1
|
van der Flier S, van der Kwast T, Claassen C, Timmermans M, Brinkman A, Henzen-Logmans S, Foekens J, Dorssers L. Immunohistochemical Study of the BCAR1/p130Cas Protein in Non-Malignant and Malignant Human Breast Tissue. Int J Biol Markers 2018. [DOI: 10.1177/172460080101600303] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BCAR1/p130Cas is a docking protein involved in intracellular signaling pathways and in vitro resistance of estrogen-dependent breast cancer cells to antiestrogens. The BCAR1/p130Cas protein level in primary breast cancer cytosols was found to correlate with rapid recurrence of disease. A high BCAR1/p130Cas level was also associated with a higher likelihood of resistance to first-line tamoxifen treatment in patients with advanced breast cancer. Using antibodies raised against the rat p130Cas protein, we determined by immunohistochemical methods the BCAR1/p130Cas localization in primary breast carcinomas, in tumors of stromal origin, and in non-neoplastic breast tissues. The BCAR1/p130Cas protein was detected in the cytoplasm of non-malignant and neoplastic epithelial cells and in the vascular compartment of all tissue sections analyzed. Immunohistochemistry demonstrated variable intensity of BCAR1/p130Cas staining and variation in the proportion of BCAR1/p130Cas-positive epithelial tumor cells for the different breast carcinomas. Double immunohistochemical staining for BCAR1/p130Cas and estrogen receptor confirmed coexpression in non-malignant luminal epithelial cells and malignant breast tumor cells. The stromal cells in non-malignant tissues and tumor tissues as well as breast tumors of mesodermal origin did not stain for BCAR1/p130Cas. This immunohistochemical study demonstrates a variable expression of BCAR1/p130Cas in malignant and non-malignant breast epithelial cells, which may be of benefit for diagnostic purposes.
Collapse
Affiliation(s)
- S. van der Flier
- Department of Pathology/ Division of Molecular Biology, University Hospital Rotterdam/Daniel den Hoed Cancer Center, Rotterdam
- Josephine Nefkens Institute, University Hospital Rotterdam/Daniel den Hoed Cancer Center, Rotterdam
| | - T.H. van der Kwast
- Department of Pathology, University Hospital Rotterdam/Daniel den Hoed Cancer Center, Rotterdam
| | - C.J.C. Claassen
- Department of Pathology, University Hospital Rotterdam/Daniel den Hoed Cancer Center, Rotterdam
- Department of Medical Oncology/Division of Endocrine Oncology, University Hospital Rotterdam/Daniel den Hoed Cancer Center, Rotterdam
| | - M. Timmermans
- Department of Medical Oncology/Division of Endocrine Oncology, University Hospital Rotterdam/Daniel den Hoed Cancer Center, Rotterdam
| | - A. Brinkman
- Department of Pathology/ Division of Molecular Biology, University Hospital Rotterdam/Daniel den Hoed Cancer Center, Rotterdam
| | - S.C. Henzen-Logmans
- Department of Pathology, University Hospital Rotterdam/Daniel den Hoed Cancer Center, Rotterdam
- present address: N.V. Organon, Oss
| | - J.A. Foekens
- Department of Medical Oncology/Division of Endocrine Oncology, University Hospital Rotterdam/Daniel den Hoed Cancer Center, Rotterdam
| | - L.C.J. Dorssers
- Department of Pathology/ Division of Molecular Biology, University Hospital Rotterdam/Daniel den Hoed Cancer Center, Rotterdam
| |
Collapse
|
2
|
Makkinje A, Vanden Borre P, Near RI, Patel PS, Lerner A. Breast cancer anti-estrogen resistance 3 (BCAR3) protein augments binding of the c-Src SH3 domain to Crk-associated substrate (p130cas). J Biol Chem 2012; 287:27703-14. [PMID: 22711540 DOI: 10.1074/jbc.m112.389981] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The focal adhesion adapter protein p130(cas) regulates adhesion and growth factor-related signaling, in part through Src-mediated tyrosine phosphorylation of p130(cas). AND-34/BCAR3, one of three NSP family members, binds the p130(cas) carboxyl terminus, adjacent to a bipartite p130(cas) Src-binding domain (SBD) and induces anti-estrogen resistance in breast cancer cell lines as well as phosphorylation of p130(cas). Only a subset of the signaling properties of BCAR3, specifically augmented motility, are dependent upon formation of the BCAR3-p130(cas) complex. Using GST pull-down and immunoprecipitation studies, we show that among NSP family members, only BCAR3 augments the ability of p130(cas) to bind the Src SH3 domain through an RPLPSPP motif in the p130(cas) SBD. Although our prior work identified phosphorylation of the serine within the p130(cas) RPLPSPP motif, mutation of this residue to alanine or glutamic acid did not alter BCAR3-induced Src SH3 domain binding to p130(cas). The ability of BCAR3 to augment Src SH3 binding requires formation of a BCAR3-p130(cas) complex because mutations that reduce association between these two proteins block augmentation of Src SH3 domain binding. Similarly, in MCF-7 cells, BCAR3-induced tyrosine phosphorylation of the p130(cas) substrate domain, previously shown to be Src-dependent, was reduced by an R743A mutation that blocks BCAR3 association with p130(cas). Immunofluorescence studies demonstrate that BCAR3 expression alters the intracellular location of both p130(cas) and Src and that all three proteins co-localize. Our work suggests that BCAR3 expression may regulate Src signaling in a BCAR3-p130(cas) complex-dependent fashion by altering the ability of the Src SH3 domain to bind the p130(cas) SBD.
Collapse
Affiliation(s)
- Anthony Makkinje
- Department of Medicine, Section of Hematology/Oncology, Boston University School of Medicine and Boston Medical Center, Boston, Massachusetts 02118, USA
| | | | | | | | | |
Collapse
|
3
|
A novel inhibitor of focal adhesion signaling induces caspase-independent cell death in diffuse large B-cell lymphoma. Blood 2011; 118:4411-20. [PMID: 21868575 DOI: 10.1182/blood-2011-04-345181] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Focal adhesion (FA) proteins have been associated with transformation, migration, metastasis, and poor outcome in many neoplasias. We previously showed that these proteins were inhibited by E7123, a new celecoxib derivative with antitumor activity, in acute myeloid leukemia. However, little is known about FAs in diffuse large B cell lymphoma (DLBCL). This paper aimed to determine whether E7123 was effective against DLBCL and whether FAs were involved in its action. We evaluated the cytotoxicity and mechanism of action of E7123 and celecoxib in DLBCL cell lines. We also assessed the E7123 in vivo activity in a DLBCL xenograft model and studied FA signaling in primary DLBCL patient samples. We found that E7123 showed higher antitumor effect than celecoxib against DLBCL cells. Its mechanism of action involved deregulation of FA, AKT, and Mcl-1 proteins, a pathway that is activated in some patient samples, apoptosis-inducing factor release and induction of caspase-independent cell death. Moreover, E7123 showed suppression of in vivo tumor growth. These findings indicate that E7123 is effective against DLBCL in vitro and in vivo, with a mechanism of action that differs from that of most current therapies for this malignancy. Our results support further preclinical evaluation of E7123.
Collapse
|
4
|
Ilić N, Roberts TM. Comparing the roles of the p110α and p110β isoforms of PI3K in signaling and cancer. Curr Top Microbiol Immunol 2011; 347:55-77. [PMID: 20517719 DOI: 10.1007/82_2010_63] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Phosphatidylinositol-3-kinases (PI3K) are a family of enzymes that act downstream of cell surface receptors leading to activation of multiple signaling pathways regulating cellular growth, proliferation, motility, and survival. To date, most research efforts have focused on a group of PI3K-family enzymes termed class I, of which the most studied member is PI3Kα. PI3Kα is an oncogene frequently mutated in human cancer, as is the chief negative regulator of the pathway, the tumor suppressor PTEN. Recently, it has been suggested that tumors deficient for PTEN might depend on the function of another class I member, PI3Kβ, to sustain their transformed phenotype. Taken together, these findings provide a significant medical rationale to study the signaling cascades regulated by PI3Kα and PI3Kβ particularly in the context of their role in the development and maintenance of human cancer. Here, we summarize the current understanding of the upstream receptor regulation of the two PI3K isoforms and their roles in cancer as well as their functional requirements in downstream signaling cascades.
Collapse
Affiliation(s)
- Nina Ilić
- Department of Cancer Biology, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
5
|
Schuh NR, Guerrero MS, Schrecengost RS, Bouton AH. BCAR3 regulates Src/p130 Cas association, Src kinase activity, and breast cancer adhesion signaling. J Biol Chem 2009; 285:2309-17. [PMID: 19940159 DOI: 10.1074/jbc.m109.046631] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The nonreceptor protein-tyrosine kinase c-Src is frequently overexpressed and/or activated in a variety of cancers, including those of the breast. Several heterologous binding partners of c-Src have been shown to regulate its catalytic activity by relieving intramolecular autoinhibitory interactions. One such protein, p130(Cas) (Cas), is expressed at high levels in both breast cancer cell lines and breast tumors, providing a potential mechanism for c-Src activation in breast cancers. The Cas-binding protein BCAR3 (breast cancer antiestrogen resistance-3) is expressed at high levels in invasive breast cancer cell lines, and this molecule has previously been shown to coordinate with Cas to increase c-Src activity in COS-1 cells. In this study, we show for the first time using gain- and loss-of-function approaches that BCAR3 regulates c-Src activity in the endogenous setting of breast cancer cells. We further show that BCAR3 regulates the interaction between Cas and c-Src, both qualitatively as well as quantitatively. Finally, we present evidence that the coordinated activity of these proteins contributes to breast cancer cell adhesion signaling and spreading. Based on these data, we propose that the c-Src/Cas/BCAR3 signaling axis is a prominent regulator of c-Src activity, which in turn controls cell behaviors that lead to aggressive and invasive breast tumor phenotypes.
Collapse
Affiliation(s)
- Natasha R Schuh
- Department of Microbiology, University of Virginia Health System, Charlottesville, Virginia 22908, USA
| | | | | | | |
Collapse
|
6
|
Yadav SS, Miller WT. Cooperative activation of Src family kinases by SH3 and SH2 ligands. Cancer Lett 2007; 257:116-23. [PMID: 17719722 PMCID: PMC2045694 DOI: 10.1016/j.canlet.2007.07.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2007] [Revised: 07/06/2007] [Accepted: 07/10/2007] [Indexed: 11/21/2022]
Abstract
Src family nonreceptor tyrosine kinases are kept in a repressed state by intramolecular interactions involving the SH3 and SH2 domains of the enzymes. Ligands for these domains can displace the intramolecular associations and activate the kinases. Here, we carried out in vitro activation experiments with purified, down-regulated hematopoietic cell kinase (Hck), a Src family kinase. We show that SH3 and SH2 ligands act cooperatively to activate Src family kinases: the presence of one ligand lowers the concentration of the second ligand necessary for activation. To confirm the findings in intact cells, we studied Cas, a Src substrate that possesses SH2 and SH3 ligands. In contrast to wild-type Cas, mutant forms of Cas lacking the SH3 or SH2 ligands were unable to stimulate Src autophosphorylation when expressed in Cas-deficient fibroblasts. Cells expressing the Cas mutants also showed decreased amounts of activated Src at focal adhesions. The results suggest that proteins containing ligands for both SH3 and SH2 domains can produce a synergistic activation of Src family kinases.
Collapse
Affiliation(s)
| | - W. Todd Miller
- * To whom correspondence should be addressed: Dept. of Physiology and Biophysics, Basic Science Tower, T-6, School of Medicine, SUNY at Stony Brook, Stony Brook, NY 11794-8661, Tel.: 631-444-3533; Fax: 631-444-3432, E-mail:
| |
Collapse
|
7
|
Casanova I, Parreño M, Farré L, Guerrero S, Céspedes MV, Pavon MA, Sancho FJ, Marcuello E, Trias M, Mangues R. Celecoxib induces anoikis in human colon carcinoma cells associated with the deregulation of focal adhesions and nuclear translocation of p130Cas. Int J Cancer 2006; 118:2381-9. [PMID: 16353145 DOI: 10.1002/ijc.21662] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Celecoxib, a selective cyclooxygenase-2 (COX-2) inhibitor, is effective as chemopreventive against colon cancer and it is the only nonsteoroidal antiinflammatory drug approved by the FDA for adjuvant therapy in patients with familial adenomatous polyposis. It is also being evaluated, within Phase II and III clinical trials, in combination with standard chemotherapy to treat sporadic colorectal cancer. Nevertheless, its antitumor mechanism of action is still not fully understood. In this study, we have evaluated the in vitro growth inhibitory effect of celecoxib in colon carcinoma cells and analyzed its mechanism of action. We report that the deregulation of the focal adhesion assembly protein Crk-associated substrate 130 kDa (p130Cas) by celecoxib plays a relevant role in the cytotoxic effect of this drug. Thus, celecoxib induces the proteolysis of p130Cas and the nuclear translocation of the 31 kDa generated fragment leading to apoptosis. Furthermore, overexpression of wild-type p130Cas reverts, in part, the growth inhibitory effect of celecoxib. In contrast, FAK and AKT do not appear to be involved in this activity. Our data suggest, for the first time, that the antitumor mechanism of action of celecoxib includes the induction of anoikis, an effect that is not related to COX-2 inhibition. Besides providing new insights into the antitumor effect of celecoxib, this novel mechanism of action holds potential relevance in drug development. Indeed, our results open the possibility to develop new celecoxib derivatives that induce anoikis without COX-2 inhibition so as to avoid the cardiovascular toxicity recently described for the COX-2 inhibitors.
Collapse
Affiliation(s)
- Isolda Casanova
- Laboratori d'Investigació Gastrointestinal de l'Institut de Recerca of the Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Riggins RB, Bouton AH, Liu MC, Clarke R. Antiestrogens, aromatase inhibitors, and apoptosis in breast cancer. VITAMINS AND HORMONES 2005; 71:201-37. [PMID: 16112269 DOI: 10.1016/s0083-6729(05)71007-4] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Antiestrogens have been the therapeutic agents of choice for breast cancer patients whose tumors express estrogen receptors, regardless of menopausal status. Unfortunately, many patients will eventually develop resistance to these drugs. Antiestrogens primarily act by preventing endogenous estrogen from activating estrogen receptors and promoting cell growth, which can ultimately lead to tumor cell death. Understanding the mechanisms by which antiestrogens cause cell death or apoptosis is critical to our efforts to develop ways to circumvent resistance. This article focuses on antiestrogen-induced apoptosis both in vitro and in vivo. We review the clinical utility of both antiestrogens and aromatase inhibitors and their apoptogenic mechanisms in cell culture models. Among the key signaling components discussed are the roles of Bcl-2 family members, several cytokines, and their receptors, p53, nuclear factor kappa B (NFkappaB), IRF-1, phosphatidylinositol 3-kinase (PI3K)/Akt, and specific caspases. Finally, we discuss the evidence supporting a role for apoptotic defects in acquired and de novo antiestrogen resistance.
Collapse
Affiliation(s)
- Rebecca B Riggins
- Department of Oncology and Physiology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | | | | | | |
Collapse
|
9
|
Riggins RB, Quilliam LA, Bouton AH. Synergistic promotion of c-Src activation and cell migration by Cas and AND-34/BCAR3. J Biol Chem 2003; 278:28264-73. [PMID: 12740391 DOI: 10.1074/jbc.m303535200] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The adapter molecule p130Cas (Cas) plays a role in cellular processes such as proliferation, survival, cell adhesion, and migration. The ability of Cas to promote migration has been shown to be dependent upon its carboxyl terminus, which contains a bipartite binding site for the protein tyrosine kinase c-Src (Src). The association between Src and Cas enhances Src kinase activity, and like Cas, Src plays an important role in cell proliferation and migration. In this study, we show that Src and Cas function cooperatively to promote cell migration in a manner that depends upon kinase-active Src. Another carboxyl-terminal binding partner of Cas, AND-34/BCAR3 (AND-34), functions synergistically with Cas to enhance Src activation and cell migration. The carboxyl-terminal guanine nucleotide exchange factor domain of AND-34, as well as the activity of its putative target Rap1, contribute to these events. A mechanism through which AND-34 may regulate Cas-dependent cell migration is suggested by the finding that Cas becomes redistributed from focal adhesions to lamellipodia located at the leading edge of AND-34 overexpressing cells. These data thus provide insight into how Cas and AND-34 may function together to stimulate Src signaling pathways and promote cell migration.
Collapse
Affiliation(s)
- Rebecca B Riggins
- Department of Microbiology and Cancer Center, University of Virginia Health System, Charlottesville, Virginia 22908-0735, USA
| | | | | |
Collapse
|
10
|
Huang J, Hamasaki H, Nakamoto T, Honda H, Hirai H, Saito M, Takato T, Sakai R. Differential regulation of cell migration, actin stress fiber organization, and cell transformation by functional domains of Crk-associated substrate. J Biol Chem 2002; 277:27265-72. [PMID: 12011056 DOI: 10.1074/jbc.m203063200] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The Crk-associated substrate (Cas) is a unique docking protein that possesses a repetitive stretch of tyrosine-containing motifs and an Src homology 3 (SH3) domain. Embryonic fibroblasts lacking Cas demonstrated resistance to Src-induced transformation along with impaired actin bundling and cell motility, indicating critical roles of Cas in actin cytoskeleton organization, cell migration, and oncogenesis. To gain further insight into roles of each domain of Cas in these processes, a compensation assay was performed by expressing a series of Cas mutants in Cas-deficient fibroblasts. The results showed that motifs containing YDxP were indispensable for actin cytoskeleton organization and cell migration, suggesting that CrkII-mediated signaling regulates these biological processes. The C-terminal Src-binding domain played essential roles in cell migration and membrane localization of Cas, although it was dispensable in the organization of actin stress fibers. Furthermore, the Src-binding domain was also a prerequisite for Src transformation possibly, because of its crucial role in the phosphorylation of Cas during transformation. Overall, differential uses of the Cas domains in individual biological processes were demonstrated.
Collapse
Affiliation(s)
- Jinhong Huang
- Cancer Signal Transduction Project, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Roy S, Ruest PJ, Hanks SK. FAK regulates tyrosine phosphorylation of CAS, paxillin, and PYK2 in cells expressing v-Src, but is not a critical determinant of v-Src transformation. J Cell Biochem 2002; 84:377-88. [PMID: 11787067 DOI: 10.1002/jcb.10025] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
FAK (focal adhesion kinase) is a nonreceptor protein-tyrosine kinase activated by tyrosine phosphorylation following integrin-mediated cell adhesion. Oncogenic Src promotes enhanced and deregulated FAK tyrosine phosphorylation which has been proposed to contribute to altered cell growth and/or morphological properties associated with transformation. In this study, an inducible FAK expression system was used to study the potential role of FAK in v-Src transformation. Our results portray FAK as a major v-Src substrate that also plays a role in recruiting v-Src to phosphorylate substrates CAS (Crk-associated substrate) and paxillin. The FAK Tyr-397 autophosphorylation site was necessary for this scaffolding function, but was not required for v-Src to stably interact with and phosphorylate FAK. FAK was also shown to negatively regulate v-Src mediated phosphorylation of the FAK-related kinase PYK2. Despite these effects, FAK does not play an essential role in targeting v-Src to major cellular substrates including CAS and paxillin. Nor is FAK strictly required to achieve the altered morphological and growth characteristics of v-Src transformed cells.
Collapse
Affiliation(s)
- Shyamali Roy
- Department of Cell Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | | | |
Collapse
|
12
|
Ruest PJ, Shin NY, Polte TR, Zhang X, Hanks SK. Mechanisms of CAS substrate domain tyrosine phosphorylation by FAK and Src. Mol Cell Biol 2001; 21:7641-52. [PMID: 11604500 PMCID: PMC99935 DOI: 10.1128/mcb.21.22.7641-7652.2001] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Tyrosine phosphorylation of CAS (Crk-associated substrate, p130(Cas)) has been implicated as a key signaling step in integrin control of normal cellular behaviors, including motility, proliferation, and survival. Aberrant CAS tyrosine phosphorylation may contribute to cell transformation by certain oncoproteins, including v-Crk and v-Src, and to tumor growth and metastasis. The CAS substrate domain (SD) contains 15 Tyr-X-X-Pro motifs, which are thought to represent the major tyrosine phosphorylation sites and to function by recruiting downstream signaling effectors, including c-Crk and Nck. CAS makes multiple interactions, direct and indirect, with the tyrosine kinases Src and focal adhesion kinase (FAK), and as a result of this complexity, several plausible models have been proposed for the mechanism of CAS-SD phosphorylation. The objective of this study was to provide experimental tests of these models in order to determine the most likely mechanism(s) of CAS-SD tyrosine phosphorylation by FAK and Src. In vitro kinase assays indicated that FAK has a very poor capacity to phosphorylate CAS-SD, relative to Src. However, FAK expression along with Src was found to be important for achieving high levels of CAS tyrosine phosphorylation in COS-7 cells, as well as recovery of CAS-associated Src activity toward the SD. Structure-functional studies for both FAK and CAS further indicated that FAK plays a major role in regulating CAS-SD phosphorylation by acting as a docking or scaffolding protein to recruit Src to phosphorylate CAS, while a secondary FAK-independent mechanism involves Src directly bound to the CAS Src-binding domain (SBD). Our results do not support models in which FAK either phosphorylates CAS-SD directly or phosphorylates CAS-SBD to promote Src binding to this site.
Collapse
Affiliation(s)
- P J Ruest
- Department of Cell Biology, Vanderbilt University School of Medicine, Nahville, Tennessee 37232, USA
| | | | | | | | | |
Collapse
|
13
|
Bouton AH, Riggins RB, Bruce-Staskal PJ. Functions of the adapter protein Cas: signal convergence and the determination of cellular responses. Oncogene 2001; 20:6448-58. [PMID: 11607844 DOI: 10.1038/sj.onc.1204785] [Citation(s) in RCA: 170] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Since Cas was first identified as a highly phosphorylated 130 kilodalton protein that associated with the v-Src and v-Crk-oncoproteins, considerable effort has been made to determine its function. Its predicted role as a scaffolding molecule based on its domain structure has been largely confirmed. Through its ability to undergo rapid changes in phosphorylation, subcellular localization and association with heterologous proteins, Cas may spatially and temporally regulate the function of its binding partners. Numerous proteins have been identified that bind to Cas in vitro and/or in vivo, but in only a few cases is there an understanding of how Cas may function in these protein complexes. To date, Cas-Crk and Cas-Src complexes have been most frequently implicated in Cas function, particularly in regards to processes involving regulation of the actin cytoskeleton and proliferation. These and other Cas protein complexes contribute to the critical role of Cas in cell adhesion, migration, proliferation and survival of normal cycling cells. However, under conditions in which these processes are deregulated, Cas appears to play a role in oncogenic transformation and perhaps metastasis. Therefore, in its capacity as an adapter protein, Cas serves as a point of convergence for many distinct signaling inputs, ultimately contributing to the generation of specific cellular responses.
Collapse
Affiliation(s)
- A H Bouton
- Department of Microbiology, University of Virginia School of Medicine, Box 800734, Charlottesville, Virginia VA 22908, USA.
| | | | | |
Collapse
|
14
|
Bruce-Staskal PJ, Bouton AH. PKC-dependent activation of FAK and src induces tyrosine phosphorylation of Cas and formation of Cas-Crk complexes. Exp Cell Res 2001; 264:296-306. [PMID: 11262186 DOI: 10.1006/excr.2000.5137] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
SH-SY5Y neuroblastoma cells are a well-characterized model for studying the induction of neuronal differentiation. TPA treatment of these cells induces cytoskeletal rearrangements that ultimately result in neurite extension. However, the signaling pathways that precede these changes are poorly understood. Other investigators have shown that TPA treatment of SH-SY5Y cells results in increased tyrosine phosphorylation of cytoskeletal-associated proteins, including the adapter protein Cas. In this report, we examine the events upstream and downstream of Cas phosphorylation. We show that TPA treatment induces the PKC-dependent association of tyrosine-phosphorylated Cas with Crk. The activity of two protein tyrosine kinases, Src and FAK, was shown to be necessary and sufficient for TPA-induced Cas phosphorylation. We propose that the PKC-dependent phosphorylation of Cas by Src and FAK promotes the establishment of Cas-Crk complexes and that these interactions may play an important role in regulating the actin cytoskeleton during neuronal differentiation.
Collapse
Affiliation(s)
- P J Bruce-Staskal
- Department of Microbiology, University of Virginia School of Medicine, Charlottesville, Virginia, 22908-0734, USA
| | | |
Collapse
|
15
|
Weidow CL, Black DS, Bliska JB, Bouton AH. CAS/Crk signalling mediates uptake of Yersinia into human epithelial cells. Cell Microbiol 2000; 2:549-60. [PMID: 11207607 DOI: 10.1046/j.1462-5822.2000.00079.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Uptake of Yersinia pseudotuberculosis into mammalian cells involves engagement of beta1 integrin receptors by the bacterial protein invasin. This triggers a host response that involves tyrosine phosphorylation of proteins and the induction of actin rearrangements that lead to cellular uptake of bacteria. In this report, we show that the focal adhesion protein CAS plays an important role in Yersinia uptake, and that its function is linked to the phosphorylation-dependent interaction between CAS and Crk. These studies demonstrate that Yersinia binding to host cell receptors initiates a cascade of events involving tyrosine phosphorylation of CAS, subsequent formation of functional CAS-Crk complexes and the activity of the small GTP-binding protein Rac1. The delineation of this pathway lends support for a model in which Yersinia uptake into human epithelial cells is dependent upon aspects of host signalling pathways that govern actin cytoskeleton remodelling and cell migration.
Collapse
Affiliation(s)
- C L Weidow
- Department of Microbiology and Cancer Center, University of Virginia Health System, Charlottesville 22908-0734, USA
| | | | | | | |
Collapse
|
16
|
Burnham MR, Bruce-Staskal PJ, Harte MT, Weidow CL, Ma A, Weed SA, Bouton AH. Regulation of c-SRC activity and function by the adapter protein CAS. Mol Cell Biol 2000; 20:5865-78. [PMID: 10913170 PMCID: PMC86064 DOI: 10.1128/mcb.20.16.5865-5878.2000] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
SRC family kinases play essential roles in a variety of cellular functions, including proliferation, survival, differentiation, and apoptosis. The activities of these kinases are regulated by intramolecular interactions and by heterologous binding partners that modulate the transition between active and inactive structural conformations. p130(CAS) (CAS) binds directly to both the SH2 and SH3 domains of c-SRC and therefore has the potential to structurally alter and activate this kinase. In this report, we demonstrate that overexpression of full-length CAS in COS-1 cells induces c-SRC-dependent tyrosine phosphorylation of multiple endogenous cellular proteins. A carboxy-terminal fragment of CAS (CAS-CT), which contains the c-SRC binding site, was sufficient to induce c-SRC-dependent protein tyrosine kinase activity, as measured by tyrosine phosphorylation of cortactin, paxillin, and, to a lesser extent, focal adhesion kinase. A single amino acid substitution located in the binding site for the SRC SH3 domain of CAS-CT disrupted CAS-CT's interaction with c-SRC and inhibited its ability to induce tyrosine phosphorylation of cortactin and paxillin. Murine C3H10T1/2 fibroblasts that expressed elevated levels of tyrosine phosphorylated CAS and c-SRC-CAS complexes exhibited an enhanced ability to form colonies in soft agar and to proliferate in the absence of serum or growth factors. CAS-CT fully substituted for CAS in mediating growth in soft agar but was less effective in promoting serum-independent growth. These data suggest that CAS plays an important role in regulating specific signaling pathways governing cell growth and/or survival, in part through its ability to interact with and modulate the activity of c-SRC.
Collapse
Affiliation(s)
- M R Burnham
- Department of Microbiology and Cancer Center, Health Sciences Center, University of Virginia, Charlottesville, Virginia 22908, Trinity College, Dublin 2, Ireland.
| | | | | | | | | | | | | |
Collapse
|
17
|
Donaldson JC, Dempsey PJ, Reddy S, Bouton AH, Coffey RJ, Hanks SK. Crk-associated substrate p130(Cas) interacts with nephrocystin and both proteins localize to cell-cell contacts of polarized epithelial cells. Exp Cell Res 2000; 256:168-78. [PMID: 10739664 DOI: 10.1006/excr.2000.4822] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Crk-associated substrate (p130(Cas), Cas) is a docking protein first recognized as having elevated phosphotyrosine content in mammalian cells transformed by v-Src and v-Crk oncoproteins. Subsequent studies have implicated Cas in the control of normal cell behavior through its roles in integrin-mediated signal transduction and organization of the actin cytoskeleton at sites of cell adhesion. In this study, we sought to gain new insight into normal Cas function by identifying previously unrecognized interacting proteins. A yeast two-hybrid screen using the C-terminal region of Cas as a bait identified the Src homology 3 (SH3) domain of the mouse "nephrocystin" protein-orthologous to a human protein whose loss of function leads to the cystic kidney disease familial juvenile nephronophthisis. The putative full-length mouse and partial canine nephrocystin sequences were deduced from cDNA clones. Additional studies using epitope-tagged mouse nephrocystin indicated that nephrocystin and Cas can interact in mammalian cells and revealed that both proteins prominently localize at or near sites of cell-cell contact in polarized Madin-Darby canine kidney epithelial cells. Our findings provide novel insight into the normal cellular activities regulated by both Cas and nephrocystin, and raise the possibility that these proteins have a related function in polarized epithelial cells.
Collapse
Affiliation(s)
- J C Donaldson
- Department of Cell Biology, Vanderbilt University School of Medicine, 1161 21st Avenue South, Nashville, Tennessee 37232, USA
| | | | | | | | | | | |
Collapse
|
18
|
Abstract
Cellular morphology is determined by the organization of the intracellular actin cytoskeleton, which is influenced by external and internal cues. Focal adhesions are sites at which the actin cytoskeleton is linked to the extracellular matrix by integrin receptor complexes. In addition to providing structural tethering points for cells, integrin receptor complexes transduce signals that influence a broad range of cellular processes, including migration, proliferation, transformation and apoptosis. The Cas proteins (p130Cas, HEF1/Cas-L and Efs/Sin), a family of docking proteins containing multiple interaction domains, are important components of integrin receptor signalling and have been implicated in all of these processes.
Collapse
Affiliation(s)
- G M O'Neill
- Fox Chase Cancer Center, Division of Basic Science, 7701 Burholme Avenue, Philadelphia, PA 19111, USA
| | | | | |
Collapse
|