cell sublines also provide useful models for the study of drug resistance in aggressive forms of neuroblastoma.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B, Member 1/biosynthesis
- ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics
- Aneuploidy
- Animals
- Cell Division
- Cisplatin/pharmacology
- Clone Cells/pathology
- Disease Progression
- Doxorubicin/pharmacology
- Drug Resistance, Neoplasm/genetics
- Female
- Gene Expression Regulation, Neoplastic
- Genes, myc
- Humans
- In Situ Hybridization, Fluorescence
- Karyotyping
- Mice
- Mice, Nude
- Neoplasm Invasiveness
- Neoplasm Proteins/biosynthesis
- Neoplasm Proteins/genetics
- Neoplasm Transplantation
- Neural Cell Adhesion Molecules/biosynthesis
- Neural Cell Adhesion Molecules/genetics
- Neuroblastoma/genetics
- Neuroblastoma/pathology
- Tumor Cells, Cultured/drug effects
- Tumor Cells, Cultured/metabolism
- Tumor Stem Cell Assay
- Vincristine/pharmacology
Collapse
Affiliation(s)
- Rouslan Kotchetkov
- Department of Hematology and Oncology, Center of Pediatrics, Clinic of J. W. Goethe-University, Frankfurt am Main, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Tönnies H, Poland J, Sinha P, Lage H. Association of genomic imbalances with drug resistance and thermoresistance in human gastric carcinoma cells. Int J Cancer 2003; 103:752-8. [PMID: 12516094 DOI: 10.1002/ijc.10905] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Therapy resistance is the major obstacle to advances in successful cancer treatment. To characterize chromosomal alterations associated with different types of acquired MDR and thermoresistance, we applied CGH to compare a unique panel of human gastric carcinoma cells consisting of the parental, drug-sensitive and thermosensitive cancer cell line EPG85-257P, the atypical MDR variant EPG85-257RNOV, the classical MDR subline EPG85-257RDB and their thermoresistant counterparts EPG85-257P-TR, EPG85-257RNOV-TR and EPG85-257RDB-TR. CGH with genomic DNA prepared from these cell lines as probes successfully identified genomic gains and/or losses in chromosomal regions encoding putative genes associated with drug resistance and/or thermoresistance. These genes included various members of the families of ABC transporters and molecular chaperones. The importance of these cell variant-specific genomic imbalances in the development of MDR and thermoresistance is discussed and remains to be elucidated.
Collapse
Affiliation(s)
- Holger Tönnies
- Institute of Human Genetics, Humboldt University Berlin, Charité Campus Virchow-Klinikum, Berlin, Germany
| | | | | | | |
Collapse
|
38
|
Sauer G, Kafka A, Grundmann R, Kreienberg R, Zeillinger R, Deissler H. Basal expression of the multidrug resistance gene 1 (MDR-1) is associated with the TT genotype at the polymorphic site C3435T in mammary and ovarian carcinoma cell lines. Cancer Lett 2002; 185:79-85. [PMID: 12142082 DOI: 10.1016/s0304-3835(02)00232-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Resistance to established drugs for cancer therapy is in many cases associated with overexpression of the multidrug resistance gene 1 (MDR-1). Regulation of basal expression of MDR-1 and mechanisms of induction as a result of exposure to cytotoxic substances are still not completely understood. Recent reports have suggested an association of the C3435T polymorphism in exon 26 of the MDR-1 gene with MDR-1 expression in duodenal mucosa cells of healthy individuals. We analyzed the C3435T and G2677T genotypes of 38 mammary and ovarian carcinoma cell lines and measured basal MDR-1 expression by real-time reverse transcriptase-polymerase chain reaction. Cell lines were classified as non-expressing or showing weak basal expression that was found to be significantly associated (six/seven versus 13/31 expressing cell lines; P=0.0448, Fisher's exact test) with the TT genotype at position 3435 of the MDR-1 gene.
Collapse
Affiliation(s)
- Georg Sauer
- Department of Obstretrics and Gynecology, University of Ulm Medical School, Frauensteige 14, D-89075, Ulm, Germany
| | | | | | | | | | | |
Collapse
|
39
|
Gupta M, Kumar A, Dabadghao S. Resistance of bcr-abl-positive acute lymphoblastic leukemia to daunorubicin is not mediated by mdr1 gene expression. Am J Hematol 2002; 71:172-6. [PMID: 12410571 DOI: 10.1002/ajh.10212] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
In vitro resistance to anthracyclines is thought to be a poor prognosis in achieving long-term remission in patients with acute lymphoblastic leukemia (ALL). Expression of a multidrug resistance gene (mdr1) that codes for 170 Kd transmembrane glycoprotein is responsible for conferring resistance to malignant cells to anthracyclines. The t(9:22) translocation, resulting in bcr-abl fusion gene, is commonly found in B-lineage ALL and is known to be a poor prognostic factor for long-term remission. To investigate whether resistance to anthracyclines contributes to poor prognosis in bcr-abl-positive ALL, we studied daunorubicin sensitivity by an in vitro colorimetric methyl tetrazolium (MTT) assay in B-lineage ALL patients who were bcr-abl-positive and compared them with the B-lineage, age-matched bcr-abl-negative group. We also looked for and compared the presence of mdr1 gene expression in these two groups of patients by RT-PCR. Of the 46 patients included in the study, 16 (34.7%) were positive for the bcr-abl fusion gene. mdr1 gene expression was seen in 14 of these 46 patients (30.4%). However, the expression of the mdr1 gene was relatively lower in the bcr-abl-positive group (3 out of 16, 18.7%) compared to the bcr-abl-negative group (11 out of 30, 36.6%). The median LD(50) of daunorubicin (concentration lethal to 50% of the leukemic blasts) differed significantly between bcr-abl-positive and -negative patients (P = 0.018). This in vitro study suggests that bcr-abl-positive ALL is relatively resistant to daunorubicin, but this resistance is not mediated through mdr1 gene expression.
Collapse
Affiliation(s)
- Mamta Gupta
- Department of Immunology, Sanjay Gandhi Post-Graduate Institute of Medical Sciences (SGPGIMS), Lucknow, India
| | | | | |
Collapse
|
40
|
Chen KG, Lacayo NJ, Durán GE, Wang Y, Bangs CD, Rea S, Kovacs M, Cherry AM, Brown JM, Sikic BI. Preferential expression of a mutant allele of the amplified MDR1 (ABCB1) gene in drug-resistant variants of a human sarcoma. Genes Chromosomes Cancer 2002; 34:372-83. [PMID: 12112526 DOI: 10.1002/gcc.10067] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Activation of the MDR1 (ABCB1) gene is a common event conferring multidrug resistance (MDR) in human cancers. We investigated MDR1 activation in MDR variants of a human sarcoma line, some of which express a mutant MDR1, which facilitated the study of allelic gene expression. Structural alterations of MDR1, gene copy numbers, and allelic expression were analyzed by cytogenetic karyotyping, oligonucleotide hybridization, Southern blotting, polymerase chain reaction, and DNA heteroduplex assays. Both chromosome 7 alterations and several cytogenetic changes involving the 7q21 locus are associated with the development of MDR in these sarcoma cells. Multistep-selected cells and their revertants contain three- to six-fold MDR1 gene amplification compared with that of the drug-sensitive parental cell line MES-SA and single-step doxorubicin-selected mutants. MDR1 gene amplification precedes the emergence of a mutant allele in cells that were coselected with doxorubicin and a cyclosporin inhibitor of P-glycoprotein (P-gp). Allele-specific oligonucleotide hybridization showed that the endogenous mutant allele was present as a single copy, with multiple copies of the normal allele. Reselection of revertant cells with doxorubicin in either the presence or the absence of the P-gp inhibitor resulted in exclusive reexpression of the mutant MDR1 allele, regardless of the presence of multiple wild-type MDR1 alleles. These data provide new insights into how multiple alleles are regulated in the amplicon of drug-resistant cancer cells and indicate that increased expression of an amplified gene can result from selective transcription of a single mutant allele of the gene.
Collapse
Affiliation(s)
- Kevin G Chen
- Oncology Division, Department of Medicine, Stanford University School of Medicine, 269 Campus Drive, Stanford, CA 94305-5151, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Shimizu H, Fukuda T, Ghazizadeh M, Nagashima M, Kawanami O, Suzuki T. Molecular cytogenetic characterization of drug-resistant leukemia cell lines by comparative genomic hybridization and fluorescence in situ hybridization. Jpn J Cancer Res 2002; 93:902-10. [PMID: 12716468 PMCID: PMC5927113 DOI: 10.1111/j.1349-7006.2002.tb01336.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Resistance to chemotherapeutic drugs is one of the major difficulties encountered during cancer chemotherapy. To detect genomic aberrations underlying the acquired drug resistance, we examined three cultured human myelomonocytic leukemia cell sublines each resistant to adriamycin (ADR), 1-beta-1-D-arabinofuranosylcytosine (ara-C), or vincristine (VCR), using comparative genomic hybridization (CGH), fluorescence in situ hybridization (FISH), RT-PCR, and western blot techniques. Chromosomes 7, 10 and 16 most conspicuously showed frequent aberrations among the resistant sublines as compared to the parental KY-821 cell line. In ADR-resistant cells, gains at 7q21, 16p12, 16p13.1-13.3, 16q11.1-q12.1, and losses at 7p22-pter, 7q36-qter, 10p12, 10p11.2-pter, 10q21-q25, 10q26-qter were notable. In ara-C-resistant cells, no remarkable gain or loss on chromosome 7, but losses at 10p14-pter, 10q26-qter and 16p11.2-p11.3 were observed. In VCR-resistant cells, gain at 7q21 and losses at 10p11-p13, 10p15 and 16p11.2-p13.3 were found. FISH identified amplified signals for the MDR-1 gene located at 7q21.1 in ADR- and VCR- but not ara-C-resistant cells, and for the MRP-1 gene located at 16p13.1 in ADR-resistant cells. These findings were validated at the mRNA and protein levels. Overlapping of the amplified MRP-1 gene with MDR-1 gene may play a critical part in the acquisition of resistance to ADR. Resistance to ara-C excluded MDR-1 gene involvement and highlighted other key genes such as MXR gene. Several other genes putatively involved in the development of drug resistance might lie in other aberrated chromosomal regions.
Collapse
Affiliation(s)
- Hajime Shimizu
- The Department of Molecular Pathology, Institute of Gerontology, Nippon Medical School, Nakahara-ku, Kawasaki 211-8533, Japan
| | | | | | | | | | | |
Collapse
|
42
|
Molinari A, Calcabrini A, Meschini S, Marra M, Stringaro A, Toccacieli L, Cianfriglia M, Arancia G. What is the relationship between P-glycoprotein and adhesion molecule expression in melanoma cells? Melanoma Res 2002; 12:109-14. [PMID: 11930106 DOI: 10.1097/00008390-200204000-00002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
A number of studies have reported that increased P-glycoprotein expression in drug-resistant tumour cells may be associated with decreased expression of a family of surface glycoproteins. However, despite its potential biological and clinical relevance, this phenomenon has not been extensively studied. In this study the phenotypic alterations that are associated with the acquisition of the multidrug-resistant phenotype in tumour cells, together with drug transporter overexpression, were investigated in human melanoma cells. The expression of cell adhesion molecules was analysed in a panel of multidrug-resistant melanoma cell lines (M14Dx) showing different degrees of resistance to doxorubicin and different levels of the expression of the drug transporter P-glycoprotein. In particular, expression of intercellular adhesion molecule-1 (ICAM-1), CD44, very late activation antigen (VLA)-5 and VLA-2 was determined by flow cytometry in the different resistant cell lines. A progressive downregulation of all the adhesion molecules examined was revealed in M14Dx cells, in parallel with an increasing level of expression of the drug transporter P-glycoprotein. The results obtained raise the question of the role of P-glycoprotein in the invasive and metastatic behaviour of tumour cells.
Collapse
Affiliation(s)
- A Molinari
- Laboratorio di Ultrastrutture , Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Tsukasaki K. Genetic instability of adult T-cell leukemia/lymphoma by comparative genomic hybridization analysis. J Clin Immunol 2002; 22:57-63. [PMID: 11998893 DOI: 10.1023/a:1014471500757] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Adult T-cell leukemia/lymphoma (ATL) is a distinct clinicopathological entity, i.e., peripheral T-lymphocytic malignancy caused by human T-lymphotropic virus type I (HTLV-1) with diverse clinical features. High frequency of genetic instability (GIN) in both aggressive and indolent ATL was detected by comparative genomic hybridization (CGH). Among GIN, chromosomal instability, i.e., ancuploidy, in indolent ATL was as frequent but less complex and dynamic as compared to those in aggressive ATL. Some of the CGH alterations, including gain of 14q32, appear to be rather ATL specific. Clonal instability of HTLV-1-infected T cells. i.e., emergence of distinct clone, was detected in about one forth of acute crisis from indolent ATL by CGH and Southern blotting for HTLV-1. Taking together with the previous reports of frequent subtle mutations in several tumor suppressor genes in aggressive ATL, GIN in multistep leukemogenesis of ATL is diverse including clonal, chromosomal, and nucleotide levels.
Collapse
Affiliation(s)
- Kunhiro Tsukasaki
- Department of Hematology, Atomic Bomb Disease Institute, Nagasaki University School of Medicine, Japan
| |
Collapse
|
44
|
Struski S, Cornillet-Lefebvre P, Doco-Fenzy M, Dufer J, Ulrich E, Masson L, Michel N, Gruson N, Potron G. Cytogenetic characterization of chromosomal rearrangement in a human vinblastine-resistant CEM cell line: use of comparative genomic hybridization and fluorescence in situ hybridization. CANCER GENETICS AND CYTOGENETICS 2002; 132:51-4. [PMID: 11801309 DOI: 10.1016/s0165-4608(01)00519-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
In order to identify genomic changes associated with drug-resistance acquisition, we performed R-banding karyotyping, fluorescence in situ hybridization, and comparative genomic hybridization to compare a human T-cell lymphoblastic leukemia cell line, CEM-wild type, and a subline with resistance to vinblastine (CEM-VLB) and overexpressing P-glycoprotein. Comparative genomic hybridization analysis showed that the CEM-VLB cell line carried chemoresistance-associated chromosomal abnormalities (amplification of 7q11 approximately q22, losses of chromosomes 2, 3, 5, 9, 10, and 16, and deletion of 4q13 approximately qter). Fluorescence in situ hybridization identified an amplified 7q21 region translocated on the short arm of a chromosome 2. This region contained the MDR1 gene locus and probably neighboring genes, such as SRI or MDR3/ABCB4. According to previous reports, this chromosomal rearrangement occurred during drug selection and attested a resistance acquisition.
Collapse
Affiliation(s)
- Stephanie Struski
- Laboratory of Hematology, Robert Debré Hospital and Medical Faculty (UPRES EA 20-70-IFR 53 Biomolecules), 51092, Reims Cedex, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Fabris V, Ernst G, Lopes EC, García M, Hajos S, Alvarez E, Merani S. Chromosome studies of murine T-cell lymphoid leukemia and derived cell lines. CANCER GENETICS AND CYTOGENETICS 2001; 130:62-7. [PMID: 11672776 DOI: 10.1016/s0165-4608(01)00457-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Several cell lines were previously established from a spontaneous murine T-cell leukemia (LB). The aim of this study was to analyze the G- and C-banded karyotypes of the parental LB tumor cells and the derived cell lines. A sensitive cell line (LBL) from which two sublines originated, as well as Vincristine (LBR-V160) and Doxorubicin (LBR-D160) resistant cell lines, were used. Our results showed that LB cells had a pseudo-diploid karyotype with 40 acrocentric chromosomes in which trisomy of chromosome 14 was the most relevant alteration. The sensitive cell line showed this alteration in all metaphases studied; no changes in karyotypes were observed in either subline, despite their dissimilar morphology and growth patterns. In contrast, both resistant lines displayed a more heterogeneous karyotype with no common markers, except for the finding that chromosome 5 was involved in a trisomy in LBR-V160 and in a translocation with chromosome 12 in LBR-D160. Taking into account that the mdr genes are located in chromosome 5, these results suggest a possible association between such alterations and the acquisition of drug resistance.
Collapse
Affiliation(s)
- V Fabris
- Centro de Investigaciones en Reproducción (CIR), Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155, Piso 10 (C1121ABG), Buenos Aires, Argentina.
| | | | | | | | | | | | | |
Collapse
|
46
|
van den Heuvel-Eibrink MM, Wiemer EA, de Boevere MJ, van der Holt B, Vossebeld PJ, Pieters R, Sonneveld P. MDR1 gene-related clonal selection and P-glycoprotein function and expression in relapsed or refractory acute myeloid leukemia. Blood 2001; 97:3605-11. [PMID: 11369657 DOI: 10.1182/blood.v97.11.3605] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The expression of P-glycoprotein (P-gp), encoded by the MDR1 gene, is an independent adverse prognostic factor for response and survival in de novo acute myeloid leukemia (AML). Little is known about MDR1 expression during the development of disease. The present study investigated whether MDR1 gene- related clonal selection occurs in the development from diagnosis to relapsed AML, using a genetic polymorphism of the MDR1 gene at position 2677. Expression and function of P-gp were studied using monoclonal antibodies MRK16 and UIC2 and the Rhodamine 123 retention assay with or without PSC 833. No difference was found in the levels of P-gp function and expression between diagnosis and relapse in purified paired blast samples from 30 patients with AML. Thirteen patients were homozygous for the genetic polymorphism of MDR1 (n = 7 for guanine, n = 6 for thymidine), whereas 17 patients were heterozygous (GT). In the heterozygous patients, no selective loss of one allele was observed at relapse. Homozygosity for the MDR1 gene (GG or TT) was associated with shorter relapse-free intervals (P =.002) and poor survival rates (P =.02), compared with heterozygous patients. No difference was found in P-gp expression or function in patients with AML with either of the allelic variants of the MDR1 gene. It was concluded that P-gp function or expression is not upregulated at relapse/refractory disease and expression of one of the allelic variants is not associated with altered P-gp expression or function in AML, consistent with the fact that MDR1 gene-related clonal selection does not occur when AML evolves to recurrent disease. (Blood. 2001;97:3605-3611)
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics
- ATP Binding Cassette Transporter, Subfamily B, Member 1/physiology
- Adolescent
- Adult
- Aged
- Alleles
- Antibodies, Monoclonal
- Child
- Child, Preschool
- Gene Expression
- Genes, MDR/genetics
- Heterozygote
- Homozygote
- Humans
- Infant
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/mortality
- Middle Aged
- Nucleic Acid Hybridization
- Polymorphism, Genetic
- Prognosis
- Recurrence
- Survival Rate
Collapse
|
47
|
Tsukasaki K, Krebs J, Nagai K, Tomonaga M, Koeffler HP, Bartram CR, Jauch A. Comparative genomic hybridization analysis in adult T-cell leukemia/lymphoma: correlation with clinical course. Blood 2001; 97:3875-81. [PMID: 11389029 DOI: 10.1182/blood.v97.12.3875] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sixty-four patients with adult T-cell leukemia/lymphoma (ATL; 18 patients with indolent subtype and 46 with aggressive subtype) associated with human T-lymphotropic virus type 1 (HTLV-1) were analyzed using comparative genomic hybridization (CGH). The most frequent observations were gains at chromosomes 14q, 7q, and 3p and losses at chromosomes 6q and 13q. Chromosome imbalances, losses, and gains were more frequently observed in aggressive ATL than in indolent ATL, with significant differences between the 2 ATL subtypes at gains of 1q and 4q. An increased number of chromosomal imbalances was associated with a significantly shorter survival in all patients. A high number of chromosomal losses was associated with a poor prognosis in indolent ATL, whereas the presence of 7q+ was marginally associated with a good prognosis in aggressive ATL. Paired samples (ie, samples obtained at different sites from 4 patients) and sequential samples from 13 patients (from 6 during both chronic disease and acute crisis and from 7 during both acute onset and relapse) were examined by CGH and Southern blotting for HTLV-1. All but 2 paired samples showed differences on CGH assessment. Two chronic/crisis samples showed distinct results regarding both CGH and HTLV-1 integration sites, indicating clonal changes in ATL at crisis. In 11 patients, the finding of identical HTLV-1 sites and clonally related CGH results suggested a common origin of sequential samples. In contrast to chronic/crisis samples, CGH results with all acute/relapse sample pairs showed the presence of clonally related but not evolutional subclones at relapse, thereby suggesting marked chromosomal instability. In summary, clonal diversity is common during progression of ATL, and CGH alterations are associated with clinical course. (Blood. 2001;97:3875-3881)
Collapse
Affiliation(s)
- K Tsukasaki
- Division of Hematology/Oncology, Cedars-Sinai Medical Center, UCLA School of Medicine, Los Angeles, CA, USA.
| | | | | | | | | | | | | |
Collapse
|
48
|
Struski S, Doco-Fenzy M, Trussardi A, Masson L, Gruson N, Ulrich E, Proult M, Jardillier JC, Potron G, Cornillet-Lefebvre P. Identification of chromosomal loci associated with non-P-glycoprotein-mediated multidrug resistance to topoisomerase II inhibitor in lung adenocarcinoma cell line by comparative genomic hybridization. Genes Chromosomes Cancer 2001; 30:136-42. [PMID: 11135430 DOI: 10.1002/1098-2264(2000)9999:9999<::aid-gcc1071>3.0.co;2-t] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
In order to identify genomic changes associated with an etoposide resistance acquisition, we used comparative genomic hybridization (CGH) to compare a human lung adenocarcinoma cell line, A549 wild type, and three sublines, A549-VP1-3, exposed to increasing concentrations of the topoisomerase II inhibitor, VP16. R-banding karyotype, fluorescence in situ hybridization (FISH), and Southern blot for the MLL gene were also performed. The CGH analysis showed that the A549-VP3 cell line shared chemoresistance-specific abnormalities (amplification of 11q23-qter, loss of chromosome 17, and deletions of 2p14-pter and 2q23-q24). FISH analysis confirmed the loss of one chromosome 17 in the three resistant sublines and revealed an increased fragmentation of chromosome 2 in more than two segments, depending on the etoposide concentration. FISH with an MLL gene probe showed additional signals of MLL (from three in the A549-WT to seven in the A549-VP3 cell line) translocated onto several other chromosomes. Southern blot indicated an amplification of the MLL gene, dependent on the etoposide concentration, without gene rearrangement. The CGH results are suggestive of loci that could be associated with the acquisition of an etoposide-chemoresistant phenotype. Deletion of the 2p region has already been reported, without any candidate gene being identified. The role of MLL in leukemogenesis has previously been demonstrated, but its role in the development of other tumors or its significance in the chemoresistance process remains to be elucidated.
Collapse
Affiliation(s)
- S Struski
- Laboratory of Hematology, Robert Debré Hospital and Medical Faculty (UPRES EA 20-70-IFR 53 Biomolecules), Reims, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Nagayama J, Iino M, Tada Y, Kusaba H, Kiue A, Ohshima K, Kuwano M, Wada M. Retrovirus insertion and transcriptional activation of the multidrug-resistance gene in leukemias treated by a chemotherapeutic agent in vivo. Blood 2001; 97:759-66. [PMID: 11157495 DOI: 10.1182/blood.v97.3.759] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To understand the molecular basis for multidrug-resistant (MDR) cancer cells in vivo, this study analyzed molecular changes of the mdr1a gene region in leukemia cells in mice during continuous treatment with vincristine. An inverse insertion of murine leukemia retrovirus (MuLV) into the 5'-flanking region of the mdr1a gene was found. This insertion was concomitantly accompanied by up-regulation of the mdr1a gene and the loss of chemosensitivity. Deletion of long-terminal repeat (LTR) sequences dramatically decreased the mdr1a promoter-driven reporter activity. The MuLV LTR insertion appears to exert its enhancer activity on mdr1a transcription during the appearance of MDR leukemia cells. Two mechanisms were postulated to explain the mdr1a gene activation by retrovirus insertion during in vivo chemotreatment: de novo insertion of MuLV induced by vincristine treatment and selection of a small fraction of pre-existing cells carrying MuLV insertion during vincristine treatment. No rearranged sequence was detected by polymerase chain reaction in parental cells. This result argued for the first mechanism. The randomly altered distribution of MuLV during repetitive chemotreatment might also be consistent with this hypothesis. On the other hand, the retrovirus insertion was detected at the same site of the mdr1a promoter region in 2 independent experiments, which suggests the second mechanism. It should be noted that in vivo chemotreatment using vincristine could generate the mdr1a-overexpressing cells through retrovirus insertion and the enhancer effect of the LTR.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B/genetics
- ATP Binding Cassette Transporter, Subfamily B/metabolism
- ATP-Binding Cassette Transporters/genetics
- ATP-Binding Cassette Transporters/metabolism
- Animals
- Antineoplastic Agents, Phytogenic/therapeutic use
- Base Sequence
- Drug Resistance, Multiple
- Gene Rearrangement
- Genes, MDR
- Leukemia Virus, Murine/drug effects
- Leukemia Virus, Murine/genetics
- Leukemia, Experimental/drug therapy
- Leukemia, Experimental/genetics
- Leukemia, Experimental/metabolism
- Mice
- Molecular Sequence Data
- Mutagenesis, Insertional
- Promoter Regions, Genetic
- RNA, Messenger/biosynthesis
- Survival Analysis
- Terminal Repeat Sequences
- Transcriptional Activation
- Vincristine/therapeutic use
Collapse
Affiliation(s)
- J Nagayama
- Department of Medical Biochemistry, Graduate School of Medical Sciences, Kyushu University, Japan
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Kim DG, Park SY, You KR, Lee GB, Kim H, Moon WS, Chun YH, Park SH. Establishment and characterization of chromosomal aberrations in human cholangiocarcinoma cell lines by cross-species color banding. Genes Chromosomes Cancer 2001; 30:48-56. [PMID: 11107175 DOI: 10.1002/1098-2264(2000)9999:9999<::aid-gcc1053>3.0.co;2-p] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Cholangiocarcinoma (CC), a malignant neoplasm of the biliary epithelium, is usually fatal because of difficulty in early diagnosis and lack of availability of effective therapy. Furthermore, little is known about the genetics and biology of CC. Only a few reports concerning cytogenetic studies of CC have been published, and few cell lines have been established. We recently established four CC cell lines, designated as SCK, JCK, Cho-CK, and Choi-CK, and report the first application of cross-species color banding (RxFISH) and multiple chromosome painting for the characterization of the chromosomal rearrangements of these CC cell lines. Each cell line had unique modal karyotypic characteristics and showed a variable number of numerical and structural clonal cytogenetic aberrations. Chromosomes 3, 6, 7, 8, 12, 14, 17, and 18 were commonly involved in structural abnormalities. Homogeneously staining regions were determined in SCK and JCK, and double minute chromosomes were found in Cho-CK. The chromosomal aberrations of the four CC cell lines were effectively analyzed by RxFISH and FISH with multiple chromosome painting probes. The nonrandom rearrangements suggest candidate regions for isolation of genes related to CC.
Collapse
Affiliation(s)
- D G Kim
- Department of Internal Medicine, Research Institute of Clinical Medicine, Chonbuk National University Medical School, Chonju, Korea
| | | | | | | | | | | | | | | |
Collapse
|