1
|
Fischer JM, Stringer JR. Visualizing loss of heterozygosity in living mouse cells and tissues. Mutat Res 2008; 645:1-8. [PMID: 18708075 DOI: 10.1016/j.mrfmmm.2008.07.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2008] [Revised: 06/09/2008] [Accepted: 07/15/2008] [Indexed: 11/16/2022]
Abstract
Loss of heterozygosity (LOH) in somatic cells can contribute to the genesis of cancer, but little is known about the frequency with which LOH occurs in normal cells of the body. To detect LOH in situ, we studied mouse shYFP embryonic stem (ES) cells and cells of the intestinal epithelia derived from these ES cells. shYFP ES cells are heterozygous at the ROSA26 locus. One copy of the locus carries a gene encoding a yellow fluorescent protein (YFP), while the other copy harbors an shRNA gene that produces a short hairpin RNA (shRNA) molecule that causes degradation of YFP mRNA. Nearly all cells in shYFP populations were faintly fluorescent, but brightly fluorescent cells arose at a rate of approximately 10(-5)bright cells/generation. Bright cells lacked the gene encoding the shRNA and contained two copies of the YFP gene. Comparison of these results to previous data on LOH in ES cells that lacked interfering shRNA showed that LOH in shYFP cells was not influenced by the presence of the shRNA. Bright cells were also seen in intestinal villi of chimeric mice made by injecting blastocysts with shYFP cells. These data demonstrate that this approach can detect LOH and suggest that it will allow detection of LOH in a broad array of tissues and cell types in transgenic mice made from shYFP cells.
Collapse
Affiliation(s)
- Jared M Fischer
- University of Cincinnati, Department of Molecular Genetics, Biochemistry and Microbiology, Cincinnati, OH 45267-0524, USA.
| | | |
Collapse
|
2
|
Maiti AK, Boldogh I, Spratt H, Mitra S, Hazra TK. Mutator phenotype of mammalian cells due to deficiency of NEIL1 DNA glycosylase, an oxidized base-specific repair enzyme. DNA Repair (Amst) 2008; 7:1213-20. [PMID: 18495559 DOI: 10.1016/j.dnarep.2008.03.025] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2007] [Revised: 03/26/2008] [Accepted: 03/28/2008] [Indexed: 10/22/2022]
Abstract
The recently characterized NEIL1 and NEIL2 are distinct from the previously characterized mammalian DNA glycosylases (OGG1 and NTH1) involved in repair of oxidized bases because of the NEILs' preference for excising base lesions from single-stranded DNA present in bubble and fork structures. OGG1 and NTH1 are active only with duplex DNA. This raises the possibility that NEILs function in the repair of base lesions during DNA replication and/or transcription. S-phase-specific activation of only NEIL1 suggests its preferential involvement in repair during DNA replication. Here we show that antisense oligonucleotides specific for human or Chinese hamster NEIL1 decreased in vivo NEIL1 levels by 70-80%, concomitant with increased oxidative damage in the genome. Moreover, NEIL1 downregulation enhanced spontaneous mutation in the Hprt locus by about 3-fold in both Chinese hamster V79 and human bronchial A549 cell lines. The mutant frequency was further enhanced (7-8-fold) under oxidative stress. The majority of both spontaneous and induced mutations occurred at A.T base pairs, indicating that oxidized A and/or T are NEIL1's preferred in vivo substrates. NEIL1 thus plays a distinct and important role in repairing endogenous and induced mutagenic oxidized bases, and hence in maintaining the functional integrity of mammalian genomes.
Collapse
Affiliation(s)
- Amit K Maiti
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | | | | | | | | |
Collapse
|
3
|
Dearfield KL, Moore MM. Use of genetic toxicology information for risk assessment. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2005; 46:236-45. [PMID: 16258925 DOI: 10.1002/em.20176] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Genetic toxicology data are used worldwide in regulatory decision-making. On the 25th anniversary of Environmental and Molecular Mutagenesis, we think it is important to provide a brief overview of the currently available genetic toxicity tests and to outline a framework for conducting weight-of-the-evidence (WOE) evaluations that optimize the utility of genetic toxicology information for risk assessment. There are two major types of regulatory decisions made by agencies such as the Environmental Protection Agency (EPA) and the Food and Drug Administration (FDA): (1) the approval and registration of pesticides, pharmaceuticals, medical devices, and medical-use products, and (2) the setting of standards for acceptable exposure levels in air, water, and food. Genetic toxicology data are utilized for both of these regulatory decisions. The current default assumption for regulatory decisions is that chemicals that are shown to be genotoxic in standard tests are, in fact, capable of causing mutations in humans (in somatic and/or germ cells) and that they contribute to adverse health outcomes via a "genotoxic/mutagenic" mode of action (MOA). The new EPA Guidelines for Carcinogen Risk Assessment [Guidelines for Carcinogen Risk Assessment, USEPA, 2005, EPA Publication No. EPA/630/P-03/001F] emphasize the use of MOA information in risk assessment and provide a framework to help identify a possible mutagenic and/or nonmutagenic MOA for potential adverse effects. An analysis of the available genetic toxicity data is now, more than ever, a key component to consider in the derivation of an MOA for characterizing observed adverse health outcomes such as cancer. We provide our perspective and a two-step strategy for evaluating genotoxicity data for optimal use in regulatory decision-making. The strategy includes integration of all available information and provides, first, for a WOE analysis as to whether a chemical is a mutagen, and second, whether an adverse health outcome is mediated via a mutagenic MOA.
Collapse
Affiliation(s)
- Kerry L Dearfield
- Office of the Science Advisor (8105R), US Environmental Protection Agency, Washington, District of Columbia, USA
| | | |
Collapse
|
4
|
Lambert IB, Singer TM, Boucher SE, Douglas GR. Detailed review of transgenic rodent mutation assays. Mutat Res 2005; 590:1-280. [PMID: 16081315 DOI: 10.1016/j.mrrev.2005.04.002] [Citation(s) in RCA: 252] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2005] [Revised: 04/04/2005] [Accepted: 04/12/2005] [Indexed: 11/17/2022]
Abstract
Induced chromosomal and gene mutations play a role in carcinogenesis and may be involved in the production of birth defects and other disease conditions. While it is widely accepted that in vivo mutation assays are more relevant to the human condition than are in vitro assays, our ability to evaluate mutagenesis in vivo in a broad range of tissues has historically been quite limited. The development of transgenic rodent (TGR) mutation models has given us the ability to detect, quantify, and sequence mutations in a range of somatic and germ cells. This document provides a comprehensive review of the TGR mutation assay literature and assesses the potential use of these assays in a regulatory context. The information is arranged as follows. (1) TGR mutagenicity models and their use for the analysis of gene and chromosomal mutation are fully described. (2) The principles underlying current OECD tests for the assessment of genotoxicity in vitro and in vivo, and also nontransgenic assays available for assessment of gene mutation, are described. (3) All available information pertaining to the conduct of TGR assays and important parameters of assay performance have been tabulated and analyzed. (4) The performance of TGR assays, both in isolation and as part of a battery of in vitro and in vivo short-term genotoxicity tests, in predicting carcinogenicity is described. (5) Recommendations are made regarding the experimental parameters for TGR assays, and the use of TGR assays in a regulatory context.
Collapse
Affiliation(s)
- Iain B Lambert
- Mutagenesis Section, Environmental Health Sciences Bureau, Healthy Environments and Consumer Safety Branch, 0803A, Health Canada, Ottawa, Ont., Canada K1A 0L2.
| | | | | | | |
Collapse
|
5
|
Honma M. Generation of loss of heterozygosity and its dependency on p53 status in human lymphoblastoid cells. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2005; 45:162-176. [PMID: 15688360 DOI: 10.1002/em.20113] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Loss of heterozygosity (LOH) is a critical event in the development of human cancers. LOH is thought to result from either a large deletion or recombination between homologous alleles during repair of DNA double-strand breaks (DSBs). These types of genetic alterations produce mutations in the TK gene mutation assay, which detects a wide mutational spectrum, ranging from point mutations to LOH-type mutations. TK6, a human lymphoblastoid cell line, is heterozygous for the thymidine kinase (TK) gene and has a wild-type p53 gene. The related cell lines, TK6-E6 and WTK-1, which are p53-deficient and p53-mutant (Ile237), respectively, are also heterozygous for the TK gene and LOH-type mutation can be detected in these cells. Therefore, comparative studies of TK mutation frequency and spectrum with these cell lines are useful for elucidating the role of p53 in generating LOH and maintaining genomic stability in human cells. We demonstrate here that LOH and its associated genomic instability strongly depend on the p53 status in these cells. TK6-E6 and WTK-1 are defective in the G1/S checkpoint and in apoptosis. Unrepaired DSBs that escape from the checkpoint can potentially initiate genomic instability after DNA replication, resulting in LOH and a variety of chromosome changes. Moreover, genomic instability is enhanced in WTK-1 cells. It is likely that the mutant p53 protein in WTK-1 cells increases LOH in a dominant-negative manner due to its abnormal recombination capacity. We discuss the mutator phenotype and genomic instability associated with p53 inactivation with the goal of elucidating the mechanisms of mutation and DNA repair in untargeted mutagenesis.
Collapse
Affiliation(s)
- Masamitsu Honma
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, Tokyo, Japan.
| |
Collapse
|
6
|
Schuettengruber B, Doetzlhofer A, Kroboth K, Wintersberger E, Seiser C. Alternate activation of two divergently transcribed mouse genes from a bidirectional promoter is linked to changes in histone modification. J Biol Chem 2003; 278:1784-93. [PMID: 12411446 DOI: 10.1074/jbc.m204843200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Thymidine kinase (TK) is a growth factor-inducible enzyme that is highly expressed in proliferating mammalian cells. Expression of mouse TK mRNA is controlled by transcriptional and posttranscriptional mechanisms including antisense transcription. Here we report the identification of a novel gene that is divergently transcribed from the bidirectional TK promoter. This gene encodes kynurenine formamidase (KF), an enzyme of the tryptophan metabolism. Whereas the TK gene is induced upon interleukin-2-mediated activation of resting T cells, the KF gene becomes simultaneously repressed. The TK promoter is regulated by E2F, SP1, histone acetyltransferases, and deacetylases. The binding site for the growth-regulated transcription factor E2F is beneficial for TK promoter activity but not required for KF expression. In contrast, the SP1 binding site is crucial for transcription in both directions. Inhibition of histone deacetylases by trichostatin A leads to increased histone acetylation at the TK/KF promoter and thereby to selective activation of the TK promoter and simultaneous shut-off of KF expression. Similarly, TK gene activation by interleukin-2 is linked to histone hyperacetylation, whereas KF expression correlates with reduced histone acetylation. The KF gene is the rare example of a mammalian gene whose expression is linked to histone hypoacetylation at its promoter.
Collapse
Affiliation(s)
- Bernd Schuettengruber
- Institute of Medical Biochemistry, Division of Molecular Biology, University of Vienna, Vienna Biocenter, Dr. Bohr-Gasse 9/2, A-1030 Vienna, Austria
| | | | | | | | | |
Collapse
|
7
|
Dobrovolsky VN, Bucci T, Heflich RH, Desjardins J, Richardson FC. Mice deficient for cytosolic thymidine kinase gene develop fatal kidney disease. Mol Genet Metab 2003; 78:1-10. [PMID: 12559842 DOI: 10.1016/s1096-7192(02)00224-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The thymidine kinase (Tk) gene codes for a cytosolic protein involved in the pyrimidine nucleotide salvage pathway. A functional Tk gene is not necessary for cells in culture, and a naturally occurring Tk deficient phenotype has not been described in humans or animal models. In order to determine the biological significance of the Tk gene, we created Tk(-/-) knockout (KO) mice through homologous recombination in mouse embryonic stem cells. Tk KO mice have shortened life spans compared with their wild-type or Tk heterozygous (HET) siblings. All Tk KO mice develop sclerosis of kidney glomeruli and die before one year of age of kidney failure. Among other changes in KO animals, the most consistent is a switch from exclusively mucous secretion to predominantly serous secretion in the sublingual salivary gland. HET parents can produce KO mice at a frequency approaching Mendelian inheritance. Other observations in KO animals include an elevated level of serum thymidine, a significant decrease in the cloning efficiency of splenic lymphocytes, an increase in the frequency of hypoxanthine guanine phosphoribosyl transferase gene mutant lymphocytes, and histological alteration in the lymphoid structure of the spleen. In addition, KO animals sporadically exhibit inflammation of the arteries, which taken together with the lymphocyte and spleen abnormalities, suggest an abnormal immune system. Alterations in Tk KO mice indicate that the pyrimidine nucleotide salvage pathway is indispensable in vivo.
Collapse
Affiliation(s)
- Vasily N Dobrovolsky
- National Center for Toxicological Research, Food and Drug Administration, Jefferson, AR, USA.
| | | | | | | | | |
Collapse
|
8
|
Dobrovolsky VN, Shaddock JG, Heflich RH. Mutagenicity of gamma-radiation, mitomycin C, and etoposide in the Hprt and Tk genes of Tk(+/-) mice. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2002; 39:342-347. [PMID: 12112386 DOI: 10.1002/em.10074] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The recently developed Tk(+/-) mouse detects in vivo somatic cell mutation in the endogenous, autosomal Tk gene. To evaluate the sensitivity of this model, we have treated Tk(+/-) mice with three agents that induce DNA damage by different mechanisms, and determined spleen lymphocyte mutant frequencies (MFs) in the autosomal Tk gene and in the X-linked Hprt gene. gamma-Radiation, which produces single- and double-strand breaks by nonspecific oxidative stress, efficiently increased Hprt MF, but not Tk MF. Mitomycin C, which produces bulky DNA monoadducts and crosslinks, was mutagenic in both the Hprt and Tk genes, but the response was greater in the Tk gene. An inhibitor of the ligase function of DNA topoisomerase II, etoposide, did not increase Hprt MF, and induced a small, but nonsignificant increase in Tk MF. Combined with previous data, the results indicate that the two genes are differentially sensitive to many agents, and that the Tk gene is more sensitive than the Hprt gene to some, but not all types of DNA damage.
Collapse
Affiliation(s)
- Vasily N Dobrovolsky
- Division of Genetic and Reproductive Toxicology, National Center for Toxicological Research, Jefferson, Arkansas 72079, USA
| | | | | |
Collapse
|
9
|
Abstract
The evolution of testing strategies and methods for identification of mutagenic agents is discussed, beginning with the concern over potential health and population effects of chemical mutagens in the late 1940s that led to the development of regulatory guidelines for mutagenicity testing in the 1970s and 1980s. Efforts to achieve international harmonization of mutagenicity testing guidelines are summarized, and current issues and needs in the field are discussed, including the need for quantitative methods of mutagenic risk assessment, dose-response thresholds, indirect mechanisms of mutagenicity, and the predictivity of mutagenicity assays for carcinogenicity in vivo. Speculation is offered about the future of mutagenicity testing, including possible near-term changes in standard test batteries and the longer-term roles of expression profiling of damage-response genes, in vivo mutagenicity testing methods, and models that better account for differences in metabolism between humans and laboratory model systems.
Collapse
Affiliation(s)
- J T MacGregor
- FDA Center for Drug Evaluation and Research, 5600 Fishers Lane, Rockville, MD 20857, USA.
| | | | | |
Collapse
|
10
|
Dobrovolsky VN, Casciano DA, Heflich RH. Tk+/- mouse model for detecting in vivo mutation in an endogenous, autosomal gene. Mutat Res 1999; 423:125-36. [PMID: 10029690 DOI: 10.1016/s0027-5107(98)00234-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Tk+/- transgenic mice were created using an embryonic stem cell line in which one allele of the endogenous thymidine kinase (Tk) gene was inactivated by targeted homologous recombination. Breeding Tk+/- parents produced viable Tk-/- knockout (KO) mice. Splenic lymphocytes from KO mice were used in reconstruction experiments for determining the conditions necessary for recovering Tk somatic cell mutants from Tk+/- mice. The cloning efficiency of KO lymphocytes was not affected by the toxic thymidine analogues 5-bromo-2'-deoxyuridine (BrdUrd) or trifluorothymidine (TFT), or by BrdUrd in the presence of lymphocytes from Tk+/- animals; however, it was easier to identify clones resistant to BrdUrd than to TFT when Tk+/- cells were present. Tk+/- mice were treated with vehicle or 100 mg/kg of N-ethyl-N-nitrosourea (ENU), and after 4 months, the frequency of Tk mutant lymphocytes was measured by resistance to BrdUrd. The frequency of Tk mutants was 22+/-5.9x10-6 in control animals and 80+/-31x10-6 in treated mice. In comparison, the frequency of Hprt mutant lymphocytes, as measured by resistance to 6-thioguanine, was 2.0+/-1.2x10-6 in control animals and 84+/-28x10-6 in the ENU-treated mice. Analysis of BrdUrd-resistant lymphocyte clones derived from the ENU-treated animals revealed point mutations in the non-targeted Tk allele. These results indicate that the selection of BrdUrd-resistant lymphocytes from Tk+/- mice may be used for assessing in vivo mutation in an endogenous, autosomal gene.
Collapse
Affiliation(s)
- V N Dobrovolsky
- Division of Genetic and Reproductive Toxicology, HFT-120, National Center for Toxicological Research, 3900 NCTR Road, Jefferson, AR 72079, USA.
| | | | | |
Collapse
|
11
|
Tindall KR, Tennant RW. Transgenic Rodent Models. Toxicology 1999. [DOI: 10.1016/b978-012473270-4/50068-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|