1
|
Worel N, Mišík M, Kundi M, Ferk F, Hutter HP, Nersesyan A, Wultsch G, Krupitza G, Knasmueller S. Impact of high (1950 MHz) and extremely low (50 Hz) frequency electromagnetic fields on DNA damage caused by occupationally relevant exposures in human derived cell lines. Toxicol In Vitro 2024; 100:105902. [PMID: 39025159 DOI: 10.1016/j.tiv.2024.105902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/27/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024]
Abstract
Epidemiological studies indicate that electromagnetic fields (EMF) are associated with cancer in humans. Exposure to mobile phone specific high frequency fields (HF-EMF) may lead to increased glioma risks, while low frequency radiation (LF-EMF) is associated with childhood leukemia. We studied the impact of HF-EMF (1950 MHz, UMTS signal) on DNA stability in an astrocytoma cell line (1321N1), and the effect of LF-EMF (50 Hz) in human derived lymphoma (Jurkat) cells. To find out if these fields affect chemically induced DNA damage, co-exposure experiments were performed. The cells were exposed to HF-EMF or LF-EMF and treated simultaneously and sequentially with mutagens. The compounds cause DNA damage via different molecular mechanisms, i.e. pyrimidine dimers which are characteristic for UV light (4-nitroquinoline 1-oxide, 4NQO), bulky base adducts (benzo[a]pyrene diolepoxide, BPDE), DNA-DNA and DNA-protein cross links and oxidative damage (NiCl2, CrO3). DNA damage was measured in single cell gel electrophoresis (comet) assays. We found a moderate reduction of basal and 4NQO-induced DNA damage in the astrocytoma line, but no significant alterations of chemically induced DNA migration by the HF and LF fields under all other experimental series. The biological consequences of the moderate reduction remain unclear, but our findings indicate that acute mobile phone and power line specific EMF exposures do not enhance genotoxic effects caused by occupationally relevant chemical exposures.
Collapse
Affiliation(s)
- Nadine Worel
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8a, A 1090 Vienna, Austria
| | - Miroslav Mišík
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8a, A 1090 Vienna, Austria
| | - Michael Kundi
- Center for Public Health, Department of Environmental Health, Medical University of Vienna, Vienna, Austria
| | - Franziska Ferk
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8a, A 1090 Vienna, Austria
| | - Hans-Peter Hutter
- Center for Public Health, Department of Environmental Health, Medical University of Vienna, Vienna, Austria
| | - Armen Nersesyan
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8a, A 1090 Vienna, Austria
| | | | - Georg Krupitza
- Department of Pathology, Medical University of Vienna, A-1090 Vienna, Austria
| | - Siegfried Knasmueller
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8a, A 1090 Vienna, Austria.
| |
Collapse
|
2
|
Yadav H, Sharma RS, Singh R. Immunotoxicity of radiofrequency radiation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 309:119793. [PMID: 35863710 DOI: 10.1016/j.envpol.2022.119793] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/27/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
Growing evidence recommends that radiofrequency radiations might be a new type of environmental pollutant. The consequences of RFR on the human immune system have gained considerable interest in recent years, not only to examine probable negative effects on health but also to understand if RFR can modulate the immune response positively. Although several studies have been published on the immune effects of RFR but no satisfactory agreement has been reached. Hence this review aims to evaluate the RFR modulating impacts on particular immune cells contributing to various innate or adaptive immune responses. In view of existing pieces of evidence, we have suggested an intracellular signaling cascade responsible for RFR action. The bio-effects of RFR on immune cell morphology, viability, proliferation, genome integrity, and immune functions such as ROS, cytokine secretion, phagocytosis, apoptosis, etc. are discussed. The majority of existing evidence point toward the possible shifts in the activity, number, and/or function of immunocompetent cells, but the outcome of several studies is still contradictory and needs further studies to reach a conclusion. Also, the direct association of experimental studies to human risks might not be helpful as exposure parameters vary in real life. On the basis of recent available literature, we suggest that special experiments should be designed to test each particular signal utilized in communication technologies to rule out the hypothesis that longer exposure to RFR emitting devices would affect the immunity by inducing genotoxic effects in human immune cells.
Collapse
Affiliation(s)
- Himanshi Yadav
- Department of Environmental Studies, Satyawati College, University of Delhi, Delhi, 110052, India
| | | | - Rajeev Singh
- Department of Environmental Studies, Satyawati College, University of Delhi, Delhi, 110052, India.
| |
Collapse
|
3
|
Darvishi M, Mashati P, Kandala S, Paridar M, Takhviji V, Ebrahimi H, Zibara K, Khosravi A. Electromagnetic radiation: a new charming actor in hematopoiesis? Expert Rev Hematol 2021; 14:47-58. [PMID: 32951483 DOI: 10.1080/17474086.2020.1826301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
INTRODUCTION Electromagnetic waves play indispensable roles in life. Many studies addressed the outcomes of Electromagnetic field (EMF) on various biological functions such as cell proliferation, gene expression, epigenetic alterations, genotoxic, and carcinogenic effects, and its therapeutic applications in medicine. The impact of EMF on bone marrow (BM) is of high importance; however, EMF effects on BM hematopoiesis are not well understood. AREAS COVERED Publications in English were searched in ISI Web of Knowledge and Google Scholar with no restriction on publication date. A literature review has been conducted on the consequences of EMF exposure on BM non-hematopoietic stem cells, mesenchymal stem cells, and the application of these waves in regenerative medicine. Human blood cells such as lymphocytes, red blood cells and their precursors are altered qualitatively and quantitatively following electromagnetic radiation. Therefore, studying the impact of EMF on related signaling pathways in hematopoiesis and hematopoietic stem cell (HSC) differentiation could give a better insight into its efficacy on hematopoiesis and its potential therapeutic usage. EXPERT OPINION In this review, authors evaluated the possible biologic consequences of EMF on the hematopoiesis process in addition to its probable application in the treatment of hematologic disorders.
Collapse
Affiliation(s)
- Mina Darvishi
- Department of Laboratory Hematology and Blood Bank, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences , Tehran, Iran
| | - Pargol Mashati
- Department of Laboratory Hematology and Blood Bank, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences , Tehran, Iran
| | - Sahithi Kandala
- University of Colorado, Boulder Department: Electrical, Computer and Energy Engineering , Colarada, USA
| | - Mostafa Paridar
- Deputy of Management and Resources Development, Ministry of Health and Medical Education , Tehran, Iran
| | - Vahideh Takhviji
- Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine , Tehran, Iran
| | - Hossein Ebrahimi
- School of Nursing, Ahvaz Jundishapur University of Medical Sciences , Ahvaz, Iran
| | - Kazem Zibara
- PRASE & Biology Department, Faculty of Sciences I, Lebanese University , Beirut, Lebanon
| | - Abbas Khosravi
- Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine , Tehran, Iran
| |
Collapse
|
4
|
Halgamuge MN, Skafidas E, Davis D. A meta-analysis of in vitro exposures to weak radiofrequency radiation exposure from mobile phones (1990-2015). ENVIRONMENTAL RESEARCH 2020; 184:109227. [PMID: 32199316 DOI: 10.1016/j.envres.2020.109227] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 01/29/2020] [Accepted: 02/03/2020] [Indexed: 06/10/2023]
Abstract
To function, mobile phone systems require transmitters that emit and receive radiofrequency signals over an extended geographical area exposing humans in all stages of development ranging from in-utero, early childhood, adolescents and adults. This study evaluates the question of the impact of radiofrequency radiation on living organisms in vitro studies. In this study, we abstract data from 300 peer-reviewed scientific publications (1990-2015) describing 1127 experimental observations in cell-based in vitro models. Our first analysis of these data found that out of 746 human cell experiments, 45.3% indicated cell changes, whereas 54.7% indicated no changes (p = 0.001). Realizing that there are profound distinctions between cell types in terms of age, rate of proliferation and apoptosis, and other characteristics and that RF signals can be characterized in terms of polarity, information content, frequency, Specific Absorption Rate (SAR) and power, we further refined our analysis to determine if there were some distinct properties of negative and positive findings associated with these specific characteristics. We further analyzed the data taking into account the cumulative effect (SAR × exposure time) to acquire the cumulative energy absorption of experiments due to radiofrequency exposure, which we believe, has not been fully considered previously. When the frequency of signals, length and type of exposure, and maturity, rate of growth (doubling time), apoptosis and other properties of individual cell types are considered, our results identify a number of potential non-thermal effects of radiofrequency fields that are restricted to a subset of specific faster-growing less differentiated cell types such as human spermatozoa (based on 19 reported experiments, p-value = 0.002) and human epithelial cells (based on 89 reported experiments, p-value < 0.0001). In contrast, for mature, differentiated adult cells of Glia (p = 0.001) and Glioblastoma (p < 0.0001) and adult human blood lymphocytes (p < 0.0001) there are no statistically significant differences for these more slowly reproducing cell lines. Thus, we show that RF induces significant changes in human cells (45.3%), and in faster-growing rat/mouse cell dataset (47.3%). In parallel with this finding, further analysis of faster-growing cells from other species (chicken, rabbit, pig, frog, snail) indicates that most undergo significant changes (74.4%) when exposed to RF. This study confirms observations from the REFLEX project, Belyaev and others that cellular response varies with signal properties. We concur that differentiation of cell type thus constitutes a critical piece of information and should be useful as a reference for many researchers planning additional studies. Sponsorship bias is also a factor that we did not take into account in this analysis.
Collapse
Affiliation(s)
- Malka N Halgamuge
- Department Department of Electrical and Electronic Engineering, The University of Melbourne, Parkville, VIC, 3010, Australia.
| | - Efstratios Skafidas
- Department Department of Electrical and Electronic Engineering, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Devra Davis
- Environmental Health Trust, Teton Village, WY, 83025, USA
| |
Collapse
|
5
|
Quality Matters: Systematic Analysis of Endpoints Related to "Cellular Life" in Vitro Data of Radiofrequency Electromagnetic Field Exposure. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2016; 13:ijerph13070701. [PMID: 27420084 PMCID: PMC4962242 DOI: 10.3390/ijerph13070701] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 07/04/2016] [Accepted: 07/05/2016] [Indexed: 01/09/2023]
Abstract
Possible hazardous effects of radiofrequency electromagnetic fields (RF-EMF) at low exposure levels are controversially discussed due to inconsistent study findings. Therefore, the main focus of the present study is to detect if any statistical association exists between RF-EMF and cellular responses, considering cell proliferation and apoptosis endpoints separately and with both combined as a group of “cellular life” to increase the statistical power of the analysis. We searched for publications regarding RF-EMF in vitro studies in the PubMed database for the period 1995–2014 and extracted the data to the relevant parameters, such as cell culture type, frequency, exposure duration, SAR, and five exposure-related quality criteria. These parameters were used for an association study with the experimental outcome in terms of the defined endpoints. We identified 104 published articles, from which 483 different experiments were extracted and analyzed. Cellular responses after exposure to RF-EMF were significantly associated to cell lines rather than to primary cells. No other experimental parameter was significantly associated with cellular responses. A highly significant negative association with exposure condition-quality and cellular responses was detected, showing that the more the quality criteria requirements were satisfied, the smaller the number of detected cellular responses. According to our knowledge, this is the first systematic analysis of specific RF-EMF bio-effects in association to exposure quality, highlighting the need for more stringent quality procedures for the exposure conditions.
Collapse
|
6
|
Gapeyev AB, Lukyanova NA. Pulse-modulated extremely high-frequency electromagnetic radiation protects cellular DNA from the damaging effects of physical and chemical factors in vitro. Biophysics (Nagoya-shi) 2015. [DOI: 10.1134/s0006350915050061] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
7
|
Genetic damage in human cells exposed to non-ionizing radiofrequency fields: A meta-analysis of the data from 88 publications (1990–2011). MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2012; 749:1-16. [DOI: 10.1016/j.mrgentox.2012.09.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Revised: 09/16/2012] [Accepted: 09/17/2012] [Indexed: 01/12/2023]
|
8
|
Esmekaya MA, Aytekin E, Ozgur E, Güler G, Ergun MA, Omeroğlu S, Seyhan N. Mutagenic and morphologic impacts of 1.8GHz radiofrequency radiation on human peripheral blood lymphocytes (hPBLs) and possible protective role of pre-treatment with Ginkgo biloba (EGb 761). THE SCIENCE OF THE TOTAL ENVIRONMENT 2011; 410-411:59-64. [PMID: 22014767 DOI: 10.1016/j.scitotenv.2011.09.036] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Revised: 09/09/2011] [Accepted: 09/09/2011] [Indexed: 05/31/2023]
Abstract
The mutagenic and morphologic effects of 1.8GHz Global System for Mobile Communications (GSM) modulated RF (radiofrequency) radiation alone and in combination with Ginkgo biloba (EGb 761) pre-treatment in human peripheral blood lymphocytes (hPBLs) were investigated in this study using Sister Chromatid Exchange (SCE) and electron microscopy. Cell viability was assessed with 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) reduction assay. The lymphocyte cultures were exposed to GSM modulated RF radiation at 1.8GHz for 6, 8, 24 and 48h with and without EGb 761. We observed morphological changes in pulse-modulated RF radiated lymphocytes. Longer exposure periods led to destruction of organelle and nucleus structures. Chromatin change and the loss of mitochondrial crista occurred in cells exposed to RF for 8h and 24h and were more pronounced in cells exposed for 48h. Cytoplasmic lysis and destruction of membrane integrity of cells and nuclei were also seen in 48h RF exposed cells. There was a significant increase (p<0.05) in SCE frequency in RF exposed lymphocytes compared to sham controls. EGb 761 pre-treatment significantly decreased SCE from RF radiation. RF radiation also inhibited cell viability in a time dependent manner. The inhibitory effects of RF radiation on the growth of lymphoctes were marked in longer exposure periods. EGb 761 pre-treatment significantly increased cell viability in RF+EGb 761 treated groups at 8 and 24h when compared to RF exposed groups alone. The results of our study showed that RF radiation affects cell morphology, increases SCE and inhibits cell proliferation. However, EGb 761 has a protective role against RF induced mutagenity. We concluded that RF radiation induces chromosomal damage in hPBLs but this damage may be reduced by EGb 761 pre-treatment.
Collapse
Affiliation(s)
- Meric Arda Esmekaya
- Department of Biophysics, Gazi University, Faculty of Medicine & Gazi Non-ionizing Radiation, Protection (GNRP) Center, Ankara, Turkey.
| | | | | | | | | | | | | |
Collapse
|
9
|
Ballardin M, Tusa I, Fontana N, Monorchio A, Pelletti C, Rogovich A, Barale R, Scarpato R. Non-thermal effects of 2.45 GHz microwaves on spindle assembly, mitotic cells and viability of Chinese hamster V-79 cells. Mutat Res 2011; 716:1-9. [PMID: 21827772 DOI: 10.1016/j.mrfmmm.2011.07.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Revised: 07/15/2011] [Accepted: 07/22/2011] [Indexed: 05/31/2023]
Abstract
The production of mitotic spindle disturbances and activation of the apoptosis pathway in V79 Chinese hamster cells by continuous 2.45 GHz microwaves exposure were studied, in order to investigate possible non-thermal cell damage. We demonstrated that microwave (MW) exposure at the water resonance frequency was able to induce alteration of the mitotic apparatus and apoptosis as a function of the applied power densities (5 and 10mW/cm(2)), together with a moderate reduction in the rate of cell division. After an exposure time of 15 min the proportion of aberrant spindles and of apoptotic cells was significantly increased, while the mitotic index decreased as well, as compared to the untreated V79 cells. Additionally, in order to understand if the observed effects were due to RF exposure per se or to a thermal effect, V79 cells were also treated in thermostatic bath mimicking the same temperature increase recorded during microwave emission. The effect of temperature on the correct assembly of mitotic spindles was negligible up to 41°C, while apoptosis was induced only when the medium temperature achieved 40°C, thus exceeding the maximum value registered during MW exposure. We hypothesise that short-time MW exposures at the water resonance frequency cause, in V79 cells, reversible alterations of the mitotic spindle, this representing, in turn, a pro-apoptotic signal for the cell line.
Collapse
|
10
|
Luukkonen J, Juutilainen J, Naarala J. Combined effects of 872 MHz radiofrequency radiation and ferrous chloride on reactive oxygen species production and DNA damage in human SH-SY5Y neuroblastoma cells. Bioelectromagnetics 2011; 31:417-24. [PMID: 20564172 DOI: 10.1002/bem.20580] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The aim of the present study was to investigate possible cooperative effects of radiofrequency (RF) radiation and ferrous chloride (FeCl(2)) on reactive oxygen species (ROS) production and DNA damage. In order to test intracellular ROS production as a possible underlying mechanism of DNA damage, we applied the fluorescent probe DCFH-DA. Integrity of DNA was quantified by alkaline comet assay. The exposures to 872 MHz RF radiation were conducted at a specific absorption rate (SAR) of 5 W/kg using continuous waves (CW) or a modulated signal similar to that used in Global System for Mobile Communications (GSM) phones. Four groups were included: (1) Sham exposure (control), (2) RF radiation, (3) Chemical treatment, (4) Chemical treatment, and RF radiation. In the ROS production experiments, human neuroblastoma (SH-SY5Y) cells were exposed to RF radiation and 10 microg/ml FeCl(2) for 1 h. In the comet assay experiments, the exposure time was 3 h and an additional chemical (0.015% diethyl maleate) was used to make DNA damage level observable. The chemical treatments resulted in statistically significant responses, but no effects from either CW or modulated RF radiation were observed on ROS production, DNA damage or cell viability.
Collapse
Affiliation(s)
- Jukka Luukkonen
- Department of Environmental Science, University of Eastern Finland, Kuopio, Finland.
| | | | | |
Collapse
|
11
|
Verschaeve L, Juutilainen J, Lagroye I, Miyakoshi J, Saunders R, de Seze R, Tenforde T, van Rongen E, Veyret B, Xu Z. In vitro and in vivo genotoxicity of radiofrequency fields. Mutat Res 2010; 705:252-68. [PMID: 20955816 DOI: 10.1016/j.mrrev.2010.10.001] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Revised: 10/08/2010] [Accepted: 10/08/2010] [Indexed: 11/17/2022]
Abstract
There has been growing concern about the possibility of adverse health effects resulting from exposure to radiofrequency radiations (RFR), such as those emitted by wireless communication devices. Since the introduction of mobile phones many studies have been conducted regarding alleged health effects but there is still some uncertainty and no definitive conclusions have been reached so far. Although thermal effects are well understood they are not of great concern as they are unlikely to result from the typical low-level RFR exposures. Concern rests essentially with the possibility that RFR-exposure may induce non-thermal and/or long-term health effects such as an increased cancer risk. Consequently, possible genetic effects have often been studied but with mixed results. In this paper we review the data on alleged RFR-induced genetic effects from in vitro and in vivo investigations as well as from human cytogenetic biomonitoring surveys. Attention is also paid to combined exposures of RFR with chemical or physical agents. Again, however, no entirely consistent picture emerges. Many of the positive studies may well be due to thermal exposures, but a few studies suggest that biological effects can be seen at low levels of exposure. Overall, however, the evidence for low-level genotoxic effects is very weak.
Collapse
Affiliation(s)
- L Verschaeve
- O.D. Public Health & Surveillance, Laboratory of Toxicology, Scientific Institute of Public Health, Brussels, and Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Gerner C, Haudek V, Schandl U, Bayer E, Gundacker N, Hutter HP, Mosgoeller W. Increased protein synthesis by cells exposed to a 1,800-MHz radio-frequency mobile phone electromagnetic field, detected by proteome profiling. Int Arch Occup Environ Health 2010; 83:691-702. [PMID: 20145945 PMCID: PMC2902737 DOI: 10.1007/s00420-010-0513-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2009] [Accepted: 01/14/2010] [Indexed: 11/29/2022]
Abstract
Purpose To investigate whether or not low intensity radio frequency electromagnetic field exposure (RF-EME) associated with mobile phone use can affect human cells, we used a sensitive proteome analysis method to study changes in protein synthesis in cultured human cells. Methods Four different cell kinds were exposed to 2 W/kg specific absorption rate in medium containing 35S-methionine/cysteine, and autoradiography of 2D gel spots was used to measure the increased synthesis of individual proteins. Results While short-term RF-EME did not significantly alter the proteome, an 8-h exposure caused a significant increase in protein synthesis in Jurkat T-cells and human fibroblasts, and to a lesser extent in activated primary human mononuclear cells. Quiescent (metabolically inactive) mononuclear cells, did not detectably respond to RF-EME. Since RF exposure induced a temperature increase of less than 0.15°C, we suggest that the observed cellular response is a so called “athermal” effect of RF-EME. Conclusion Our finding of an association between metabolic activity and the observed cellular reaction to low intensity RF-EME may reconcile conflicting results of previous studies. We further postulate that the observed increased protein synthesis reflects an increased rate of protein turnover stemming from protein folding problems caused by the interference of radio-frequency electromagnetic fields with hydrogen bonds. Our observations do not directly imply a health risk. However, vis-a-vis a synopsis of reports on cells stress and DNA breaks, after short and longer exposure, on active and inactive cells, our findings may contribute to the re-evaluation of previous reports. Electronic supplementary material The online version of this article (doi:10.1007/s00420-010-0513-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Christopher Gerner
- Department Med.-1, Institute of Cancer Research, Medical University Vienna, Borschkegasse 8a, 1090 Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|
13
|
Impact of 1.8-GHz radiofrequency radiation (RFR) on DNA damage and repair induced by doxorubicin in human B-cell lymphoblastoid cells. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2010; 695:16-21. [DOI: 10.1016/j.mrgentox.2009.10.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Revised: 09/14/2009] [Accepted: 10/03/2009] [Indexed: 11/20/2022]
|
14
|
Sannino A, Sarti M, Reddy SB, Prihoda TJ, Vijayalaxmi, Scarfì MR. Induction of adaptive response in human blood lymphocytes exposed to radiofrequency radiation. Radiat Res 2009; 171:735-42. [PMID: 19580480 DOI: 10.1667/rr1687.1] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The incidence of micronuclei was evaluated to assess the induction of an adaptive response to non-ionizing radiofrequency (RF) radiation in peripheral blood lymphocytes collected from five different human volunteers. After stimulation with phytohemagglutinin for 24 h, the cells were exposed to an adaptive dose of 900 MHz RF radiation used for mobile communications (at a peak specific absorption rate of 10 W/kg) for 20 h and then challenged with a single genotoxic dose of mitomycin C (100 ng/ml) at 48 h. Lymphocytes were collected at 72 h to examine the frequency of micronuclei in cytokinesis-blocked binucleated cells. Cells collected from four donors exhibited the induction of adaptive response (i.e., responders). Lymphocytes that were pre-exposed to 900 MHz RF radiation had a significantly decreased incidence of micronuclei induced by the challenge dose of mitomycin C compared to those that were not pre-exposed to 900 MHz RF radiation. These preliminary results suggested that the adaptive response can be induced in cells exposed to non-ionizing radiation. A similar phenomenon has been reported in cells as well as in animals exposed to ionizing radiation in several earlier studies. However, induction of adaptive response was not observed in the remaining donor (i.e., non-responder). The incidence of micronuclei induced by the challenge dose of mitomycin C was not significantly different between the cells that were pre-exposed and unexposed to 900 MHz RF radiation. Thus the overall data indicated the existence of heterogeneity in the induction of an adaptive response between individuals exposed to RF radiation and showed that the less time-consuming micronucleus assay can be used to determine whether an individual is a responder or non-responder.
Collapse
Affiliation(s)
- Anna Sannino
- CNR-Institute for Electromagnetic Sensing of Environment, Napoli, Italy
| | | | | | | | | | | |
Collapse
|
15
|
Gadhia PK, Shah T, Mistry A, Pithawala M, Tamakuwala D. A Preliminary Study to Assess Possible Chromosomal Damage Among Users of Digital Mobile Phones. Electromagn Biol Med 2009. [DOI: 10.1081/jbc-120024624] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
16
|
Tiwari R, Lakshmi NK, Surender V, Rajesh ADV, Bhargava SC, Ahuja YR. Combinative Exposure Effect of Radio Frequency Signals from CDMA Mobile Phones and Aphidicolin on DNA Integrity. Electromagn Biol Med 2009; 27:418-25. [DOI: 10.1080/15368370802473554] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
17
|
Stronati L, Testa A, Moquet J, Edwards A, Cordelli E, Villani P, Marino C, Fresegna AM, Appolloni M, Lloyd D. 935 MHz cellular phone radiation. Anin vitrostudy of genotoxicity in human lymphocytes. Int J Radiat Biol 2009; 82:339-46. [PMID: 16782651 DOI: 10.1080/09553000600739173] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
PURPOSE The possibility of genotoxicity of radiofrequency radiation (RFR) applied alone or in combination with x-rays was investigated in vitro using several assays on human lymphocytes. The chosen specific absorption rate (SAR) values are near the upper limit of actual energy absorption in localized tissue when persons use some cellular telephones. The purpose of the combined exposures was to examine whether RFR might act epigenetically by reducing the fidelity of repair of DNA damage caused by a well-characterized and established mutagen. METHODS Blood specimens from 14 donors were exposed continuously for 24 h to a Global System for Mobile Communications (GSM) basic 935 MHz signal. The signal was applied at two SAR; 1 and 2 W/Kg, alone or combined with a 1-min exposure to 1.0 Gy of 250 kVp x-rays given immediately before or after the RFR. The assays employed were the alkaline comet technique to detect DNA strand breakage, metaphase analyses to detect unstable chromosomal aberrations and sister chromatid exchanges, micronuclei in cytokinesis-blocked binucleate lymphocytes and the nuclear division index to detect alterations in the speed of in vitro cell cycling. RESULTS By comparison with appropriate sham-exposed and control samples, no effect of RFR alone could be found for any of the assay endpoints. In addition RFR did not modify any measured effects of the x-radiation. CONCLUSIONS This study has used several standard in vitro tests for chromosomal and DNA damage in Go human lymphocytes exposed in vitro to a combination of x-rays and RFR. It has comprehensively examined whether a 24-h continuous exposure to a 935 MHz GSM basic signal delivering SAR of 1 or 2 W/Kg is genotoxic per se or whether, it can influence the genotoxicity of the well-established clastogenic agent; x-radiation. Within the experimental parameters of the study in all instances no effect from the RFR signal was observed.
Collapse
Affiliation(s)
- L Stronati
- Section of Toxicology and Biomedical Science, CR, ENEA Casaccia, Rome, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Sannino A, Di Costanzo G, Brescia F, Sarti M, Zeni O, Juutilainen J, Scarfì MR. Human Fibroblasts and 900 MHz Radiofrequency Radiation: Evaluation of DNA Damage after Exposure and Co-exposure to 3-Chloro-4-(dichloromethyl)-5-Hydroxy-2(5h)-furanone (MX). Radiat Res 2009; 171:743-51. [DOI: 10.1667/rr1642.1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
19
|
Ruediger HW. Genotoxic effects of radiofrequency electromagnetic fields. ACTA ACUST UNITED AC 2009; 16:89-102. [PMID: 19285841 DOI: 10.1016/j.pathophys.2008.11.004] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2008] [Revised: 11/16/2008] [Accepted: 11/16/2008] [Indexed: 01/23/2023]
Abstract
101 publications are exploited which have studied genotoxicity of radiofrequency electromagnetic fields (RF-EMF) in vivo and in vitro. Of these 49 report a genotoxic effect and 42 do not. In addition, 8 studies failed to detect an influence on the genetic material, but showed that RF-EMF enhanced the genotoxic action of other chemical or physical agents. The controversial results may in part be explained by the different cellular systems. Moreover, inconsistencies may depend from the variety of analytical methods being used, which differ considerably with respect to sensitivity and specificity. Taking altogether there is ample evidence that RF-EMF can alter the genetic material of exposed cells in vivo and in vitro and in more than one way. This genotoxic action may be mediated by microthermal effects in cellular structures, formation of free radicals, or an interaction with DNA-repair mechanisms.
Collapse
Affiliation(s)
- Hugo W Ruediger
- Division of Occupational Medicine, Medical University of Vienna, Waehringer Guertel 18-20, Berggasse 4/33, 1090 Vienna, Austria
| |
Collapse
|
20
|
Miyakoshi J. Cellular Biology Aspects of Mobile Phone Radiation. ADVANCES IN ELECTROMAGNETIC FIELDS IN LIVING SYSTEMS 2009. [DOI: 10.1007/978-0-387-92736-7_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
21
|
Kim JY, Hong SY, Lee YM, Yu SA, Koh WS, Hong JR, Son T, Chang SK, Lee M. In vitro assessment of clastogenicity of mobile-phone radiation (835 MHz) using the alkaline comet assay and chromosomal aberration test. ENVIRONMENTAL TOXICOLOGY 2008; 23:319-327. [PMID: 18214898 DOI: 10.1002/tox.20347] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Recently we demonstrated that 835-MHz radiofrequency radiation electromagnetic fields (RF-EMF) neither affected the reverse mutation frequency nor accelerated DNA degradation in vitro. Here, two kinds of cytogenetic endpoints were further investigated on mammalian cells exposed to 835-MHz RF-EMF (the most widely used communication frequency band in Korean CDMA mobile phone networks) alone and in combination with model clastogens: in vitro alkaline comet assay and in vitro chromosome aberration (CA) test. No direct cytogenetic effect of 835-MHz RF-EMF was found in the in vitro CA test. The combined exposure of the cells to RF-EMF in the presence of ethylmethanesulfonate (EMS) revealed a weak and insignificant cytogenetic effect when compared to cells exposed to EMS alone in CA test. Also, the comet assay results to evaluate the ability of RF-EMF alone to damage DNA were nearly negative, although showing a small increase in tail moment. However, the applied RF-EMF had potentiation effect in comet assay when administered in combination with model clastogens (cyclophosphamide or 4-nitroquinoline 1-oxide). Thus, our results imply that we cannot confidently exclude any possibility of an increased risk of genetic damage, with important implications for the possible health effects of exposure to 835-MHz electromagnetic fields.
Collapse
Affiliation(s)
- Ji-Young Kim
- The Korea Institute of Toxicology, Korea Research Institute of Chemical Technology, P.O. Box 123, Yusong, Daejeon 305-600, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Vijayalaxmi, Prihoda TJ. Genetic Damage in Mammalian Somatic Cells Exposed to Radiofrequency Radiation: A Meta-analysis of Data from 63 Publications (1990–2005). Radiat Res 2008; 169:561-74. [DOI: 10.1667/rr0987.1] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
23
|
Manti L, Braselmann H, Calabrese ML, Massa R, Pugliese M, Scampoli P, Sicignano G, Grossi G. Effects of Modulated Microwave Radiation at Cellular Telephone Frequency (1.95 GHz) on X-Ray-Induced Chromosome Aberrations in Human LymphocytesIn Vitro. Radiat Res 2008; 169:575-83. [DOI: 10.1667/rr1044.1] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2007] [Accepted: 01/18/2008] [Indexed: 11/03/2022]
|
24
|
Baohong W, Lifen J, Lanjuan L, Jianlin L, Deqiang L, Wei Z, Jiliang H. Evaluating the combinative effects on human lymphocyte DNA damage induced by Ultraviolet ray C plus 1.8GHz microwaves using comet assay in vitro. Toxicology 2007; 232:311-6. [PMID: 17336440 DOI: 10.1016/j.tox.2007.01.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2006] [Revised: 01/17/2007] [Accepted: 01/26/2007] [Indexed: 10/23/2022]
Abstract
The objective of this study was to observe whether 1.8 GHz microwaves (MW) (SAR, 3 W/kg) exposure can influence human lymphocyte DNA damage induced by ultraviolet ray C (UVC). The lymphocytes, which were from three young healthy donors, were exposed to 254 nm UVC at the doses of 0.25, 0.5, 0.75, 1.0, 1.5 and 2.0 J m(-2), respectively. The lymphocytes were irradiated by 1.8 GHz MW (SAR, 3 W/kg) for 0, 1.5 and 4 h. The combinative exposure of UVC plus MW was conducted. The treated cells were incubated for 0, 1.5 and 4 h. Finally, comet assay was used to measure DNA damage of above treated lymphocytes. The results indicated that the difference of DNA damage induced between MW group and control group was not significant (P>0.05). The MTLs induced by UVC were 1.71+/-0.09, 2.02+/-0.08, 2.27+/-0.17, 2.27+/-0.06, 2.25+/-0.12, 2.24+/-0.11 microm, respectively, which were significantly higher than that (0.96+/-0.05 microm) of control (P<0.01). MTLs of some sub-groups in combinative exposure groups at 1.5-h incubation were significantly lower that those of corresponding UVC sub-groups (P<0.01 or P<0.05). However, MTLs of some sub-groups in combinative exposure groups at 4-h incubation were significantly higher that those of corresponding UVC sub-groups (P<0.01 or P<0.05). In this experiment it was found that 1.8 GHz (SAR, 3 W/kg) MW exposure for 1.5 and 4 h did not enhance significantly human lymphocyte DNA damage, but could reduce and increase DNA damage of human lymphocytes induced by UVC at 1.5-h and 4-h incubation, respectively.
Collapse
Affiliation(s)
- Wang Baohong
- Zhejiang University, Medical College, Institute of Environmental Medicine, Hangzhou 310058, Zhejiang, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
25
|
Linet MS, Taggart T, Severson RK, Cerhan JR, Cozen W, Hartge P, Colt J. Cellular telephones and non-Hodgkin lymphoma. Int J Cancer 2006; 119:2382-8. [PMID: 16894556 DOI: 10.1002/ijc.22151] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Dramatic increase in hand-held cellular telephone use since the 1980s and excess risk of lymphoproliferative malignancies associated with radio-frequency radiation (RFR) exposures in epidemiological and experimental studies motivated assessment of cellular telephones within a comprehensive US case-control investigation of non-Hodgkin lymphoma (NHL). A questionnaire ascertained cellular telephone use in 551 NHL cases and 462 frequency-matched population controls. Compared to persons who had never used cellular telephones, risks were not increased among individuals whose lifetime use was fewer than 10 (odds ratio (OR) = 0.9, 95% confidence intervals (CI): 0.6, 1.3), 10-100 (OR = 1.0, 95 % CI: 0.7, 1.5) or more than 100 times (e.g., regular users, OR = 0.9, 95% CI: 0.6, 1.4). Among regular users compared to those who had never used hand-held cellular telephones, risks of NHL were not significantly associated with minutes per week, duration, cumulative lifetime or year of first use, although NHL was non-significantly higher in men who used cellular telephones for more than 8 years. Little evidence linked use of cellular telephones with total, diffuse large B-cell lymphoma or follicular NHL. These findings must be interpreted in the context of less than 5% of the population reporting duration of use of 6 or more years or lifetime cumulative use of 200 or more hours.
Collapse
Affiliation(s)
- Martha S Linet
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD 20892-7238, USA.
| | | | | | | | | | | | | |
Collapse
|
26
|
Verschaeve L, Heikkinen P, Verheyen G, Van Gorp U, Boonen F, Vander Plaetse F, Maes A, Kumlin T, Mäki-Paakkanen J, Puranen L, Juutilainen J. Investigation of co-genotoxic effects of radiofrequency electromagnetic fields in vivo. Radiat Res 2006; 165:598-607. [PMID: 16669742 DOI: 10.1667/rr3559.1] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
We investigated the possible combined genotoxic effects of radiofrequency (RF) electromagnetic fields (900 MHz, amplitude modulated at 217 Hz, mobile phone signal) with the drinking water mutagen and carcinogen 3-chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone (MX). Female rats were exposed to RF fields for a period of 2 years for 2 h per day, 5 days per week at average whole-body specific absorption rates of 0.3 or 0.9 W/kg. MX was given in the drinking water at a concentration of 19 microg/ml. Blood samples were taken at 3, 6 and 24 months of exposure and brain and liver samples were taken at the end of the study (24 months). DNA damage was assessed in all samples using the alkaline comet assay, and micronuclei were determined in erythrocytes. We did not find significant genotoxic activity of MX in blood and liver cells. However, MX induced DNA damage in rat brain. Co-exposures to MX and RF radiation did not significantly increase the response of blood, liver and brain cells compared to MX exposure only. In conclusion, this 2-year animal study involving long-term exposures to RF radiation and MX did not provide any evidence for enhanced genotoxicity in rats exposed to RF radiation.
Collapse
Affiliation(s)
- L Verschaeve
- Flemish Institute of Technological Research (VITO), Expertise Center of Environmental Toxicology, Mol, Belgium.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Scarfì MR, Fresegna AM, Villani P, Pinto R, Marino C, Sarti M, Altavista P, Sannino A, Lovisolo GA. Exposure to Radiofrequency Radiation (900 MHz, GSM signal) does not Affect Micronucleus Frequency and Cell Proliferation in Human Peripheral Blood Lymphocytes: An Interlaboratory Study. Radiat Res 2006; 165:655-63. [PMID: 16802865 DOI: 10.1667/rr3570.1] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The objective of this study was to investigate whether 24 h exposure to radiofrequency electromagnetic fields similar to those emitted by mobile phones induces genotoxic effects and/or effects on cell cycle kinetics in cultured human peripheral blood lymphocytes. The effect of 900 MHz exposure (GSM signal) was evaluated at four specific absorption rates (SARs, 0, 1, 5 and 10 W/kg peak values). The exposures were carried out in wire patch cells under strictly controlled conditions of both temperature and dosimetry, and the induction of genotoxic effects was evaluated in lymphocyte cultures from 10 healthy donors by applying the cytokinesis-block micronucleus assay. Positive controls were provided by using mitomycin C. Two research groups were involved in the study, one at ENEA, Rome, and the other at CNR-IREA, Naples. Each laboratory tested five donors, and the resulting slides were scored by both laboratories. Following this experimental scheme, it was also possible to compare the results obtained by cross-scoring of slides. The results obtained provided no evidence for the existence of genotoxic or cytotoxic effects in the range of SARs investigated. These findings were confirmed in the two groups of five donors examined in the two laboratories and when the same slides were scored by two operators.
Collapse
Affiliation(s)
- Maria Rosaria Scarfì
- Interuniversity Center for Interaction between Electromagnetic Fields and Biosystems (ICEmB) at CNR-Institute for Electromagnetic Sensing of Environment (IREA), 80124 Naples, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Maes A, Van Gorp U, Verschaeve L. Cytogenetic investigation of subjects professionally exposed to radiofrequency radiation. Mutagenesis 2006; 21:139-42. [PMID: 16481348 DOI: 10.1093/mutage/gel008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Nowadays, virtually everybody is exposed to radiofrequency radiation (RFR) from mobile phone base station antennas or other sources. At least according to some scientists, this exposure can have detrimental health effects. We investigated cytogenetic effects in peripheral blood lymphocytes from subjects who were professionally exposed to mobile phone electromagnetic fields in an attempt to demonstrate possible RFR-induced genetic effects. These subjects can be considered well suited for this purpose as their RFR exposure is 'normal' though rather high, and definitely higher than that of the 'general population'. The alkaline comet assay, sister chromatid exchange (SCE) and chromosome aberration tests revealed no evidence of RFR-induced genetic effects. Blood cells were also exposed to the well known chemical mutagen mitomycin C in order to investigate possible combined effects of RFR and the chemical. No cooperative action was found between the electromagnetic field exposure and the mutagen using either the comet assay or SCE test.
Collapse
Affiliation(s)
- Annemarie Maes
- Flemish Institute for Technological Research, VITO, B-2400 Mol, Belgium.
| | | | | |
Collapse
|
29
|
Kim SH, Lee HJ, Choi SY, Gimm YM, Pack JK, Choi HD, Lee YS. Toxicity bioassay in Sprague-Dawley rats exposed to 20 kHz triangular magnetic field for 90 days. Bioelectromagnetics 2006; 27:105-11. [PMID: 16283665 DOI: 10.1002/bem.20182] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Sprague-Dawley rats (10 each of male and female per group for sham and magnetic field exposed) were exposed in a carrousel irradiator to 20 kHz intermediate frequency (IF) magnetic field at 6.25 microT rms for 8 h/day, 5 days/week for 90 days. Urine analysis (pH, serum glucose, protein, ketone bodies, RBC, WBC, bilirubin, urobilinogen, and specific gravity), blood analysis [WBC, RBC, hemoglobin, hematocrit, mean corpuscular volume (MCV), mean corpuscular hemoglobin (MCH), mean corpuscular hemoglobin concentration (MCHC), thrombocyte count, and leucocyte count], blood biochemistry (total protein, blood urea nitrogen, creatinine, glucose, total bilirubin, total cholesterol, aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, and lactate dehydrogenase), and histopathological analysis for organs such as liver, kidney, testis, ovary, spleen, brain, heart, and lung were performed on day 90. Results showed no significant differences in the above analyses between IF magnetic field exposed and sham control rats. Therefore, we conclude that there were no significant toxicities in rats exposed to 20 kHz IF triangular magnetic field-exposure for 90 days.
Collapse
Affiliation(s)
- Sung-Ho Kim
- College of Veterinary Medicine, Chonnam National University, Kwangju, Korea
| | | | | | | | | | | | | |
Collapse
|
30
|
Aitken RJ, Bennetts LE, Sawyer D, Wiklendt AM, King BV. Impact of radio frequency electromagnetic radiation on DNA integrity in the male germline. ACTA ACUST UNITED AC 2005; 28:171-9. [PMID: 15910543 DOI: 10.1111/j.1365-2605.2005.00531.x] [Citation(s) in RCA: 164] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Concern has arisen over human exposures to radio frequency electromagnetic radiation (RFEMR), including a recent report indicating that regular mobile phone use can negatively impact upon human semen quality. These effects would be particularly serious if the biological effects of RFEMR included the induction of DNA damage in male germ cells. In this study, mice were exposed to 900 MHz RFEMR at a specific absorption rate of approximately 90 mW/kg inside a waveguide for 7 days at 12 h per day. Following exposure, DNA damage to caudal epididymal spermatozoa was assessed by quantitative PCR (QPCR) as well as alkaline and pulsed-field gel electrophoresis. The treated mice were overtly normal and all assessment criteria, including sperm number, morphology and vitality were not significantly affected. Gel electrophoresis revealed no gross evidence of increased single- or double-DNA strand breakage in spermatozoa taken from treated animals. However, a detailed analysis of DNA integrity using QPCR revealed statistically significant damage to both the mitochondrial genome (p < 0.05) and the nuclear beta-globin locus (p < 0.01). This study suggests that while RFEMR does not have a dramatic impact on male germ cell development, a significant genotoxic effect on epididymal spermatozoa is evident and deserves further investigation.
Collapse
Affiliation(s)
- R J Aitken
- ARC Centre of Excellence in Biotechnology and Development, Discipline of Biological Sciences, and Hunter Medical Research Institute, Newcastle, NSW, Australia.
| | | | | | | | | |
Collapse
|
31
|
Obe G. Controversial Cytogenetic Observations in Mammalian Somatic Cells Exposed to Radiofrequency Radiation. Radiat Res 2004; 162:481-96. [PMID: 15624303 DOI: 10.1667/rr3252] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
During the years 1990-2003 a large number of investigations were conducted using rodents, cultured rodent and human cells, and freshly collected human blood lymphocytes to determine the genotoxic potential of exposure to radiofrequency (RF) radiation. The results of most of these studies (58%) did not indicate increased damage to the genetic material (assessed from DNA strand breaks, incidence of chromosomal aberrations, micronuclei and sister chromatid exchanges) in cells exposed to RF radiation compared to sham-exposed and/or unexposed cells. Some investigations (23%) reported an increase in such damage in cells exposed to RF radiation. The observations from other studies (19%) were inconclusive. This paper reviews the investigations published in scientific journals during 1990-2003 and attempts to identify probable reason(s) for the conflicting results. Recommendations are made for future research to address some of the controversial observations.
Collapse
|
32
|
Meltz ML. Radiofrequency exposure and mammalian cell toxicity, genotoxicity, and transformation. Bioelectromagnetics 2003; Suppl 6:S196-213. [PMID: 14628315 DOI: 10.1002/bem.10176] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The published in vitro literature relevant to the issue of the possible induction of toxicity, genotoxicity, and transformation of mammalian cells due to radiofrequency field (RF) exposure is examined. In some instances, information about related in vivo studies is presented. The review is from the perspective of technical merit and also biological consistency, especially with regard to those publications reporting a positive effect. The weight of evidence available indicates that, for a variety of frequencies and modulations with both short and long exposure times, at exposure levels that do not (or in some instances do) heat the biological sample such that there is a measurable increase in temperature, RF exposure does not induce (a). DNA strand breaks, (b). chromosome aberrations, (c). sister chromatid exchanges (SCEs), (d). DNA repair synthesis, (e). phenotypic mutation, or (f). transformation (cancer-like changes). While there is limited experimental evidence that RF exposure induces micronuclei formation, there is abundant evidence that it does not. There is some evidence that RF exposure does not induce DNA excision repair, suggesting the absence of base damage. There is also evidence that RF exposure does not inhibit excision repair after the induction of thymine dimers by UV exposure, as well as evidence that indicates that RF is not a co-carcinogen or a tumor promoter. The article is in part a tutorial, so that the reader can consider similarities and discrepancies between reports of RF-induced effects relative to one another.
Collapse
Affiliation(s)
- Martin L Meltz
- Department of Radiation Oncology and Center for Environmental Radiation Toxicology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, USA.
| |
Collapse
|
33
|
Zeni O, Chiavoni AS, Sannino A, Antolini A, Forigo D, Bersani F, Scarfì MR. Lack of genotoxic effects (micronucleus induction) in human lymphocytes exposed in vitro to 900 MHz electromagnetic fields. Radiat Res 2003; 160:152-8. [PMID: 12859225 DOI: 10.1667/rr3014] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
In the present study, we investigated the induction of genotoxic effects in human peripheral blood lymphocytes after exposure to electromagnetic fields used in mobile communication systems (frequency 900 MHz). For this purpose, the incidence of micronuclei was evaluated by applying the cytokinesis-block micronucleus assay. Cytotoxicity was also investigated using the cytokinesis-block proliferation index. The experiments were performed on peripheral blood from 20 healthy donors, and several conditions were tested by varying the duration of exposure, the specific absorption rate (SAR), and the signal [continuous-wave (CW) or GSM (Global System of Mobile Communication) modulated signal]. The following exposures were carried out: (1) CW intermittent exposure (SAR = 1.6 W/kg) for 6 min followed by a 3-h pause (14 on/off cycles); (2) GSM signal, intermittent exposure as described in (1); (3) GSM signal, intermittent exposure as described in (1) 24 h before stimulation with phytohemagglutinin (8 on/off cycles); (4) GSM signal, intermittent exposure (SAR = 0.2 W/kg) 1 h per day for 3 days. The SARs were estimated numerically. No statistically significant differences were detected in any case in terms of either micronucleus frequency or cell cycle kinetics.
Collapse
Affiliation(s)
- O Zeni
- ICEmB at CNR-Institute for Electromagnetic Sensing of Environment (IREA), via Diocleziano 328, 80124 Napoli, Italy
| | | | | | | | | | | | | |
Collapse
|
34
|
Othman OE, Aly MS, Nahas SME, Mohamed HM. Mutagenic Potential of Radio-frequency Electromagnetic Fields. CYTOLOGIA 2003. [DOI: 10.1508/cytologia.68.35] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
| | - Magdy S. Aly
- Zoology Department, Faculty of Science, Cairo University (Beni-Suef branch)
| | | | - Hanaa M. Mohamed
- Zoology Department, Faculty of Science, Cairo University (Beni-Suef branch)
| |
Collapse
|
35
|
McNamee JP, Bellier PV, Gajda GB, Miller SM, Lemay EP, Lavallée BF, Marro L, Thansandote A. DNA damage and micronucleus induction in human leukocytes after acute in vitro exposure to a 1.9 GHz continuous-wave radiofrequency field. Radiat Res 2002; 158:523-33. [PMID: 12236820 DOI: 10.1667/0033-7587(2002)158[0523:ddamii]2.0.co;2] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Human blood cultures were exposed to a 1.9 GHz continuous-wave (CW) radiofrequency (RF) field for 2 h using a series of six circularly polarized, cylindrical waveguides. Mean specific absorption rates (SARs) of 0.0, 0.1, 0.26, 0.92, 2.4 and 10 W/kg were achieved, and the temperature within the cultures during a 2-h exposure was maintained at 37.0 +/- 0.5 degrees C. Concurrent negative (incubator) and positive (1.5 Gy (137)Cs gamma radiation) control cultures were run for each experiment. DNA damage was quantified immediately after RF-field exposure using the alkaline comet assay, and four parameters (tail ratio, tail moment, comet length and tail length) were used to assess DNA damage for each comet. No evidence of increased primary DNA damage was detected by any parameter for RF-field-exposed cultures at any SAR tested. The formation of micronuclei in the RF-field-exposed blood cell cultures was assessed using the cytokinesis-block micronucleus assay. There was no significant difference in the binucleated cell frequency, incidence of micronucleated binucleated cells, or total incidence of micronuclei between any of the RF-field-exposed cultures and the sham-exposed controls at any SAR tested. These results do not support the hypothesis that acute, nonthermalizing 1.9 GHz CW RF-field exposure causes DNA damage in cultured human leukocytes.
Collapse
Affiliation(s)
- J P McNamee
- Consumer and Clinical Radiation Protection Bureau, Product Safety Programme, Health Canada, 775 Brookfield Road, Ottawa, Ontario, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
McNamee JP, Bellier PV, Gajda GB, Lavallée BF, Lemay EP, Marro L, Thansandote A. DNA damage in human leukocytes after acute in vitro exposure to a 1.9 GHz pulse-modulated radiofrequency field. Radiat Res 2002; 158:534-7. [PMID: 12236821 DOI: 10.1667/0033-7587(2002)158[0534:ddihla]2.0.co;2] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Blood cultures from human volunteers were exposed to an acute 1.9 GHz pulse-modulated radiofrequency (RF) field for 2 h using a series of six circularly polarized, cylindrical waveguides. Mean specific absorption rates (SARs) ranged from 0 to 10 W/kg, and the temperature within the cultures during the exposure was maintained at 37.0 +/- 0.5 degrees C. DNA damage was quantified in leukocytes by the alkaline comet assay and the cytokinesis-block micronucleus assay. When compared to the sham-treated controls, no evidence of increased primary DNA damage was detected by any parameter for any of the RF-field-exposed cultures when evaluated using the alkaline comet assay. Furthermore, no significant differences in the frequency of binucleated cells, incidence of micronucleated binucleated cells, or total incidence of micronuclei were detected between any of the RF-field-exposed cultures and the sham-treated control at any SAR tested. These results do not support the hypothesis that acute, nonthermalizing 1.9 GHz pulse-modulated RF-field exposure causes DNA damage in cultured human leukocytes.
Collapse
Affiliation(s)
- J P McNamee
- Consumer and Clinical Radiation Protection Bureau, Product Safety Programme, Health Canada, 775 Brookfield Road, Ottawa, Ontario, Canada.
| | | | | | | | | | | | | |
Collapse
|
37
|
d'Ambrosio G, Massa R, Scarfi MR, Zeni O. Cytogenetic damage in human lymphocytes following GMSK phase modulated microwave exposure. Bioelectromagnetics 2002; 23:7-13. [PMID: 11793401 DOI: 10.1002/bem.93] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The present study investigated, using in vitro experiments on human lymphocytes, whether exposure to a microwave frequency used for mobile communication, either unmodulated or in presence of phase only modulation, can cause modification of cell proliferation kinetics and/or genotoxic effects, by evaluating the cytokinesis block proliferation index and the micronucleus frequency. In the GSM 1800 mobile communication systems the field is both phase (Gaussian minimum shift keying, GMSK) and amplitude (time domain multiple access, TDMA) modulated. The present study investigated only the effects of phase modulation, and no amplitude modulation was applied. Human peripheral blood cultures were exposed to 1.748 GHz, either continuous wave (CW) or phase only modulated wave (GMSK), for 15 min. The maximum specific absorption rate (approximately 5 W/kg) was higher than that occurring in the head of mobile phone users; however, no changes were found in cell proliferation kinetics after exposure to either CW or GMSK fields. As far as genotoxicity is concerned, the micronucleus frequency result was not affected by CW exposure; however, a statistically significant micronucleus effect was found following exposure to phase modulated field. These results would suggest a genotoxic power of the phase modulation per se.
Collapse
Affiliation(s)
- Guglielmo d'Ambrosio
- Interuniversity Centre for Interaction Between Electromagnetic Fields and Biosystems, Naples, Italy. gdambros.unina.it
| | | | | | | |
Collapse
|
38
|
Leal BZ, Meltz ML, Pickard WF, Bisht KS, Straube WL, Moros EG. Cytogenetic studies in human blood lymphocytes exposed in vitro to radiofrequency radiation at a cellular telephone frequency (835.62 MHz, FDMA). Radiat Res 2001; 155:113-21. [PMID: 11121222 DOI: 10.1667/0033-7587(2001)155[0113:csihbl]2.0.co;2] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Freshly collected peripheral blood samples from four healthy human volunteers were diluted with RPMI 1640 tissue culture medium and exposed in sterile T-75 tissue culture flasks in vitro for 24 h to 835.62 MHz radiofrequency (RF) radiation, a frequency employed for customer-to-base station transmission of cellular telephone communications. An analog signal was used, and the access technology was frequency division multiple access (FDMA, continuous wave). A nominal net forward power of 68 W was used, and the nominal power density at the center of the exposure flask was 860 W/m(2). The mean specific absorption rate in the exposure flask was 4.4 or 5.0 W/kg. Aliquots of diluted blood that were sham-exposed or exposed in vitro to an acute dose of 1.50 Gy of gamma radiation were used as negative or positive controls. Immediately after the exposures, the lymphocytes were stimulated with a mitogen, phytohemagglutinin, and cultured for 48 or 72 h to determine the extent of genetic damage, as assessed from the frequencies of chromosomal aberrations and micronuclei. The extent of alteration in the kinetics of cell proliferation was determined from the mitotic indices in 48-h cultures and from the incidence of binucleate cells in 72-h cultures. The data indicated no significant differences between RF-radiation- and sham-exposed lymphocytes with respect to mitotic indices, incidence of exchange aberrations, excess fragments, binucleate cells, and micronuclei. In contrast, the response of the lymphocytes exposed to gamma radiation was significantly different from both RF-radiation- and sham-exposed cells for all of these indices. Thus, under the experimental conditions tested, there is no evidence for the induction of chromosomal aberrations and micronuclei in human blood lymphocytes exposed in vitro for 24 h to 835.62 MHz RF radiation at SARs of 4.4 or 5.0 W/kg.
Collapse
|
39
|
|
40
|
Gos P, Eicher B, Kohli J, Heyer WD. No mutagenic or recombinogenic effects of mobile phone fields at 900 MHz detected in the yeast Saccharomyces cerevisiae. Bioelectromagnetics 2000; 21:515-23. [PMID: 11015116 DOI: 10.1002/1521-186x(200010)21:7<515::aid-bem5>3.0.co;2-k] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Both actively growing and resting cells of the yeast Saccharomyces cerevisiae were exposed to 900-MHz fields that closely matched the Global System for Mobile Communication (GSM) pulsed modulation format signals for mobile phones at specific absorption rates (SAR) of 0.13 and 1.3 W/kg. Two identical anechoic test chambers were constructed to perform concurrent control and test experiments under well-controlled exposure conditions. Using specific test strains, we examined the genotoxic potential of mobile phone fields, alone and in combination, with a known genotoxic compound, the alkylating agent methyl methansulfonate. Mutation rates were monitored by two test systems, a widely used gene-specific forward mutation assay at CAN1 and a wide-range assay measuring the induction of respiration-deficient (petite) clones that have lost their mitochondrial function. In addition, two further assays measured the recombinogenic effect of mobile phone fields to detect possible effects on genomic stability: First, an intrachromosomal, deletion-formation assay previously developed for genotoxic screening; and second, an intragenic recombination assay in the ADE2 gene. Fluctuation tests failed to detect any significant effect of mobile phone fields on forward mutation rates at CAN1, on the frequency of petite formation, on rates of intrachromosomal deletion formation, or on rates of intragenic recombination in the absence or presence of the genotoxic agent methyl methansulfonate.
Collapse
Affiliation(s)
- P Gos
- Institute of General Microbiology, Bern, Switzerland
| | | | | | | |
Collapse
|
41
|
Maes A, Collier M, Vandoninck S, Scarpa P, Verschaeve L. Cytogenetic effects of 50 Hz magnetic fields of different magnetic flux densities. Bioelectromagnetics 2000. [DOI: 10.1002/1521-186x(200012)21:8<589::aid-bem5>3.0.co;2-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
42
|
Masley ML, Habbick BF, Spitzer WO, Stuchly MA. Are wireless phones safe? A review of the issue. Canadian Journal of Public Health 1999. [PMID: 10570577 DOI: 10.1007/bf03404521] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Most wireless phones and their corresponding base stations operate at a very low power output and in the radiofrequency range of 800 to 2000 Megahertz. Current international guidelines protect against thermal biological effects in terms of the local or whole-body specific absorption rate (SAR). Potential non-thermal bio-effects resulting from the use of wireless phones are not established and laboratory (i.e., in vitro, in vivo) studies have shown conflicting results. Epidemiological studies of potential human health effects are few but are expected to emerge in the near future. Challenges to epidemiological research include difficult exposure assessment, selection of appropriate controls, potential confounding bias, and validation of outcome. Scientists, community advocacy groups, and public health professionals must be equipped to critically analyze the emerging evidence within a benefit/risk assessment framework.
Collapse
|
43
|
Abstract
This paper reviews the literature data on the genetic toxicology of radiofrequency (RF) radiation. Whereas in the past most studies were devoted to microwave ovens and radar equipment, it is now mobile telecommunication that attracts most attention. Therefore we focus on mobile telephone frequencies where possible. According to a great majority of the papers, radiofrequency fields, and mobile telephone frequencies in particular, are not genotoxic: they do not induce genetic effects in vitro and in vivo, at least under non-thermal exposure conditions, and do not seem to be teratogenic or to induce cancer. Yet, some investigations gave rather alarming results that should be confirmed and completed by further experiments. Among them the investigation of synergistic effects and of possible mechanisms of action should be emphasised.
Collapse
Affiliation(s)
- L Verschaeve
- VITO, Environmental Toxicology Unit, Mol, Belgium.
| | | |
Collapse
|
44
|
|
45
|
Maes A, Collier M, Van Gorp U, Vandoninck S, Verschaeve L. Cytogenetic effects of 935.2-MHz (GSM) microwaves alone and in combination with mitomycin C. Mutat Res 1997; 393:151-6. [PMID: 9357572 DOI: 10.1016/s1383-5718(97)00100-9] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
This paper focuses on the genetic effects of microwaves from mobile communication frequencies (935.2 MHz) alone and in combination with a chemical DNA-damaging agent (mitomycin C). Three cytogenetic endpoints were investigated after in vitro exposure of human whole blood cells. These endpoints were the 'classical' chromosome aberration test, the sister chromatid exchange test and the alkaline comet assay. No direct cytogenetic effect was found. The combined exposure of the cells to the radiofrequency fields followed by their cultivation in the presence of mitomycin C revealed a very weak effect when compared to cells exposed to mitomycin C alone.
Collapse
Affiliation(s)
- A Maes
- VITO, Environmental Toxicology, Mol, Belgium.
| | | | | | | | | |
Collapse
|