1
|
Mogielnicka-Brzozowska M, Cichowska AW. Molecular Biomarkers of Canine Reproductive Functions. Curr Issues Mol Biol 2024; 46:6139-6168. [PMID: 38921038 PMCID: PMC11202846 DOI: 10.3390/cimb46060367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/05/2024] [Accepted: 06/12/2024] [Indexed: 06/27/2024] Open
Abstract
The aim of the current study is to review potential molecular biomarker substances selected so far as useful for assessing the quality of dog semen. Proteins, lipids, carbohydrates, and ions can serve as molecular biomarkers of reproductive functions (BRFs) for evaluating male reproductive health and identifying potential risk factors for infertility or reproductive disorders. Evaluation of BRF levels in semen samples or reproductive tissues may provide insights into the underlying causes of infertility, such as impaired sperm function, abnormal sperm-egg interaction, or dysfunction of the male reproductive tract. Molecular biomarker proteins may be divided into two groups: proteins that are well-studied, such as A-kinase anchoring proteins (AKAPs), albumins (ALBs), alkaline phosphatase (ALPL), clusterin (CLU), canine prostate-specific esterase (CPSE), cysteine-rich secretory protein 2 (CRISP2), lactotransferrin (LTF), metalloproteinases (MMPs), and osteopontin (OPN) and proteins that are not well-studied. Non-protein markers include lipid-based substances (fatty acids, phosphatidylcholine), carbohydrates (glycosaminoglycans), and ions (zinc, calcium). Assessing the levels of BRFs in semen samples may provide valuable information for breeding management and reproductive assessments in dogs. This review systematizes current knowledge that could serve as a starting point for developing practical tests with the use of biomarkers of canine reproductive functions and their predictive value for assisted reproductive technique outcomes and semen preservation.
Collapse
Affiliation(s)
- Marzena Mogielnicka-Brzozowska
- Department of Animal Biochemistry and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 5, 10-719 Olsztyn, Poland
| | | |
Collapse
|
2
|
Cormier N, Worsham AE, Rich KA, Hardy DM. SMA20/PMIS2 Is a Rapidly Evolving Sperm Membrane Alloantigen with Possible Species-Divergent Function in Fertilization. Int J Mol Sci 2024; 25:3652. [PMID: 38612464 PMCID: PMC11011635 DOI: 10.3390/ijms25073652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/05/2024] [Accepted: 03/19/2024] [Indexed: 04/14/2024] Open
Abstract
Immunodominant alloantigens in pig sperm membranes include 15 known gene products and a previously undiscovered Mr 20,000 sperm membrane-specific protein (SMA20). Here we characterize SMA20 and identify it as the unannotated pig ortholog of PMIS2. A composite SMA20 cDNA encoded a 126 amino acid polypeptide comprising two predicted transmembrane segments and an N-terminal alanine- and proline (AP)-rich region with no apparent signal peptide. The Northern blots showed that the composite SMA20 cDNA was derived from a 1.1 kb testis-specific transcript. A BLASTp search retrieved no SMA20 match from the pig genome, but it did retrieve a 99% match to the Pmis2 gene product in warthog. Sequence identity to predicted PMIS2 orthologs from other placental mammals ranged from no more than 80% overall in Cetartiodactyla to less than 60% in Primates, with the AP-rich region showing the highest divergence, including, in the extreme, its absence in most rodents, including the mouse. SMA20 immunoreactivity localized to the acrosome/apical head of methanol-fixed boar spermatozoa but not live, motile cells. Ultrastructurally, the SMA20 AP-rich domain immunolocalized to the inner leaflet of the plasma membrane, the outer acrosomal membrane, and the acrosomal contents of ejaculated spermatozoa. Gene name search failed to retrieve annotated Pmis2 from most mammalian genomes. Nevertheless, individual pairwise interrogation of loci spanning Atp4a-Haus5 identified Pmis2 in all placental mammals, but not in marsupials or monotremes. We conclude that the gene encoding sperm-specific SMA20/PMIS2 arose de novo in Eutheria after divergence from Metatheria, whereupon rapid molecular evolution likely drove the acquisition of a species-divergent function unique to fertilization in placental mammals.
Collapse
Affiliation(s)
- Nathaly Cormier
- Department of Biological Sciences, University of Wisconsin-Whitewater, Whitewater, WI 53190, USA
| | - Asha E. Worsham
- Department of Cell Biology & Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (A.E.W.); (K.A.R.)
| | - Kinsey A. Rich
- Department of Cell Biology & Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (A.E.W.); (K.A.R.)
| | - Daniel M. Hardy
- Department of Cell Biology & Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (A.E.W.); (K.A.R.)
| |
Collapse
|
3
|
Zhang M, Chiozzi RZ, Bromfield EG, Heck AJR, Helms JB, Gadella BM. Characterization of acrosin and acrosin binding protein as novel CRISP2 interacting proteins in boar spermatozoa. Andrology 2023; 11:1460-1471. [PMID: 36815564 PMCID: PMC10947329 DOI: 10.1111/andr.13413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 02/07/2023] [Accepted: 02/12/2023] [Indexed: 02/24/2023]
Abstract
BACKGROUND Previously, we reported that cysteine-rich secretory protein 2 is involved in high molecular weight complexes in boar spermatozoa. These cysteine-rich secretory protein 2protein complexes are formed at the last phase of sperm formation in the testis and play a role in sperm shaping and functioning. OBJECTIVES This study aimed to identify cysteine-rich secretory protein 2 interacting partners. These binding partner interactions were investigated under different conditions, namely, non-capacitating conditions, after the induction of in vitro sperm capacitation and subsequently during an ionophore A23187-induced acrosome reaction. MATERIALS AND METHODS The incubated pig sperm samples were subjected to protein extraction. Extracted proteins were subjected to blue native gel electrophoresis and native immunoblots. Immunoreactive gel bands were excised and subjected to liquid chromatography-mass spectrometry (LC-MS) analysis for protein identification. Protein extracts were also subjected to CRISP2 immunoprecipitation and analyzed by LC-MS for protein identification. The most prominent cystein-rich secretory protein 2 interacting proteins that appeared in both independent LC-MS analyses were studied with a functional in situ proximity interaction assay to validate their property to interact with cystein-rich secretory protein 2 in pig sperm. RESULTS Blue native gel electrophoresis and native immunoblots revealed that cystein-rich secretory protein 2 was present within a ∼150 kDa protein complex under all three conditions. Interrogation of cystein-rich secretory-protein 2-immunoreactive bands from blue native gels as well as cystein-rich secretory protein 2 immunoprecipitated products using mass spectrometry consistently revealed that, beyond cystein-rich secretory protein 2, acrosin and acrosin binding protein were among the most abundant interacting proteins and did interact under all three conditions. Co-immunoprecipitation and immunoblotting indicated that cystein-rich secretory protein 2 interacted with pro-acrosin (∼53 kDa) and Aacrosin binding protein under all three conditions and additionally to acrosin (∼35 kDa) after capacitation and the acrosome reaction. The colocalization of these interacting proteins with cystein-rich secretory protein 2 was assessed via in situ proximity ligation assays. The colocalization signal of cystein-rich secretory protein 2 and acrosin in the acrosome seemed dispersed after capacitation but was consistently present in the sperm tail under all conditions. The fluorescent foci of cystein-rich secretory protein 2 and acrsin binding protein colocalization appeared to be redistributed within the sperm head from the anterior acrosome to the post-acrosomal sheath region upon capacitation. DISCUSSION AND CONCLUSION These results suggest that CRISP2 may act as a scaffold for protein complex formation and dissociation to ensure the correct positioning of proteins required for the acrosome reaction and zona pellucida penetration.
Collapse
Affiliation(s)
- Min Zhang
- Department of Biomolecular Health SciencesFaculty of Veterinary Medicine, Utrecht UniversityUtrechtThe Netherlands
| | - Riccardo Zenezini Chiozzi
- Biomolecular Mass Spectrometry and ProteomicsBijvoet Centre for Biomolecular Research and Utrecht Institute for Pharmaceutical SciencesUtrecht UniversityUtrechtThe Netherlands
- Netherlands Proteomics CentreUtrechtThe Netherlands
| | - Elizabeth G Bromfield
- Department of Biomolecular Health SciencesFaculty of Veterinary Medicine, Utrecht UniversityUtrechtThe Netherlands
- Priority Research Centre for Reproductive ScienceSchool of Environmental and Life Sciences, Discipline of Biological Sciences, University of NewcastleCallaghanNew South WalesAustralia
| | - Albert JR Heck
- Biomolecular Mass Spectrometry and ProteomicsBijvoet Centre for Biomolecular Research and Utrecht Institute for Pharmaceutical SciencesUtrecht UniversityUtrechtThe Netherlands
- Netherlands Proteomics CentreUtrechtThe Netherlands
| | - J Bernd Helms
- Department of Biomolecular Health SciencesFaculty of Veterinary Medicine, Utrecht UniversityUtrechtThe Netherlands
| | - Bart M Gadella
- Department of Biomolecular Health SciencesFaculty of Veterinary Medicine, Utrecht UniversityUtrechtThe Netherlands
| |
Collapse
|
4
|
Cichowska AW, Wisniewski J, Bromke MA, Olejnik B, Mogielnicka-Brzozowska M. Proteome Profiling of Canine Epididymal Fluid: In Search of Protein Markers of Epididymal Sperm Motility. Int J Mol Sci 2023; 24:14790. [PMID: 37834239 PMCID: PMC10573609 DOI: 10.3390/ijms241914790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/21/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
Sperm maturation in the epididymis is based on interactions with proteins from epididymal fluid (EF). The aim of the study was to profile canine EF proteome and investigate correlations between EF protein content and epididymal spermatozoa (ES) motion parameters. Twenty-three male dogs were divided into two groups: good sperm motility (GSM) and poor sperm motility (PSM). The total motility and progressive motility differed significantly (p = 0.031; p < 0.001, respectively) between the GSM group and the PSM group. The semen samples were centrifuged to separate the EF apart from the ES. The canine EF proteins were analyzed using nano-liquid chromatography, which was coupled with quadrupole time-of-flight mass spectrometry (NanoUPLC-Q-TOF/MS) and bioinformatic tools for the first time. A total of 915 proteins were identified (GSM-506; PSM-409, respectively). UniProt identification resulted in six unique proteins (UPs) in the GSM group of dogs and four UPs in the PSM group. A semi-quantitative analysis showed a higher abundance (p < 0.05) of four differentially expressed proteins in the GSM group (ALB, CRISP2, LCNL1, PTGDS). Motility-dependent variations were detected in the EF proteome and were related to important metabolic pathways, which might suggest that several proteins could be potential ES motility biomarkers.
Collapse
Affiliation(s)
- Aleksandra W. Cichowska
- Department of Animal Biochemistry and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 5, 10-719 Olsztyn, Poland
| | - Jerzy Wisniewski
- Department of Biochemistry, Molecular Biology and Biotechnology, Wroclaw University of Science and Technology, Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Mariusz A. Bromke
- Department of Biochemistry and Immunochemistry, Wroclaw Medical University, Chalubinskiego 10, 50-368 Wroclaw, Poland
| | - Beata Olejnik
- Department of Biochemistry and Immunochemistry, Wroclaw Medical University, Chalubinskiego 10, 50-368 Wroclaw, Poland
| | - Marzena Mogielnicka-Brzozowska
- Department of Animal Biochemistry and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 5, 10-719 Olsztyn, Poland
| |
Collapse
|
5
|
Zmudzinska A, Wisniewski J, Mlynarz P, Olejnik B, Mogielnicka-Brzozowska M. Age-Dependent Variations in Functional Quality and Proteomic Characteristics of Canine (Canis lupus familiaris) Epididymal Spermatozoa. Int J Mol Sci 2022; 23:ijms23169143. [PMID: 36012418 PMCID: PMC9409041 DOI: 10.3390/ijms23169143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/11/2022] [Accepted: 08/14/2022] [Indexed: 12/01/2022] Open
Abstract
Increased male age is associated with a significant reduction in semen quality. Little is known about the sperm proteome changes resulting from the aging process. This study aimed to investigate the relationship between the functional quality and proteome of epididymal spermatozoa of dogs that were differing in age. The study was conducted on 30 male dogs that were divided into three age groups. G1—12 to 41 months old, G2—42 to 77 months old, and G3—78 to 132 months old. The sperm samples were assessed using a computer-assisted semen analysis (CASA). The epididymal sperm proteins were analyzed using gel electrophoresis (SDS-PAGE), nano-liquid chromatography coupled to quadrupole time of flight mass spectrometry (NanoUPLC-Q-TOF/MS) and bioinformatic tools. The sperm quality parameters were significantly lower in older dogs. NanoUPLC-Q-TOF/MS identification resulted in 865 proteins that were found in the G1, 472 in G2, and 435 in G3. There were seven proteins that were present in all three age groups, and four of them (ACTB, CE10, NPC2, CRISP2) showed significant changes among the studied groups. Age-dependent variations were detected in the sperm proteome composition and were related to important metabolite pathways, which might suggest that several proteins are implicated in sperm maturation and could be potential aging biomarkers.
Collapse
Affiliation(s)
- Anna Zmudzinska
- Department of Animal Biochemistry and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 5, 10-719 Olsztyn, Poland
| | - Jerzy Wisniewski
- Department of Biochemistry, Molecular Biology and Biotechnology, Wroclaw University of Science and Technology, Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Piotr Mlynarz
- Department of Biochemistry, Molecular Biology and Biotechnology, Wroclaw University of Science and Technology, Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Beata Olejnik
- Department of Biochemistry and Immunochemistry, Wroclaw Medical University, Chalubinskiego 10, 50-368 Wroclaw, Poland
| | - Marzena Mogielnicka-Brzozowska
- Department of Animal Biochemistry and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 5, 10-719 Olsztyn, Poland
- Correspondence: ; Tel.: +48-89-524-5259
| |
Collapse
|
6
|
Roberts EK, Tardif S, Wright EA, Platt RN, Bradley RD, Hardy DM. Rapid divergence of a gamete recognition gene promoted macroevolution of Eutheria. Genome Biol 2022; 23:155. [PMID: 35821049 PMCID: PMC9275260 DOI: 10.1186/s13059-022-02721-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 06/29/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Speciation genes contribute disproportionately to species divergence, but few examples exist, especially in vertebrates. Here we test whether Zan, which encodes the sperm acrosomal protein zonadhesin that mediates species-specific adhesion to the egg's zona pellucida, is a speciation gene in placental mammals. RESULTS Genomic ontogeny reveals that Zan arose by repurposing of a stem vertebrate gene that was lost in multiple lineages but retained in Eutheria on acquiring a function in egg recognition. A 112-species Zan sequence phylogeny, representing 17 of 19 placental Orders, resolves all species into monophyletic groups corresponding to recognized Orders and Suborders, with <5% unsupported nodes. Three other rapidly evolving germ cell genes (Adam2, Zp2, and Prm1), a paralogous somatic cell gene (TectA), and a mitochondrial gene commonly used for phylogenetic analyses (Cytb) all yield trees with poorer resolution than the Zan tree and inferior topologies relative to a widely accepted mammalian supertree. Zan divergence by intense positive selection produces dramatic species differences in the protein's properties, with ordinal divergence rates generally reflecting species richness of placental Orders consistent with expectations for a speciation gene that acts across a wide range of taxa. Furthermore, Zan's combined phylogenetic utility and divergence exceeds those of all other genes known to have evolved in Eutheria by positive selection, including the only other mammalian speciation gene, Prdm9. CONCLUSIONS Species-specific egg recognition conferred by Zan's functional divergence served as a mode of prezygotic reproductive isolation that promoted the extraordinary adaptive radiation and success of Eutheria.
Collapse
Affiliation(s)
- Emma K. Roberts
- Department of Biological Sciences, Texas Tech University, Lubbock, TX USA
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX USA
| | - Steve Tardif
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX USA
- Reproductive Biology Division, JangoBio, Fitchburg, WI USA
| | - Emily A. Wright
- Department of Biological Sciences, Texas Tech University, Lubbock, TX USA
| | - Roy N. Platt
- Host-Pathogen Interaction Program, Texas Biomedical Research Institute, San Antonio, TX USA
| | - Robert D. Bradley
- Department of Biological Sciences, Texas Tech University, Lubbock, TX USA
- Natural Science Research Laboratory, Museum of Texas Tech University, Lubbock, TX USA
| | - Daniel M. Hardy
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX USA
| |
Collapse
|
7
|
Proteomic Analysis of Intracellular and Membrane-Associated Fractions of Canine (Canis lupus familiaris) Epididymal Spermatozoa and Sperm Structure Separation. Animals (Basel) 2022; 12:ani12060772. [PMID: 35327169 PMCID: PMC8944539 DOI: 10.3390/ani12060772] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 03/03/2022] [Accepted: 03/16/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Epididymal spermatozoa have great potential in current dog reproductive technologies. In the case of azoospermia or when the male dies, the recovery of epididymal spermatozoa opens new possibilities for reproduction. It is of great importance to analyze the quality of the sperm in such cases. Proteomic studies contribute to explaining the role of proteins at various stages of epididymal sperm maturation and offer potential opportunities to use them as markers of sperm quality. The present study showed, for the first time, mass spectrometry and bioinformatic analysis of intracellular and membrane-associated proteins of canine epididymal spermatozoa. Additionally, sonication was used for the separation of dog epididymal sperm morphological elements (heads, tails and acrosomes). The results revealed the presence of differentially abundant proteins in both sperm protein fractions significant for sperm function and fertilizing ability. It was also shown that these proteins participate in important sperm metabolic pathways, which may suggest their potential as sperm quality biomarkers. Abstract This study was provided for proteomic analysis of intracellular and membrane-associated fractions of canine (Canis lupus familiaris) epididymal spermatozoa and additionally to find optimal sonication parameters for the epididymal sperm morphological structure separation and sperm protein isolation. Sperm samples were collected from 15 dogs. Sperm protein fractions: intracellular (SIPs) and membrane-associated (SMAPs) were isolated. After sonication, sperm morphology was evaluated using Spermac Stain™. The sperm protein fractions were analyzed using gel electrophoresis (SDS-PAGE) and nanoliquid chromatography coupled to quadrupole time-of-flight mass spectrometry (NanoLC-Q-TOF/MS). UniProt database-supported identification resulted in 42 proteins identified in the SIPs and 153 proteins in the SMAPs. Differentially abundant proteins (DAPs) were found in SIPs and SMAPs. Based on a gene ontology analysis, the dominant molecular functions of SIPs were catalytic activity (50%) and binding (28%). Hydrolase activity (33%) and transferase activity (21%) functions were dominant for SMAPs. Bioinformatic analysis of SIPs and SMAPs showed their participation in important metabolic pathways in epididymal sperm, which may suggest their potential as sperm quality biomarkers. The use of sonication 150 W, 10 min, may be recommended for the separation of dog epididymal sperm heads, tails, acrosomes and the protein isolation.
Collapse
|
8
|
Zhang M, Bromfield EG, Veenendaal T, Klumperman J, Helms JB, Gadella BM. Characterization of different oligomeric forms of CRISP2 in the perinuclear theca versus the fibrous tail structures of boar spermatozoa. Biol Reprod 2021; 105:1160-1170. [PMID: 34309660 DOI: 10.1093/biolre/ioab145] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 04/30/2021] [Accepted: 06/20/2021] [Indexed: 11/13/2022] Open
Abstract
Mammalian sperm carry a variety of highly condensed insoluble protein structures such as the perinuclear theca, the fibrous sheath and the outer dense fibers, which are essential to sperm function. We studied the role of cysteine rich secretory protein 2 (CRISP2); a known inducer of non-pathological protein amyloids, in pig sperm with a variety of techniques. CRISP2, which is synthesized during spermatogenesis, was localized by confocal immunofluorescent imaging in the tail and in the post-acrosomal region of the sperm head. High resolution localization by immunogold labeling electron microscopy (EM) of ultrathin cryosections revealed that CRISP2 was present in the perinuclear theca and neck region of the sperm head, as well as in the outer dense fibers and the fibrous sheath of the sperm tail. Interestingly, we found that under native, non-reducing conditions CRISP2 formed oligomers both in the tail and the head but with different molecular weights and different biochemical properties. The tail oligomers were insensitive to reducing conditions but nearly complete dissociated into monomers under 8 M urea treatment, while the head 250 kDa CRISP2 positive oligomer completely dissociated into CRISP2 monomers under reducing conditions. The head specific dissociation of CRISP2 oligomer is likely a result of the reduction of various sulfhydryl groups in the cysteine rich domain of this protein. The sperm head CRISP2 shared typical solubilization characteristics with other perinuclear theca proteins as was shown with sequential detergent and salt treatments. Thus, CRISP2 is likely to participate in the formation of functional protein complexes in both the sperm tail and sperm head, but with differing oligomeric organization and biochemical properties. Future studies will be devoted to the understand the role of CRISP2 in sperm protein complexes formation and how this contributes to the fertilization processes.
Collapse
Affiliation(s)
- M Zhang
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, the Netherlands
| | - E G Bromfield
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, the Netherlands.,Priority Research Centre for Reproductive Science, University of Newcastle, New South Wales, Australia
| | - T Veenendaal
- Section Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, the Netherlands
| | - J Klumperman
- Section Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, the Netherlands
| | - J B Helms
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, the Netherlands
| | - B M Gadella
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, the Netherlands.,Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
9
|
Oud MS, Okutman Ö, Hendricks LAJ, de Vries PF, Houston BJ, Vissers LELM, O'Bryan MK, Ramos L, Chemes HE, Viville S, Veltman JA. Exome sequencing reveals novel causes as well as new candidate genes for human globozoospermia. Hum Reprod 2021; 35:240-252. [PMID: 31985809 PMCID: PMC6993856 DOI: 10.1093/humrep/dez246] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 10/08/2019] [Indexed: 12/11/2022] Open
Abstract
STUDY QUESTION Can exome sequencing identify new genetic causes of globozoospermia? SUMMARY ANSWER Exome sequencing in 15 cases of unexplained globozoospermia revealed deleterious mutations in seven new genes, of which two have been validated as causing globozoospermia when knocked out in mouse models. WHAT IS KNOWN ALREADY Globozoospermia is a rare form of male infertility characterised by round-headed sperm and malformation of the acrosome. Although pathogenic variants in DPY19L2 and SPATA16 are known causes of globozoospermia and explain up to 70% of all cases, genetic causality remains unexplained in the remaining patients. STUDY DESIGN, SIZE, DURATION After pre-screening 16 men for mutations in known globozoospermia genes DPY19L2 and SPATA16, exome sequencing was performed in 15 males with globozoospermia or acrosomal hypoplasia of unknown aetiology. PARTICIPANTS/MATERIALS, SETTING, METHOD Targeted next-generation sequencing and Sanger sequencing was performed for all 16 patients to screen for single-nucleotide variants and copy number variations in DPY19L2 and SPATA16. After exclusion of one patient with DPY19L2 mutations, we performed exome sequencing for the 15 remaining subjects. We prioritised recessive and X-linked protein-altering variants with an allele frequency of <0.5% in the population database GnomAD in genes with an enhanced expression in the testis. All identified candidate variants were confirmed in patients and, where possible, in family members using Sanger sequencing. Ultrastructural examination of semen from one of the patients allowed for a precise phenotypic characterisation of abnormal spermatozoa. MAIN RESULTS AND ROLE OF CHANCE After prioritisation and validation, we identified possibly causative variants in eight of 15 patients investigated by exome sequencing. The analysis revealed homozygous nonsense mutations in ZPBP and CCDC62 in two unrelated patients, as well as rare missense mutations in C2CD6 (also known as ALS2CR11), CCIN, C7orf61 and DHNA17 and a frameshift mutation in GGN in six other patients. All variants identified through exome sequencing, except for the variants in DNAH17, were located in a region of homozygosity. Familial segregation of the nonsense variant in ZPBP revealed two fertile brothers and the patient’s mother to be heterozygous carriers. Paternal DNA was unavailable. Immunohistochemistry confirmed that ZPBP localises to the acrosome in human spermatozoa. Ultrastructural analysis of spermatozoa in the patient with the C7orf61 mutation revealed a mixture of round heads with no acrosomes (globozoospermia) and ovoid or irregular heads with small acrosomes frequently detached from the sperm head (acrosomal hypoplasia). LIMITATIONS, REASONS FOR CAUTION Stringent filtering criteria were used in the exome data analysis which could result in possible pathogenic variants remaining undetected. Additionally, functional follow-up is needed for several candidate genes to confirm the impact of these mutations on normal spermatogenesis. WIDER IMPLICATIONS OF THE FINDINGS Our study revealed an important role for mutations in ZPBP and CCDC62 in human globozoospermia as well as five new candidate genes. These findings provide a more comprehensive understanding of the genetics of male infertility and bring us closer to a complete molecular diagnosis for globozoospermia patients which would help to predict the success of reproductive treatments. STUDY FUNDING/COMPETING INTEREST(S) This study was funded by The Netherlands Organisation for Scientific Research (918–15-667); National Health and Medical Research Council of Australia (APP1120356) and the National Council for Scientific Research (CONICET), Argentina, PIP grant 11220120100279CO. The authors have nothing to disclose.
Collapse
Affiliation(s)
- M S Oud
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboudumc, Nijmegen, The Netherlands
| | - Ö Okutman
- Laboratoire de Diagnostic Génétique, UF3472-génétique de l'infertilité, Hôpitaux Universitaires de Strasbourg, 67000 Strasbourg, France.,Institut de Parasitologie et Pathologie Tropicale, EA 7292, Université de Strasbourg, 3 rue Koeberlé, 67000 Strasbourg, France
| | - L A J Hendricks
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboudumc, Nijmegen, The Netherlands
| | - P F de Vries
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboudumc, Nijmegen, The Netherlands
| | - B J Houston
- School of Biological Sciences, Monash University, Clayton, Australia
| | - L E L M Vissers
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboudumc, Nijmegen, The Netherlands
| | - M K O'Bryan
- School of Biological Sciences, Monash University, Clayton, Australia
| | - L Ramos
- Department of Gynaecology and Obstetrics, Radboudumc, Nijmegen, The Netherlands
| | - H E Chemes
- Center for Research in Endocrinology (CEDIE), National Research Council, Department of Endocrinology, Buenos Aires Children's Hospital, Argentina
| | - S Viville
- Laboratoire de Diagnostic Génétique, UF3472-génétique de l'infertilité, Hôpitaux Universitaires de Strasbourg, 67000 Strasbourg, France.,Institut de Parasitologie et Pathologie Tropicale, EA 7292, Université de Strasbourg, 3 rue Koeberlé, 67000 Strasbourg, France
| | - J A Veltman
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboudumc, Nijmegen, The Netherlands.,Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
10
|
Li Z, Chen J, Zhao S, Li Y, Zhou J, Liang J, Tang H. Discovery and validation of novel biomarkers for detection of cervical cancer. Cancer Med 2021; 10:2063-2074. [PMID: 33624385 PMCID: PMC7957177 DOI: 10.1002/cam4.3799] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/30/2021] [Accepted: 02/07/2021] [Indexed: 01/03/2023] Open
Abstract
AIMS To investigate novel biomarker for diagnosis of cervical cancer, we analyzed the datasets in Gene Expression Omnibus (GEO) and confirmed the candidate biomarker in patient sample. MATERIALS AND METHODS We collected major datasets of cervical cancer in GEO, and analyzed the differential expression of normal and cancer samples online with GEO2R and tested the differences, then focus on the GSE63514 to screen the target genes in different histological grades by using the R-Bioconductor package and R-heatmap. Then human specimens from the cervix in different histological grades were used to confirm the top 8 genes expression by immunohistochemical staining using Ki67 as a standard control. RESULTS We identified genes differentially expressed in normal and cervical cancer, 274 upregulated genes and 206 downregulated genes. After intersection with GSE63514, we found the obvious tendency in different histological grades. Then we screened the top 24 genes, and confirmed the top 8 genes in human cervix tissues. Immunohistochemical (IHC) results confirmed that keratin 17 (KRT17) was not expressed in normal cervical tissues and was over-expressed in cervical cancer. Cysteine-rich secretory protein-2 (CRISP2) was less expressed in high-grade squamous intraepithelial lesions (HSILs) than in other histological grades. CONCLUSION For the good repeatability and consistency of KRT17 and CRISP2, they may be good candidate biomarkers. Combined analysis of KRT17, CRISP2 expression at both genetic and protein levels can determine different histological grades of cervical squamous cell carcinoma. Such combined analysis is capable of improving diagnostic accuracy of cervical cancer.
Collapse
Affiliation(s)
- Zigang Li
- Department of AnesthesiologyWomen’s HospitalSchool of MedicineZhejiang UniversityHangzhouChina
| | - Jianhua Chen
- Department of PathologyWomen’s HospitalSchool of MedicineZhejiang UniversityHangzhouChina
| | - Shaobo Zhao
- Department of PharmacologySchool of Basic Medical SciencesZhejiang UniversityHangzhouZhejiangChina
| | - Yajun Li
- Department of PharmacologySchool of Basic Medical SciencesZhejiang UniversityHangzhouZhejiangChina
| | - Jie Zhou
- Department of AnesthesiologyTongde Hospital of Zhejang ProvinceHangzhouChina
| | - Jianghong Liang
- Department of StomatologyGuangzhou Hospital of Integrated Traditional and West MedicineGuangzhouChina
| | - Huifang Tang
- Department of PharmacologySchool of Basic Medical SciencesZhejiang UniversityHangzhouZhejiangChina
| |
Collapse
|
11
|
Weigel Muñoz M, Carvajal G, Curci L, Gonzalez SN, Cuasnicu PS. Relevance of CRISP proteins for epididymal physiology, fertilization, and fertility. Andrology 2019; 7:610-617. [DOI: 10.1111/andr.12638] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 03/15/2019] [Accepted: 03/30/2019] [Indexed: 12/18/2022]
Affiliation(s)
- M. Weigel Muñoz
- Instituto de Biología y Medicina Experimental (IByME-CONICET); Buenos Aires Argentina
| | - G. Carvajal
- Instituto de Biología y Medicina Experimental (IByME-CONICET); Buenos Aires Argentina
| | - L. Curci
- Instituto de Biología y Medicina Experimental (IByME-CONICET); Buenos Aires Argentina
| | - S. N. Gonzalez
- Instituto de Biología y Medicina Experimental (IByME-CONICET); Buenos Aires Argentina
| | - P. S. Cuasnicu
- Instituto de Biología y Medicina Experimental (IByME-CONICET); Buenos Aires Argentina
| |
Collapse
|
12
|
Lim S, Kierzek M, O'Connor AE, Brenker C, Merriner DJ, Okuda H, Volpert M, Gaikwad A, Bianco D, Potter D, Prabhakar R, Strünker T, O'Bryan MK. CRISP2 Is a Regulator of Multiple Aspects of Sperm Function and Male Fertility. Endocrinology 2019; 160:915-924. [PMID: 30759213 DOI: 10.1210/en.2018-01076] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 02/08/2019] [Indexed: 11/19/2022]
Abstract
The cysteine-rich secretory proteins (CRISPs) are a group of proteins that show a pronounced expression biased to the male reproductive tract. Although sperm encounter CRISPs at virtually all phases of sperm development and maturation, CRISP2 is the sole CRISP produced during spermatogenesis, wherein it is incorporated into the developing sperm head and tail. In this study we tested the necessity for CRISP2 in male fertility using Crisp2 loss-of-function mouse models. In doing so, we revealed a role for CRISP2 in establishing the ability of sperm to undergo the acrosome reaction and in establishing a normal flagellum waveform. Crisp2-deficient sperm possess a stiff midpiece and are thus unable to manifest the rapid form of progressive motility seen in wild type sperm. As a consequence, Crisp2-deficient males are subfertile. Furthermore, a yeast two-hybrid screen and immunoprecipitation studies reveal that CRISP2 can bind to the CATSPER1 subunit of the Catsper ion channel, which is necessary for normal sperm motility. Collectively, these data define CRISP2 as a determinant of male fertility and explain previous clinical associations between human CRISP2 expression and fertility.
Collapse
Affiliation(s)
- Shuly Lim
- The Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
| | - Michelina Kierzek
- Center of Reproductive Medicine and Andrology, University Hospital Münster, University of Münster, Münster, Germany
| | - Anne E O'Connor
- The Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
- The School of Biological Sciences, Monash University, Clayton, Victoria, Australia
| | - Christoph Brenker
- Center of Reproductive Medicine and Andrology, University Hospital Münster, University of Münster, Münster, Germany
| | - D Jo Merriner
- The Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
- The School of Biological Sciences, Monash University, Clayton, Victoria, Australia
| | - Hidenobu Okuda
- The Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
- The School of Biological Sciences, Monash University, Clayton, Victoria, Australia
| | - Marianna Volpert
- The Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
| | - Avinash Gaikwad
- The Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
- The School of Biological Sciences, Monash University, Clayton, Victoria, Australia
| | - Deborah Bianco
- The Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
| | - David Potter
- Monash Micro Imaging, Monash University, Clayton, Victoria, Australia
| | - Ranganathan Prabhakar
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, Victoria, Australia
| | - Timo Strünker
- Center of Reproductive Medicine and Andrology, University Hospital Münster, University of Münster, Münster, Germany
| | - Moira K O'Bryan
- The Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
- The School of Biological Sciences, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
13
|
Hu J, Merriner DJ, O'Connor AE, Houston BJ, Furic L, Hedger MP, O'Bryan MK. Epididymal cysteine-rich secretory proteins are required for epididymal sperm maturation and optimal sperm function. Mol Hum Reprod 2019; 24:111-122. [PMID: 29361143 DOI: 10.1093/molehr/gay001] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 01/12/2018] [Indexed: 12/16/2022] Open
Abstract
STUDY QUESTION What is the role of epididymal cysteine-rich secretory proteins (CRISPs) in male fertility? SUMMARY ANSWER While epididymal CRISPs are not absolutely required for male fertility, they are required for optimal sperm function. WHAT IS KNOWN ALREADY CRISPs are members of the CRISP, Antigen 5 and Pathogenesis related protein 1 (CAP) superfamily and are characterized by the presence of an N-terminal CAP domain and a C-terminal CRISP domain. CRISPs are highly enriched in the male reproductive tract of mammals, including in the epididymis. Within humans there is one epididymal CRISP, CRISP1, whereas in mice there are two, CRISP1 and CRISP4. STUDY DESIGN, SIZE, DURATION In order to define the role of CRISPs within the epididymis, Crisp1 and Crisp4 knockout mouse lines were produced then interbred to produce Crisp1 and 4 double knockout (DKO) mice, wherein the expression of all epididymal CRISPs was ablated. Individual and DKO models were then assessed, relative to their own strain-specific wild type littermates for fertility, and sperm output and functional competence at young (10-12 weeks of age) and older ages (22-24 weeks). Crisp1 and 4 DKO and control mice were also compared for their ability to bind to the zona pellucida and achieve fertilization. PARTICIPANTS/MATERIALS, SETTING, METHODS Knockout mouse production was achieved using modified embryonic stem cells and standard methods. The knockout of individual genes was confirmed at a mRNA (quantitative PCR) and protein (immunochemistry) level. Fertility was assessed using breeding experiments and a histological assessment of testes and epididymal tissue. Sperm functional competence was assessed using a computer assisted sperm analyser, induction of the acrosome reaction using progesterone followed by staining for acrosome contents, using immunochemical and western blotting to assess the ability of sperm to manifest tyrosine phosphorylation under capacitating conditions and using sperm-zona pellucida binding assays and IVF methods. A minimum of three biological replicates were used per assay and per genotype. MAIN RESULTS AND THE ROLE OF CHANCE While epididymal CRISPs are not absolutely required for male fertility, their production results in enhanced sperm function and, depending on context, CRISP1 and CRISP4 act redundantly or autonomously. Specifically, CRISP1 is the most important CRISP in the establishment of normally motile sperm, whereas CRISP4 acts to enhance capacitation-associated tyrosine phosphorylation, and CRISP1 and CRISP4 act together to establish normal acrosome function. Both are required to achieve optimal sperm-egg interaction. The presence of immune infiltrates into the epididymis of older, but not younger, DKO animals also suggests epididymal CRISPs function to produce an immune privileged environment for maturing sperm within the epididymis. LIMITATIONS REASONS FOR CAUTION Caution should be displayed in the translation of mouse-derived data into the human wherein the histology of the epididymis is someone what different. The mice used in the study were housed in a specific pathogen-free environment and were thus not exposed to the full range of environmental challenges experienced by wild mice or humans. As such, the role of CRISPs in the maintenance of an immune privileged environment, for example, may be understated. WIDER IMPLICATIONS OF THE FINDINGS The combined deletion of Crisp1 and Crisp4 in mice is equivalent to the removal of all CRISP expression in humans. As such, these data suggest that mammalian CRISPs, including that in humans, function to enhance sperm function and thus male fertility. These data also suggest that in the presence of an environmental challenge, CRISPs help to maintain an immune privileged environment and thus, protect against immune-mediated male infertility. LARGE SCALE DATA Not applicable. STUDY FUNDING AND COMPETING INTEREST(S) This study was funded by the National Health and Medical Research Council, the Victorian Cancer Agency and a scholarship from the Chinese Scholarship Council. The authors have no conflicts of interest to declare.
Collapse
Affiliation(s)
- Jinghua Hu
- The Development and Stem Cells Program of the Biomedicine Discovery Institute, and The Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria 3800, Australia.,The School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - D Jo Merriner
- The Development and Stem Cells Program of the Biomedicine Discovery Institute, and The Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria 3800, Australia.,The School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Anne E O'Connor
- The Development and Stem Cells Program of the Biomedicine Discovery Institute, and The Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria 3800, Australia.,The School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Brendan J Houston
- The School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Luc Furic
- Prostate Cancer Translational Research Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia.,Cancer Program, Biomedicine Discovery Institute and Department of Anatomy & Developmental Biology, Monash University, Melbourne, Victoria 3000, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Mark P Hedger
- The Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia
| | - Moira K O'Bryan
- The Development and Stem Cells Program of the Biomedicine Discovery Institute, and The Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria 3800, Australia.,The School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
14
|
Dreyfus DH. Proteomic Analysis of Antiprotease Immunoglobulin-E Anti-Sperm Autoantibodies in Chronic Urticaria After Vasectomy. EUROPEAN MEDICAL JOURNAL 2017. [DOI: 10.33590/emj/10314947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Some types of chronic urticaria (CU) are associated with autoreactive immunoglobulin (Ig)E, as well as IgG. In the syndrome of autoimmune thyroid disease and CU, autoreactive IgE, as well as IgG against host thyroid tissue, is present. The author describes a patient with new onset of CU after vasectomy with evidence of both autoreactive IgE and IgG anti-sperm antibodies (ASA). Autoreactive sperm proteins are enzymes opposed to structural sperm antigens producing ASA in infertility and after anti-spermatocyte vaccines. The author suggests that autoreactive proteins with enzymatic activity either in host proteins, aeroallergens, or viral proteins may have increased propensity to generate autoreactive IgE. This model of autoimmune IgE ASA generation by sperm and other host enzymatic proteins in CU can be tested using proteomic technology.
INTRODUCTION
Collapse
Affiliation(s)
- David H. Dreyfus
- Yale School of Medicine, Yale University, New Haven; Gesher LLC, Allergy Asthma and Clinical Immunology, Waterbury, Connecticut, USA
| |
Collapse
|
15
|
Liu WS, Zhao Y, Lu C, Ning G, Ma Y, Diaz F, O'Connor M. A novel testis-specific protein, PRAMEY, is involved in spermatogenesis in cattle. Reproduction 2017; 153:847-863. [PMID: 28356500 DOI: 10.1530/rep-17-0013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 03/06/2017] [Accepted: 03/29/2017] [Indexed: 11/08/2022]
Abstract
Preferentially expressed antigen in melanoma (PRAME) is a cancer/testis antigen that is predominantly expressed in normal testicular tissues and a variety of tumors. The function of the PRAME family in spermatogenesis remains unknown. This study was designed to characterize the Y-linked PRAME (PRAMEY) protein during spermatogenesis in cattle. We found that PRAMEY is a novel male germ cell-specific, and a germinal granule-associated protein that is expressed in spermatogenic cells during spermatogenesis. The intact PRAMEY protein (58 kDa) was detected in different ages of testes but not in epididymal spermatozoa. A PRAMEY isoform (30 kDa) was highly expressed only in testes after puberty and in epididymal spermatozoa. This isoform interacts with PP1γ2 and is likely the mature protein present in the testes and sperm. Immunofluorescent staining demonstrated that PRAMEY was located predominantly in the acrosome granule of spermatids, and in acrosome and flagellum of spermatozoa. Immunogold electron microscopy further localized the PRAMEY protein complex to the nucleus and several cytoplasmic organelles, including the rough endoplasmic reticulum, some small vesicles, the intermitochondrial cement, the chromatoid body and the centrioles, in spermatogonia, spermatocytes, spermatids and/or spermatozoa. PRAMEY was highly enriched in and structurally associated with the matrix of the acrosomal granule (AG) in round spermatids, and migrated with the expansion of the AG during acrosomal biogenesis. While the function of PRAMEY remains unclear during spermatogenesis, our results suggest that PRAMEY may play an essential role in acrosome biogenesis and spermatogenesis.Free Chinese abstract: A Chinese translation of this abstract is freely available at http://www.reproduction-online.org/content/153/6/847/suppl/DC1.FreeSpanish abstract: A Spanish translation of this abstract is freely available at http://www.reproduction-online.org/content/153/6/847/suppl/DC2.
Collapse
Affiliation(s)
- Wan-Sheng Liu
- Department of Animal ScienceCenter for Reproductive Biology and Health (CRBH), College of Agricultural Sciences
| | - Yaqi Zhao
- Department of Animal ScienceCenter for Reproductive Biology and Health (CRBH), College of Agricultural Sciences
| | - Chen Lu
- Department of Animal ScienceCenter for Reproductive Biology and Health (CRBH), College of Agricultural Sciences
| | - Gang Ning
- Microscopy and Cytometry FacilityThe Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Yun Ma
- Department of Animal ScienceCenter for Reproductive Biology and Health (CRBH), College of Agricultural Sciences.,College of Life ScienceXinyang Normal University, Xinyang, Henan, China
| | - Francisco Diaz
- Department of Animal ScienceCenter for Reproductive Biology and Health (CRBH), College of Agricultural Sciences
| | - Michael O'Connor
- Department of Animal ScienceCenter for Reproductive Biology and Health (CRBH), College of Agricultural Sciences
| |
Collapse
|
16
|
Giladi ND, Ziv-Av A, Lee HK, Finniss S, Cazacu S, Xiang C, Waldman Ben-Asher H, deCarvalho A, Mikkelsen T, Poisson L, Brodie C. RTVP-1 promotes mesenchymal transformation of glioma via a STAT-3/IL-6-dependent positive feedback loop. Oncotarget 2016; 6:22680-97. [PMID: 26267319 PMCID: PMC4673191 DOI: 10.18632/oncotarget.4205] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 07/06/2015] [Indexed: 01/06/2023] Open
Abstract
Glioblastomas (GBMs), the most aggressive primary brain tumors, exhibit increased invasiveness and resistance to anti-tumor treatments. We explored the role of RTVP-1, a glioma-associated protein that promotes glioma cell migration, in the mesenchymal transformation of GBM. Analysis of The Cancer Genome Atlas (TCGA) demonstrated that RTVP-1 expression was higher in mesenchymal GBM and predicted tumor recurrence and poor clinical outcome. ChiP analysis revealed that the RTVP-1 promoter binds STAT3 and C/EBPβ, two master transcription factors that regulate mesenchymal transformation of GBM. In addition, IL-6 induced RTVP-1 expression in a STAT3-dependent manner. RTVP-1 increased the migration and mesenchymal transformation of glioma cells. Similarly, overexpression of RTVP-1 in human neural stem cells induced mesenchymal differentiation, whereas silencing of RTVP-1 in glioma stem cells (GSCs) decreased the mesenchymal transformation and stemness of these cells. Silencing of RTVP-1 also increased the survival of mice bearing GSC-derived xenografts. Using gene array analysis of RTVP-1 silenced glioma cells we identified IL-6 as a mediator of RTVP-1 effects on the mesenchymal transformation and migration of GSCs, therefore acting in a positive feedback loop by upregulating RTVP-1 expression via the STAT3 pathway. Collectively, these results implicate RTVP-1 as a novel prognostic marker and therapeutic target in GBM.
Collapse
Affiliation(s)
- Nis David Giladi
- Everard and Mina Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Amotz Ziv-Av
- Everard and Mina Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Hae Kyung Lee
- Department of Neurosurgery, Davidson Laboratory of Cell Signaling and Tumorigenesis, Hermelin Brain Tumor Center, Henry Ford Hospital, Detroit, MI, USA
| | - Susan Finniss
- Department of Neurosurgery, Davidson Laboratory of Cell Signaling and Tumorigenesis, Hermelin Brain Tumor Center, Henry Ford Hospital, Detroit, MI, USA
| | - Simona Cazacu
- Department of Neurosurgery, Davidson Laboratory of Cell Signaling and Tumorigenesis, Hermelin Brain Tumor Center, Henry Ford Hospital, Detroit, MI, USA
| | - Cunli Xiang
- Department of Neurosurgery, Davidson Laboratory of Cell Signaling and Tumorigenesis, Hermelin Brain Tumor Center, Henry Ford Hospital, Detroit, MI, USA
| | - Hiba Waldman Ben-Asher
- Everard and Mina Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Ana deCarvalho
- Department of Neurosurgery, Davidson Laboratory of Cell Signaling and Tumorigenesis, Hermelin Brain Tumor Center, Henry Ford Hospital, Detroit, MI, USA
| | - Tom Mikkelsen
- Department of Neurosurgery, Davidson Laboratory of Cell Signaling and Tumorigenesis, Hermelin Brain Tumor Center, Henry Ford Hospital, Detroit, MI, USA
| | - Laila Poisson
- Department of Public Health Sciences, Henry Ford Hospital, Detroit, MI, USA
| | - Chaya Brodie
- Everard and Mina Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel.,Department of Neurosurgery, Davidson Laboratory of Cell Signaling and Tumorigenesis, Hermelin Brain Tumor Center, Henry Ford Hospital, Detroit, MI, USA
| |
Collapse
|
17
|
Brukman NG, Miyata H, Torres P, Lombardo D, Caramelo JJ, Ikawa M, Da Ros VG, Cuasnicú PS. Fertilization defects in sperm from Cysteine-rich secretory protein 2 (Crisp2) knockout mice: implications for fertility disorders. Mol Hum Reprod 2016; 22:240-51. [PMID: 26786179 DOI: 10.1093/molehr/gaw005] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 01/13/2016] [Indexed: 11/12/2022] Open
Abstract
STUDY HYPOTHESIS We hypothesize that fertility disorders in patients with aberrant expression of Cysteine-RIch Secretory Protein 2 (CRISP2) could be linked to the proposed functional role of this protein in fertilization. STUDY FINDING Our in vivo and in vitro observations reveal that Crisp2-knockout mice exhibit significant defects in fertility-associated parameters under demanding conditions, as well as deficiencies in sperm fertilizing ability, hyperactivation development and intracellular Ca(2+) regulation. WHAT IS KNOWN ALREADY Testicular CRISP2 is present in mature sperm and has been proposed to participate in gamete fusion in both humans and rodents. Interestingly, evidence in humans shows that aberrant expression of CRISP2 is associated with male infertility. STUDY DESIGN, SAMPLES/MATERIALS, METHODS A mouse line carrying a deletion in the sixth exon of the Crisp2 gene was generated. The analyses of the reproductive phenotype of Crisp2(-/-) adult males included the evaluation of their fertility before and after being subjected to unilateral vasectomy, in vivo fertilization rates obtained after mating with either estrus or superovulated females, in vitro sperm fertilizing ability and different sperm functional parameters associated with capacitation such as tyrosine phosphorylation (by western blot), acrosome reaction (by Coomassie Blue staining), hyperactivation (by computer-assisted sperm analysis) and intracellular Ca(2+) levels (by flow cytometry). MAIN RESULTS AND THE ROLE OF CHANCE Crisp2(-/-) males presented normal fertility and in vivo fertilization rates when mated with estrus females. However, the mutant mice showed clear defects in those reproductive parameters compared with controls under more demanding conditions, i.e. when subjected to unilateral vasectomy to reduce the number of ejaculated sperm (n = 5; P< 0.05), or when mated with hormone-treated females containing a high number of eggs in the ampulla (n ≥ 5; P< 0.01). In vitro fertilization studies revealed that Crisp2(-/-) sperm exhibited deficiencies to penetrate the egg vestments (i.e. cumulus oophorus and zona pellucida) and to fuse with the egg (n ≥ 6; P< 0.01). Consistent with this, Crisp2-null sperm showed lower levels of hyperactivation (n = 7; P< 0.05), a vigorous motility required for penetration of the egg coats, as well as a dysregulation in intracellular Ca(2+) levels associated with capacitation (n = 5; P< 0.001). LIMITATIONS, REASONS FOR CAUTION The analysis of the possible mechanisms involved in fertility disorders in men with abnormal expression of CRISP2 was carried out in Crisp2 knockout mice due to the ethical and technical problems inherent to the use of human gametes for fertilization studies. WIDER IMPLICATIONS OF THE FINDINGS Our findings in mice showing that Crisp2(-/-) males exhibit fertility and fertilization defects under demanding conditions support fertilization defects in sperm as a mechanism underlying infertility in men with aberrant expression of CRISP2. Moreover, our observations in mice resemble the situation in humans where fertility disorders can or cannot be detected depending on the accumulation of own individual defects or the fertility status of the partner. Finally, the fact that reproductive defects in mice are masked by conventional mating highlights the need of using different experimental approaches to analyze male fertility. STUDY FUNDING AND COMPETING INTERESTS This study was supported by the World Health Organization (H9/TSA/037), the National Research Council of Argentina (PIP 2009-290), the National Agency for Scientific and Technological Promotion of Argentina (PICT 2011, 2023) and the Rene Baron Foundation to P.S.C. and by the MEXT of Japan to M.I. The authors declare that there are no conflicts of interest.
Collapse
Affiliation(s)
- N G Brukman
- Instituto de Biología y Medicina Experimental (IByME-CONICET), Ciudad Autónoma de Buenos Aires C1428ADN, Argentina
| | - H Miyata
- Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - P Torres
- Instituto de Investigación y Tecnología en Reproducción Animal, Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires C1427CWO, Argentina
| | - D Lombardo
- Instituto de Investigación y Tecnología en Reproducción Animal, Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires C1427CWO, Argentina
| | - J J Caramelo
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), Departamento de Química Biológica (FCEN-UBA), Ciudad Autónoma de Buenos Aires C1405BWE, Argentina
| | - M Ikawa
- Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - V G Da Ros
- Instituto de Biología y Medicina Experimental (IByME-CONICET), Ciudad Autónoma de Buenos Aires C1428ADN, Argentina
| | - P S Cuasnicú
- Instituto de Biología y Medicina Experimental (IByME-CONICET), Ciudad Autónoma de Buenos Aires C1428ADN, Argentina
| |
Collapse
|
18
|
Acrosome Reaction as a Preparation for Gamete Fusion. SPERM ACROSOME BIOGENESIS AND FUNCTION DURING FERTILIZATION 2016; 220:159-72. [DOI: 10.1007/978-3-319-30567-7_9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
19
|
Nimlamool W, Bean BS, Lowe-Krentz LJ. Human sperm CRISP2 is released from the acrosome during the acrosome reaction and re-associates at the equatorial segment. Mol Reprod Dev 2013; 80:488-502. [DOI: 10.1002/mrd.22189] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 05/02/2013] [Indexed: 12/30/2022]
Affiliation(s)
- Wutigri Nimlamool
- Department of Biological Sciences; Lehigh University; Bethlehem Pennsylvania
| | - Barry S. Bean
- Department of Biological Sciences; Lehigh University; Bethlehem Pennsylvania
| | | |
Collapse
|
20
|
Cloning and molecular characterization of cDNAs encoding three Ancylostoma ceylanicum secreted proteins. Acta Parasitol 2013; 58:112-8. [PMID: 23377920 DOI: 10.2478/s11686-013-0116-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2012] [Indexed: 11/21/2022]
Abstract
Ancylostoma ceylanicum belongs to a group of soil-transmitted helminths, which infect almost 576 mln people worldwide and are a major cause of anaemia and malnutrition. Upon contact with a permissive host, third-stage larvae (L3) residing in the environment become activated larvae (ssL3), a process associated with changes in the profile of gene expression. Ancylostoma secreted proteins (ASPs) are the major proteins secreted during larvae activation and play a crucial role in hookworm adaptation to parasitism. Here we report the cloning using RACE-PCR technique of three novel ASPs from the hookworm A. ceylanicum (Ace-asp-3, Ace-asp-4, and Ace-asp-5) and computational analysis of the protein sequences. All three proteins contain SCP (Sperm Coating Protein) domain characteristic for previously described ASP proteins. Real-time PCR analysis shows significant up-regulation of Ace-asp-3 and Ace-asp-5 expression in adult worms and correlated down-regulation in ssL3 larvae. On the other hand, expression of Ace-asp-4 was increased in ssL3 stages and decreased in adult parasites.
Collapse
|
21
|
Xu J, Baulding J, Palli SR. Proteomics of Tribolium castaneum seminal fluid proteins: identification of an angiotensin-converting enzyme as a key player in regulation of reproduction. J Proteomics 2012. [PMID: 23195916 DOI: 10.1016/j.jprot.2012.11.011] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Seminal fluid proteins (SFPs) play important roles in regulation of reproduction and behavior. Proteomics approaches were used to identify 13 SFPs, including 3 new proteins in the red flour beetle, Tribolium castaneum. The 13 SFP genes identified code for Serpin, cysteine-rich protein, odorant binding protein-like (OBPL, G10064 and G10065), Kunitz-like protease inhibitor precursor, and WD 40 family protein and are predominantly expressed in the male accessory glands. The genes coding for 13 putative SFPs were knocked down in males; the RNAi males were mated with virgin females, and the number of eggs produced by the mated females was quantified. Knockdown in the expression of the gene coding for a protein similar to angiotensin-converting enzyme 9 (G15465, TcACE) in the males caused a decrease in egg production by the females when compared to the eggs produced by the females mated with control males. In addition, knockdown in the expression of the gene coding for heat shock cognate 70 led to a reduction in the amount of proteins produced by the male accessory glands by 55%. These data suggest that angiotensin-converting enzyme produced in the male seminal vesicles plays important roles in sperm protection during and after transfer to females.
Collapse
Affiliation(s)
- Jingjing Xu
- Department of Entomology, College of Agriculture, University of Kentucky, Lexington, KY 40546, USA
| | | | | |
Collapse
|
22
|
Turunen HT, Sipilä P, Krutskikh A, Toivanen J, Mankonen H, Hämäläinen V, Björkgren I, Huhtaniemi I, Poutanen M. Loss of cysteine-rich secretory protein 4 (Crisp4) leads to deficiency in sperm-zona pellucida interaction in mice. Biol Reprod 2012; 86:1-8. [PMID: 21865554 DOI: 10.1095/biolreprod.111.092403] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Mammalian sperm gain their ability to fertilize the egg during transit through the epididymis and by interacting with proteins secreted by the epididymal epithelial cells. Certain members of the CRISP (cysteine-rich secretory protein) family form the major protein constituent of the luminal fluid in the mammalian epididymis. CRISP4 is the newest member of the CRISP family expressed predominantly in the epididymis. Its structure and expression pattern suggest a role in sperm maturation and/or sperm-egg interaction. To study the relevance of CRISP4 in reproduction, we have generated a Crisp4 iCre knock-in mouse model through insertion of the iCre recombinase coding cDNA into the Crisp4 locus. This allows using the mouse line both as a Crisp4 deficient model and as an epididymis-specific iCre-expressing mouse line applicable for the generation of conditional, epididymis-specific knockout mice. We show that the loss of CRISP4 leads to a deficiency of the spermatozoa to undergo progesterone-induced acrosome reaction and to a decreased fertilizing ability of the sperm in the in vitro fertilization conditions, although the mice remain fully fertile in normal mating. However, removal of the egg zona pellucida returned the fertilization potential of the CRISP4-deficient spermatozoa, and accordingly we detected a reduced number of Crisp4-deficient spermatozoa bound to oocytes as compared with the wild-type spermatozoa. We also demonstrate that iCre recombinase is expressed in a pattern similar to endogenous Crisp4 and is able to initiate the recombination event with its target sequences in vivo.
Collapse
Affiliation(s)
- Heikki T Turunen
- Department of Physiology, Institute of Biomedicine, University of Turku, Finland
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Burnett LA, Washburn CA, Sugiyama H, Xiang X, Olson JH, Al-Anzi B, Bieber AL, Chandler DE. Allurin, an amphibian sperm chemoattractant having implications for mammalian sperm physiology. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2012; 295:1-61. [PMID: 22449486 DOI: 10.1016/b978-0-12-394306-4.00007-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Eggs of many species are surrounded by extracellular coats that emit ligands to which conspecific sperm respond by undergoing chemotaxis and changes in metabolism, motility, and acrosomal status in preparation for fertilization. Here we review methods used to measure sperm chemotaxis and focus on recent studies of allurin, a 21-kDa protein belonging to the Cysteine-RIch Secretory Protein (CRISP) family that has chemoattraction activity for both amphibian and mammalian sperm. Allurin is unique in being the first extensively characterized Crisp protein found in the female reproductive tract and is the product of a newly discovered amphibian gene within a gene cluster that has been largely conserved in mammals. Study of its expression, function, and tertiary structure could lead to new insights in the role of Crisp proteins in sperm physiology.
Collapse
Affiliation(s)
- Lindsey A Burnett
- Department of Animal Science, University of Illinois, Urbana-Champaign, Urbana, Illinois, USA
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Burnett LA, Anderson DM, Rawls A, Bieber AL, Chandler DE. Mouse sperm exhibit chemotaxis to allurin, a truncated member of the cysteine-rich secretory protein family. Dev Biol 2011; 360:318-28. [PMID: 22008793 DOI: 10.1016/j.ydbio.2011.09.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Revised: 09/23/2011] [Accepted: 09/26/2011] [Indexed: 12/14/2022]
Abstract
Allurin, a 21 kDa protein isolated from egg jelly of the frog Xenopus laevis, has previously been demonstrated to attract frog sperm in two-chamber and microscopic assays. cDNA cloning and sequencing has shown that allurin is a truncated member of the Cysteine-Rich Secretory Protein (CRISP) family, whose members include mammalian sperm-binding proteins that have been postulated to play roles in spermatogenesis, sperm capacitation and sperm-egg binding in mammals. Here, we show that allurin is a chemoattractant for mouse sperm, as determined by a 2.5-fold stimulation of sperm passage across a porous membrane and by analysis of sperm trajectories within an allurin gradient as observed by time-lapse microscopy. Chemotaxis was accompanied by an overall change in trajectory from circular to linear thereby increasing sperm movement along the gradient axis. Allurin did not increase sperm velocity although it did produce a modest increase in flagellar beat frequency. Oregon Green 488-conjugated allurin was observed to bind to the sub-equatorial region of the mouse sperm head and to the midpiece of the flagellum. These findings demonstrate that sperm have retained the ability to bind and respond to truncated Crisp proteins over 300 million years of vertebrate evolution.
Collapse
Affiliation(s)
- Lindsey A Burnett
- Molecular and Cellular Biology Graduate Program, School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA
| | | | | | | | | |
Collapse
|
25
|
Ziv-Av A, Taller D, Attia M, Xiang C, Lee HK, Cazacu S, Finniss S, Kazimirsky G, Sarid R, Brodie C. RTVP-1 expression is regulated by SRF downstream of protein kinase C and contributes to the effect of SRF on glioma cell migration. Cell Signal 2011; 23:1936-43. [PMID: 21777672 DOI: 10.1016/j.cellsig.2011.07.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Accepted: 07/04/2011] [Indexed: 01/13/2023]
Abstract
Gliomas are characterized by increased infiltration into the surrounding normal brain tissue. We recently reported that RTVP-1 is highly expressed in gliomas and plays a role in the migration of these cells, however the regulation of RTVP-1 expression in these cells is not yet described. In this study we examined the role of PKC in the regulation of RTVP-1 expression and found that PMA and overexpression of PKCα and PKCε increased the expression of RTVP-1, whereas PKCδ exerted an opposite effect. Using the MatInspector software, we identified a SRF binding site on the RTVP-1 promoter. Chromatin immunoprecipitation (ChIP) assay revealed that SRF binds to the RTVP-1 promoter in U87 cells, and that this binding was significantly increased in response to serum addition. Moreover, silencing of SRF blocked the induction of RTVP-1 expression in response to serum. We found that overexpression of PKCα and PKCε increased the activity of the RTVP-1 promoter and the binding of SRF to the promoter. In contrast, overexpression of PKCδ blocked the increase in RTVP-1 expression in response to serum and the inhibitory effect of PKCδ was abrogated in cells expressing a SRFT160A mutant. SRF regulated the migration of glioma cells and its effect was partially mediated by RTVP-1. We conclude that RTVP-1 is a PKC-regulated gene and that this regulation is at least partly mediated by SRF. Moreover, RTVP-1 plays a role in the effect of SRF on glioma cell migration.
Collapse
Affiliation(s)
- Amotz Ziv-Av
- The Mina and Everard Goodman Faculty of Life-Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Cysteine-rich secretory protein 4 is an inhibitor of transient receptor potential M8 with a role in establishing sperm function. Proc Natl Acad Sci U S A 2011; 108:7034-9. [PMID: 21482758 DOI: 10.1073/pnas.1015935108] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The cysteine-rich secretory proteins (CRISPs) are a group of four proteins in the mouse that are expressed abundantly in the male reproductive tract, and to a lesser extent in other tissues. Analysis of reptile CRISPs and mouse CRISP2 has shown that CRISPs can regulate cellular homeostasis via ion channels. With the exception of the ability of CRISP2 to regulate ryanodine receptors, the in vivo targets of mammalian CRISPs function are unknown. In this study, we have characterized the ion channel regulatory activity of epididymal CRISP4 using electrophysiology, cell assays, and mouse models. Through patch-clamping of testicular sperm, the CRISP4 CRISP domain was shown to inhibit the transient receptor potential (TRP) ion channel TRPM8. These data were confirmed using a stably transfected CHO cell line. TRPM8 is a major cold receptor in the body, but is found in other tissues, including the testis and on the tail and head of mouse and human sperm. Functional assays using sperm from wild-type mice showed that TRPM8 activation significantly reduced the number of sperm undergoing the progesterone-induced acrosome reaction following capacitation, and that this response was reversed by the coaddition of CRISP4. In accordance, sperm from Crisp4 null mice had a compromised ability to undergo to the progesterone-induced acrosome reaction. Collectively, these data identify CRISP4 as an endogenous regulator of TRPM8 with a role in normal sperm function.
Collapse
|
27
|
Abstract
The cysteine-rich secretory proteins (CRISPs) are a subgroup of the CRISP, antigen 5 and Pr-1 (CAP) protein superfamily, and are found only in vertebrates. They show a strong expression bias to the mammalian male reproductive tract and the venom of poisonous reptiles. Within the male reproductive tract CRISPs have been implicated in many aspects of male germ cell biology spanning haploid germ cell development, epididymal maturation, capacitation, motility and the actual processes of fertilization. At a structural level, CRISPs are composed of two domains, a CAP domain, which has been implicated in cell-cell adhesion, and a CRISP domain, which has been shown to regulate several classes of ion channels across multiple species. Herein, we will review the current literature on the role of CRISPs in male fertility, and by inference to related non-mammalian protein, infer potential biochemical functions.
Collapse
|
28
|
Inhibition of HIV-1 replication by small interfering RNAs directed against glioma pathogenesis related protein (GliPR) expression. Retrovirology 2010; 7:26. [PMID: 20356381 PMCID: PMC2859388 DOI: 10.1186/1742-4690-7-26] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2008] [Accepted: 03/31/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Previously, we showed that glioma pathogenesis related protein (GliPR) is induced in CEM T cells upon HIV-1 infection in vitro. To examine whether GliPR plays a role as HIV dependency factor (HDF), we tested the effect of GliPR suppression by siRNA on HIV-1 replication. RESULTS Induction of GliPR expression by HIV-1 was confirmed in P4-CCR5 cells. When GliPR was suppressed by siRNA, HIV-1 replication was significantly reduced as measured by HIV-1 transcript levels, HIV-1 p24 protein levels, and HIV-1 LTR-driven reporter gene expression, suggesting that GliPR is a cellular co-factor of HIV-1. Microarray analysis of uninfected HeLa cells following knockdown of GliPR revealed, among a multitude of gene expression alterations, a down-regulation of syndecan-1, syndecan-2, protein kinase C alpha (PRKCA), the catalytic subunit beta of cAMP-dependent protein kinase (PRKACB), nuclear receptor co-activator 3 (NCOA3), and cell surface protein CD59 (protectin), all genes having relevance for HIV-1 pathology. CONCLUSIONS The up-regulation of GliPR by HIV-1 and the early significant inhibition of HIV-1 replication mediated by knockdown of GliPR reveal GliPR as an important HIV-1 dependency factor (HDF), which may be exploited for HIV-1 inhibition.
Collapse
|
29
|
A novel protein, sperm head and tail associated protein (SHTAP), interacts with cysteine-rich secretory protein 2 (CRISP2) during spermatogenesis in the mouse. Biol Cell 2009; 102:93-106. [PMID: 19686095 DOI: 10.1042/bc20090099] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND INFORMATION CRISP2 (cysteine-rich secretory protein 2) is a sperm acrosome and tail protein with the ability to regulate Ca2+ flow through ryanodine receptors. Based on these properties, CRISP2 has a potential role in fertilization through the regulation of ion signalling in the acrosome reaction and sperm motility. The purpose of the present study was to determine the expression, subcellular localization and the role in spermatogenesis of a novel CRISP2-binding partner, which we have designated SHTAP (sperm head and tail associated protein). RESULTS Using yeast two-hybrid screens of an adult testis expression library, we identified SHTAP as a novel mouse CRISP2-binding partner. Sequence analysis of all Shtap cDNA clones revealed that the mouse Shtap gene is embedded within a gene encoding the unrelated protein NSUN4 (NOL1/NOP2/Sun domain family member 4). Five orthologues of the Shtap gene have been annotated in public databases. SHTAP and its orthologues showed no significant sequence similarity to any known protein or functional motifs, including NSUN4. Using an SHTAP antiserum, multiple SHTAP isoforms (approximately 20-87 kDa) were detected in the testis, sperm, and various somatic tissues. Interestingly, only the approximately 26 kDa isoform of SHTAP was able to interact with CRISP2. Furthermore, yeast two-hybrid assays showed that both the CAP (CRISP/antigen 5/pathogenesis related-1) and CRISP domains of CRISP2 were required for maximal binding to SHTAP. SHTAP protein was localized to the peri-acrosomal region of round spermatids, and the head and tail of the elongated spermatids and sperm tail where it co-localized with CRISP2. During sperm capacitation, SHTAP and the SHTAP-CRISP2 complex appeared to be redistributed within the head. CONCLUSIONS The present study is the first report of the identification, annotation and expression analysis of the mouse Shtap gene. The redistribution observed during sperm capacitation raises the possibility that SHTAP and the SHTAP-CRISP2 complex play a role in the attainment of sperm functional competence.
Collapse
|
30
|
Buffone MG, Kim KS, Doak BJ, Rodriguez-Miranda E, Gerton GL. Functional consequences of cleavage, dissociation and exocytotic release of ZP3R, a C4BP-related protein, from the mouse sperm acrosomal matrix. J Cell Sci 2009; 122:3153-60. [PMID: 19654207 DOI: 10.1242/jcs.052977] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The acrosome is an exocytotic vesicle located on the apical tip of the sperm head. In addition to having different morphological regions, two biochemically distinct compartments can be defined within the acrosome: a particulate acrosomal matrix and a soluble partition. The domains within the acrosome participate in the release of acrosomal proteins from the sperm during exocytosis, depending on whether the proteins partition into either the soluble or matrix compartments of the acrosome. We have examined the mechanism of differential release by evaluating the solubilization of acrosomal matrix protein ZP3R (sp56) from mouse sperm during the course of spontaneous acrosomal exocytosis. Using indirect immunofluorescence and immunoblotting, we found that the ZP3R monomer is processed from 67,000 M(r) to 43,000 M(r) by proteases coincident with release from the acrosome. Sperm require a maturational step, termed capacitation, before they are competent for acrosomal exocytosis and the processing of ZP3R is dramatically reduced under non-capacitating conditions. The cleavage probably takes place in complement control protein domain (CCP) 6 or the bridge region between CCP6 and CCP7, which is not present in the guinea pig orthologue AM67. The cleaved form of ZP3R does not bind to unfertilized eggs. We have incorporated these structural considerations into a model to explain the functional consequences of acrosomal exocytosis on sperm-zona interactions.
Collapse
Affiliation(s)
- Mariano G Buffone
- Center for Research on Reproduction and Women's Health, Department of Obstetrics and Gynecology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | | | | | |
Collapse
|
31
|
Sugiyama H, Burnett L, Xiang X, Olson J, Willis S, Miao A, Akema T, Bieber AL, Chandler DE. Purification and multimer formation of allurin, a sperm chemoattractant from Xenopus laevis egg jelly. Mol Reprod Dev 2009; 76:527-36. [PMID: 18951371 DOI: 10.1002/mrd.20969] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Allurin, a sperm chemoattractant isolated from Xenopus laevis egg jelly, can be purified in one step from an extract of diffusible jelly proteins ("egg water") using a FPLC or HPLC anion exchange column and a multi-step NaCl gradient. Allurin homomultimers were detected by Western blotting with antibodies prepared against the purified protein or peptides within the protein. Allurin multimers were stable and resisted dissociation by SDS and beta-mercaptoethanol. Alkylation of allurin provided evidence for two free sulfhydryl groups but did not eliminate multimer formation, suggesting that intermolecular disulfide bond formation is not required for allurin aggregation. Concentration of egg water was accompanied by a reduction of chemoattractant activity that could not be fully accounted for by homomultimer formation. Rather, the presence of a multiphasic dose-activity curve upon partial purification and formation of hetero-allurin complexes during concentration suggested that egg water may contain allurin-binding proteins that reduce multimer formation and activity.
Collapse
Affiliation(s)
- Hitoshi Sugiyama
- Department of Physiology, St. Marianna University School of Medicine, Kawasaki, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Reddy T, Gibbs GM, Merriner DJ, Kerr JB, O'Bryan MK. Cysteine-rich secretory proteins are not exclusively expressed in the male reproductive tract. Dev Dyn 2009; 237:3313-23. [PMID: 18924239 DOI: 10.1002/dvdy.21738] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The Cysteine-RIch Secretory Proteins (CRISPs) are abundantly produced in the male reproductive tract of mammals and within the venom of reptiles and have been shown to regulate ion channel activity. CRISPs, along with the Antigen-5 proteins and the Pathogenesis related-1 (Pr-1) proteins, form the CAP superfamily of proteins. Analyses of EST expression databases are increasingly suggesting that mammalian CRISPs are expressed more widely than in the reproductive tract. We, therefore, conducted a reverse transcription PCR expression profile and immunohistochemical analyses of 16 mouse tissues to define the sites of production of each of the four murine CRISPs. These data showed that each of the CRISPs have distinct and sometimes overlapping expression profiles, typically associated with the male and female reproductive tract, the secretory epithelia of exocrine glands, and immune tissues including the spleen and thymus. These investigations raise the potential for a role for CRISPs in general mammalian physiology.
Collapse
Affiliation(s)
- Thulasimala Reddy
- Monash Institute of Medical Research, Monash University, Melbourne, Australia
| | | | | | | | | |
Collapse
|
33
|
Vadnais ML, Foster DN, Roberts KP. Molecular Cloning and Expression of the CRISP Family of Proteins in the Boar1. Biol Reprod 2008; 79:1129-34. [DOI: 10.1095/biolreprod.108.070177] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
34
|
Gibbs GM, Roelants K, O'Bryan MK. The CAP superfamily: cysteine-rich secretory proteins, antigen 5, and pathogenesis-related 1 proteins--roles in reproduction, cancer, and immune defense. Endocr Rev 2008; 29:865-97. [PMID: 18824526 DOI: 10.1210/er.2008-0032] [Citation(s) in RCA: 364] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The cysteine-rich secretory proteins, antigen 5, and pathogenesis-related 1 proteins (CAP) superfamily members are found in a remarkable range of organisms spanning each of the animal kingdoms. Within humans and mice, there are 31 and 33 individual family members, respectively, and although many are poorly characterized, the majority show a notable expression bias to the reproductive tract and immune tissues or are deregulated in cancers. CAP superfamily proteins are most often secreted and have an extracellular endocrine or paracrine function and are involved in processes including the regulation of extracellular matrix and branching morphogenesis, potentially as either proteases or protease inhibitors; in ion channel regulation in fertility; as tumor suppressor or prooncogenic genes in tissues including the prostate; and in cell-cell adhesion during fertilization. This review describes mammalian CAP superfamily gene expression profiles, phylogenetic relationships, protein structural properties, and biological functions, and it draws into focus their potential role in health and disease. The nine subfamilies of the mammalian CAP superfamily include: the human glioma pathogenesis-related 1 (GLIPR1), Golgi associated pathogenesis related-1 (GAPR1) proteins, peptidase inhibitor 15 (PI15), peptidase inhibitor 16 (PI16), cysteine-rich secretory proteins (CRISPs), CRISP LCCL domain containing 1 (CRISPLD1), CRISP LCCL domain containing 2 (CRISPLD2), mannose receptor like and the R3H domain containing like proteins. We conclude that overall protein structural conservation within the CAP superfamily results in fundamentally similar functions for the CAP domain in all members, yet the diversity outside of this core region dramatically alters target specificity and, therefore, the biological consequences.
Collapse
Affiliation(s)
- Gerard M Gibbs
- Monash Institute of Medical Research, Monash University, 27-31 Wright Street, Clayton 3168, Australia.
| | | | | |
Collapse
|
35
|
Jamsai D, Reilly A, Smith S, Gibbs G, Baker H, McLachlan R, de Kretser D, O'Bryan M. Polymorphisms in the human cysteine-rich secretory protein 2 (CRISP2) gene in Australian men. Hum Reprod 2008; 23:2151-9. [DOI: 10.1093/humrep/den191] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
36
|
Jamsai D, Bianco DM, Smith SJ, Merriner DJ, Ly-Huynh JD, Herlihy A, Niranjan B, Gibbs GM, O'Bryan MK. Characterization of gametogenetin 1 (GGN1) and its potential role in male fertility through the interaction with the ion channel regulator, cysteine-rich secretory protein 2 (CRISP2) in the sperm tail. Reproduction 2008; 135:751-9. [DOI: 10.1530/rep-07-0485] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cysteine-rich secretory protein 2 (CRISP2) is a testis-enriched protein localized to the sperm acrosome and tail. CRISP2 has been proposed to play a critical role in spermatogenesis and male fertility, although the precise function(s) of CRISP2 remains to be determined. Recent data have shown that the CRISP domain of the mouse CRISP2 has the ability to regulate Ca2+flow through ryanodine receptors (RyR) and to bind to MAP kinase kinase kinase 11 (MAP3K11). To further define the biochemical pathways within which CRISP2 is involved, we screened an adult mouse testis cDNA library using a yeast two-hybrid assay to identify CRISP2 interacting partners. One of the most frequently identified CRISP2-binding proteins was gametogenetin 1 (GGN1). Interactions occur between the ion channel regulatory region within the CRISP2 CRISP domain and the carboxyl-most 158 amino acids of GGN1. CRISP2 does not bind to the GGN2 or GGN3 isoforms. Furthermore, we showed thatGgn1is a testis-enriched mRNA and the protein first appeared in late pachytene spermatocytes and was up-regulated in round spermatids before being incorporated into the principal piece of the sperm tail where it co-localized with CRISP2. These data along with data on RyR and MAP3K11 binding define the CRISP2 CRISP domain as a protein interaction motif and suggest a role for the GGN1–CRISP2 complex in sperm tail development and/or motility.
Collapse
|
37
|
Hirohashi N, Kamei N, Kubo H, Sawada H, Matsumoto M, Hoshi M. Egg and sperm recognition systems during fertilization. Dev Growth Differ 2008; 50 Suppl 1:S221-38. [DOI: 10.1111/j.1440-169x.2008.01017.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
38
|
Burnett LA, Boyles S, Spencer C, Bieber AL, Chandler DE. Xenopus tropicalis allurin: expression, purification, and characterization of a sperm chemoattractant that exhibits cross-species activity. Dev Biol 2008; 316:408-16. [PMID: 18342304 DOI: 10.1016/j.ydbio.2008.01.046] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2007] [Revised: 01/30/2008] [Accepted: 01/31/2008] [Indexed: 11/28/2022]
Abstract
Previously we reported the identification of the first vertebrate sperm chemoattractant, allurin, in the frog Xenopus laevis (Xl) and demonstrated that it was a member of the CRISP family of proteins. Here we report identification, purification, and characterization of Xenopus tropicalis (Xt) allurin, a homologous protein in X. tropicalis. "Egg water" as well as purified allurin from both species exhibit efficient cross-species sperm chemoattractant activity. Western blots show that Xt egg water contains a single anti-allurin cross-reactive protein whose molecular weight (20,497 Da by MALDI MS) agrees well with the molecular weight of the hypothetical gene product for a newly recognized "Crisp A" gene in the X. tropicalis genome. A recombinant form of the protein, expressed in 3T3 cells, exhibits chemoattraction for both Xt and Xl sperm and cross reacts with anti-allurin antibodies. Examination of Crisp protein expression in the Xt oviduct using RT-PCR showed that of five documented Xt Crisp genes (Crisps 2, 3, LD1, LD2 and A) only Crisp A was expressed. In contrast, Crisp 2, Crisp 3, Crisp LD1, and Crisp LD2, but not Crisp A, were all found to be expressed in the Xt testes while subsets of Crisp proteins where expressed in the Xt ovary. These data suggest that Crisp proteins in amphibians may play multiple roles in sperm production, maturation and guidance just as they are thought to in mammals indicating that Crisp protein involvement in reproduction may not be limited to mammals.
Collapse
Affiliation(s)
- Lindsey A Burnett
- Molecular and Cellular Biology Program, School of Life Sciences, Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287-4501, USA
| | | | | | | | | |
Collapse
|
39
|
Roberts KP, Johnston DS, Nolan MA, Wooters JL, Waxmonsky NC, Piehl LB, Ensrud-Bowlin KM, Hamilton DW. Structure and function of epididymal protein cysteine-rich secretory protein-1. Asian J Androl 2007; 9:508-14. [PMID: 17589788 DOI: 10.1111/j.1745-7262.2007.00318.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Cysteine-rich secretory protein-1 (CRISP-1) is a glycoprotein secreted by the epididymal epithelium. It is a member of a large family of proteins characterized by two conserved domains and a set of 16 conserved cysteine residues. In mammals, CRISP-1 inhibits sperm-egg fusion and can suppress sperm capacitation. The molecular mechanism of action of the mammalian CRISP proteins remains unknown, but certain non-mammalian CRISP proteins can block ion channels. In the rat, CRISP-1 comprises two forms referred to as Proteins D and E. Recent work in our laboratory demonstrates that the D form of CRISP-1 associates transiently with the sperm surface, whereas the E form binds tightly. When the spermatozoa are washed, the E form of CRISP-1 persists on the sperm surface after all D form has dissociated. Cross-linking studies demonstrate different protein-protein interaction patterns for D and E, although no binding partners for either protein have yet been identified. Mass spectrometric analyses revealed a potential post-translational modification on the E form that is not present on the D form. This is the only discernable difference between Proteins D and E, and presumably is responsible for the difference in behavior of these two forms of rat CRISP-1. These studies demonstrate that the more abundant D form interacts with spermatozoa transiently, possibly with a specific receptor on the sperm surface, consistent with a capacitation-suppressing function during sperm transit and storage in the epididymis, and also confirm a tightly bound population of the E form that could act in the female reproductive tract.
Collapse
Affiliation(s)
- Kenneth P Roberts
- Department of Urologic Surgery, University of Minnesota, MMC 394, 420 Delaware Street SE, Minneapolis, MN 55455, USA.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Xiang C, Sarid R, Cazacu S, Finniss S, Lee HK, Ziv-Av A, Mikkelsen T, Brodie C. Cloning and characterization of human RTVP-1b, a novel splice variant of RTVP-1 in glioma cells. Biochem Biophys Res Commun 2007; 362:612-8. [PMID: 17825796 DOI: 10.1016/j.bbrc.2007.08.138] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2007] [Accepted: 08/08/2007] [Indexed: 11/16/2022]
Abstract
Here, we report the cloning and characterization of RTVP-1b, a novel splice variant of human RTVP-1, which was isolated from the U87 glioma cell line. Sequence analysis revealed that RTVP-1b contains an additional 71 base exon between exons 2 and 3 that is missing in RTVP-1, leading to a frame-shift and a different putative protein. The deduced protein was 237 amino acids in length, sharing the N-terminal 141 amino acids with RTVP-1. RT-PCR analysis demonstrated that RTVP-1b was expressed in a wide range of tissues and that its expression was different from that of RTVP-1. In contrast, RTVP-1 and RTVP-1b showed similar patterns of expression in astrocytic tumors; highly expressed in glioblastomas as compared to normal brains, low-grade astrocytomas and anaplastic oligodendrogliomas. Overexpression of RTVP-1b increased glioma cell proliferation but did not affect cell migration. Our results suggest that RTVP-1b represents a potential prognostic marker and therapeutic target in gliomas.
Collapse
Affiliation(s)
- Cunli Xiang
- Hermelin Brain Tumor Center, Department of Neurosurgery, Henry Ford Health System, Detroit, MI 48202, USA
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Gibbs GM, Bianco DM, Jamsai D, Herlihy A, Ristevski S, Aitken RJ, Kretser DMD, O'Bryan MK. Cysteine-rich secretory protein 2 binds to mitogen-activated protein kinase kinase kinase 11 in mouse sperm. Biol Reprod 2007; 77:108-14. [PMID: 17377140 DOI: 10.1095/biolreprod.106.057166] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Cysteine-rich secretory protein (CRISP) 2 (previously TPX1) is a testis-enriched member of the CRISP family, and has been localized to both the sperm acrosome and tail. Like all members of the mammalian CRISP family, its expression pattern is strongly suggestive of a role in male fertility, but functional support for this hypothesis remains limited. In order to determine the biochemical pathways within which CRISP2 is a component, the putative mature form of CRISP2 was used as bait in a yeast two-hybrid screen of a mouse testis expression library. One of the most frequently identified interacting partners was mitogen-activated protein kinase kinase kinase 11 (MAP3K11). Sequencing and deletion experiments showed that the carboxyl-most 20 amino acids of MAP3K11 interacted with the CRISP domain of CRISP2. This interaction was confirmed using pull-down experiments and the cellular context was supported by the localization of CRISP2 and MAP3K11 to the acrosome of the developing spermatids and epididymal spermatozoa. Interestingly, mouse epididymal sperm contained an approximately 60-kDa variant of MAP3K11, which may have been a result of proteolytic cleavage of the longer 93-kDa form seen in many tissues. These data raise the possibility that CRISP2 is a MAP3K11-modifying protein or, alternatively, that MAP3K11 acts to phosphorylate CRISP2 during acrosome development.
Collapse
Affiliation(s)
- Gerard M Gibbs
- Monash Institute of Medical Research, Monash University, Melbourne, Victoria 3168, Australia
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Busso D, Goldweic NM, Hayashi M, Kasahara M, Cuasnicú PS. Evidence for the Involvement of Testicular Protein CRISP2 in Mouse Sperm-Egg Fusion1. Biol Reprod 2007; 76:701-8. [PMID: 17202389 DOI: 10.1095/biolreprod.106.056770] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
CRISP2, originally known as Tpx-1, is a cysteine-rich secretory protein specifically expressed in male haploid germ cells. Although likely to be involved in gamete interaction, evidence for a functional role of CRISP2 in fertilization still remains poor. In the present study, we used a mouse model to examine the subcellular localization of CRISP2 in sperm and its involvement in the different stages of fertilization. Results from indirect immunofluorescence and protein extraction experiments indicated that mouse CRISP2 is an intraacrosomal component that remains associated with sperm after capacitation and the acrosome reaction (AR). In vitro fertilization assays using zona pellucida-intact mouse eggs showed that an antibody against the protein significantly decreased the percentage of penetrated eggs, with a coincident accumulation of perivitelline sperm. The failure to inhibit zona pellucida penetration excludes a detrimental effect of the antibody on sperm motility or the AR, supporting a specific participation of CRISP2 at the sperm-egg fusion step. In agreement with this evidence, recombinant mouse CRISP2 (recCRISP2) specifically bound to the fusogenic area of mouse eggs, as previously reported for rat CRISP1, an epididymal protein involved in gamete fusion. In vitro competition investigations showed that incubation of mouse zona-free eggs with a fixed concentration of recCRISP2 and increasing amounts of rat CRISP1 reduced the binding of recCRISP2 to the egg, suggesting that the proteins interact with common complementary sites on the egg surface. Our findings indicate that testicular CRISP2, as observed for epididymal CRISP1, is involved in sperm-egg fusion through its binding to complementary sites on the egg surface, supporting the idea of functional cooperation between homologous molecules to ensure the success of fertilization.
Collapse
Affiliation(s)
- Dolores Busso
- Instituto de Biología y Medicina Experimental, 1428 Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
43
|
Rosenzweig T, Ziv-Av A, Xiang C, Lu W, Cazacu S, Taler D, Miller CG, Reich R, Shoshan Y, Anikster Y, Kazimirsky G, Sarid R, Brodie C. Related to testes-specific, vespid, and pathogenesis protein-1 (RTVP-1) is overexpressed in gliomas and regulates the growth, survival, and invasion of glioma cells. Cancer Res 2006; 66:4139-48. [PMID: 16618735 DOI: 10.1158/0008-5472.can-05-2851] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this study, we examined the expression and functions of related to testes-specific, vespid, and pathogenesis protein 1 (RTVP-1) in glioma cells. RTVP-1 was expressed in high levels in glioblastomas, whereas its expression in low-grade astrocytomas and normal brains was very low. Transfection of glioma cells with small interfering RNAs targeting RTVP-1 decreased cell proliferation in all the cell lines examined and induced cell apoptosis in some of them. Overexpression of RTVP-1 increased astrocyte and glioma cell proliferation and the anchorage-independent growth of the cells. In addition, overexpression of RTVP-1 rendered glioma cells more resistant to the apoptotic effect of tumor necrosis factor-related apoptosis-inducing ligand and serum deprivation. To delineate the molecular mechanisms involved in the survival effects of RTVP-1, we examined the expression and phosphorylation of various apoptosis-related proteins. We found that overexpression of RTVP-1 decreased the phosphorylation of c-Jun-NH2-kinase and increased the expression of Bcl2 and that the protective effect of RTVP-1 was partially mediated by Bcl2. Finally, we found that RTVP-1 regulated the invasion of glioma cells as was evident by their enhanced migration through Matrigel and by their increased invasion in a spheroid confrontation assay. The increased invasive potential of the RTVP-1 overexpressors was also shown by the increased activity of matrix metalloproteinase 2 in these cells. Our results suggest that the expression of RTVP-1 is correlated with the degree of malignancy of astrocytic tumors and that RTVP-1 is involved in the regulation of the growth, survival, and invasion of glioma cells. Collectively, these findings suggest that RTVP-1 is a potential therapeutic target in gliomas.
Collapse
Affiliation(s)
- Tovit Rosenzweig
- Gonda (Goldschmied) Medical Diagnosis Research Center, Faculty of Life-Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Bjartell A, Johansson R, Björk T, Gadaleanu V, Lundwall A, Lilja H, Kjeldsen L, Udby L. Immunohistochemical detection of cysteine-rich secretory protein 3 in tissue and in serum from men with cancer or benign enlargement of the prostate gland. Prostate 2006; 66:591-603. [PMID: 16388501 DOI: 10.1002/pros.20342] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
BACKGROUND Recently, the gene for cysteine-rich secretory protein 3 (CRISP-3) was reported to be highly upregulated in prostate cancer (PCa) compared to benign prostatic tissue. The current aims were to investigate diagnostic use of tissue expression and immunodetection in serum of CRISP-3 for detection or monitoring of PCa. METHODS Radical prostatectomy specimens and tissue microarrays from transurethral resections and metastases were analyzed for CRISP-3 and PSA by immunohistochemistry. CRISP-3 in tissue homogenates and in serum was measured by an in-house ELISA and PSA by a commercially available immunoassay. RESULTS Immunostaining for CRISP-3 in benign prostatic epithelium was generally weak or not detectable. Specific and strong immunostaining was found in a major proportion of cells in high-grade prostatic-intraepithelial-neoplasia (HG-PIN,12/17 patients), in most primary tumors (111/115), and in lymph node (11/15) and bone (12/15) metastases. CRISP-3 immunostaining intensity was regularly strong in areas of Gleason grades 4/5, where PSA-immunoreaction was less intense. Serum levels of CRISP-3 were not different in patients with PCa (n=152) compared to men with BPH (n=81). There was a very weak co-variation between levels of CRISP-3 versus PSA in serum from PCa patients (P<0.05). After orchiectomy, levels of CRISP-3 in serum decreased in median with 11% compared to a 97% median decrease of PSA in serum from 15/20 patients with advanced PCa. CONCLUSIONS Strong immunostaining for CRISP-3 is common in HG-PIN and preserved in most PCa specimens, which warrant further immunohistochemical studies of CRISP-3 in PCa. Serum levels of CRISP-3 do not primarily reflect PCa.
Collapse
Affiliation(s)
- Anders Bjartell
- Department of Urology, Malmö University Hospital, Lund University, Malmö, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Nolan MA, Wu L, Bang HJ, Jelinsky SA, Roberts KP, Turner TT, Kopf GS, Johnston DS. Identification of rat cysteine-rich secretory protein 4 (Crisp4) as the ortholog to human CRISP1 and mouse Crisp4. Biol Reprod 2006; 74:984-91. [PMID: 16467491 DOI: 10.1095/biolreprod.105.048298] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Cysteine-rich secretory proteins (CRISPs) are present in a diverse population of organisms and are defined by 16 conserved cysteine residues spanning a plant pathogenesis related-1 and a C-terminal cysteine-rich domain. To date, the diversification of mammalian CRISPs is evidenced by the existence of two, three, and four paralogous genes in the rat, human, and mouse, respectively. The current study identifies a third rat Crisp paralog we term Crisp4. The gene for Crisp4 is on rat chromosome 9 within 1 Mb of both the Crisp1 and Crisp2 genes. The full-length transcript for this gene was cloned from rat epididymal RNA and encodes a protein that shares 69% and 91% similarity with human CRISP1 and mouse CRISP4, respectively. Expression of rat Crisp4 is most abundant in the epididymis, with the highest levels of transcription observed in the caput and corpus epididymis. In contrast, rat CRISP4 protein is most abundant in the corpus and cauda regions of the epididymis. Rat CRISP4 protein is also present in caudal sperm extracts, appearing as a detergent-soluble form at the predicted MWR (26 kDa). Our data identify rat Crisp4 as the true ortholog to human CRISP1 and mouse Crisp4, and demonstrate its interaction with spermatozoa in the epididymis.
Collapse
Affiliation(s)
- Michael A Nolan
- Contraception, Women's Health and Musculoskeletal Biology, Wyeth Research, Collegeville, Pennsylvania 19426, USA.
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Gibbs GM, Scanlon MJ, Swarbrick J, Curtis S, Gallant E, Dulhunty AF, O'Bryan MK. The cysteine-rich secretory protein domain of Tpx-1 is related to ion channel toxins and regulates ryanodine receptor Ca2+ signaling. J Biol Chem 2005; 281:4156-63. [PMID: 16339766 DOI: 10.1074/jbc.m506849200] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The cysteine-rich secretory proteins (Crisp) are predominantly found in the mammalian male reproductive tract as well as in the venom of reptiles. Crisps are two domain proteins with a structurally similar yet evolutionary diverse N-terminal domain and a characteristic cysteine-rich C-terminal domain, which we refer to as the Crisp domain. We presented the NMR solution structure of the Crisp domain of mouse Tpx-1, and we showed that it contains two subdomains, one of which has a similar fold to the ion channel regulators BgK and ShK. Furthermore, we have demonstrated for the first time that the ion channel regulatory activity of Crisp proteins is attributed to the Crisp domain. Specifically, the Tpx-1 Crisp domain inhibited cardiac ryanodine receptor (RyR) 2 with an IC(50) between 0.5 and 1.0 microM and activated the skeletal RyR1 with an AC(50) between 1 and 10 microM when added to the cytoplasmic domain of the receptor. This activity was nonvoltage-dependent and weakly voltage-dependent, respectively. Furthermore, the Tpx-1 Crisp domain activated both RyR forms at negative bilayer potentials and showed no effect at positive bilayer potentials when added to the luminal domain of the receptor. These data show that the Tpx-1 Crisp domain on its own can regulate ion channel activity and provide compelling evidence for a role for Tpx-1 in the regulation of Ca(2+) fluxes observed during sperm capacitation.
Collapse
Affiliation(s)
- Gerard M Gibbs
- Monash Institute of Medical Research, Monash University, Clayton, Melbourne, Victoria, Australia
| | | | | | | | | | | | | |
Collapse
|
47
|
Chow LP, Chiu LL, Khoo KH, Peng HJ, Yang SY, Huang SW, Su SN. Purification and structural analysis of the novel glycoprotein allergen Cyn d 24, a pathogenesis-related protein PR-1, from Bermuda grass pollen. FEBS J 2005; 272:6218-27. [PMID: 16336260 DOI: 10.1111/j.1742-4658.2005.05000.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Bermuda grass pollen (BGP) contains a very complex mixture of allergens, but only a few have been characterized. One of the allergens, with an apparent molecular mass of 21 kDa, has been shown to bind serum IgE from 29% of patients with BGP allergy. A combination of chromatographic techniques (ion exchange and reverse phase HPLC) was used to purify the 21 kDa allergen. Immunoblotting was performed to investigate its IgE binding and lectin-binding activities, and the Lysyl-C endopeptidase digested peptides were determined by N-terminal sequencing. The cDNA sequence was analyzed by RACE PCR-based cloning. The protein mass and the putative glycan structure were further elucidated using MALDI-TOF mass spectrometry. The purified 21 kDa allergen was designated Cyn d 24 according to the protocol of International Union of Immunological Societies (IUIS). It has a molecular mass of 18,411 Da by MALDI-TOF analysis and a pI of 5.9. The cDNA encoding Cyn d 24 was predicted to produce a 153 amino acid mature protein containing tow conserved sequences seen in the pathogen-related protein family. Carbohydrate analysis showed that the most abundant N-linked glycan is a alpha(3)-fucosylated pauci-mannose (Man3GlcNAc2) structure, without a Xyl beta-(1,2)-linked to the branching beta-Man. Thus, Cyn d 24 is a glycoprotein and the results of the sequence alignment indicate that this novel allergen is a pathogenesis-related protein 1. To the best of our knowledge, this is the first study to identify any grass pollen allergen as a pathogenesis-related protein 1.
Collapse
Affiliation(s)
- Lu-Ping Chow
- Graduate Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | | | | | | | | | | | | |
Collapse
|
48
|
Busso D, Cohen DJ, Hayashi M, Kasahara M, Cuasnicú PS. Human testicular protein TPX1/CRISP-2: localization in spermatozoa, fate after capacitation and relevance for gamete interaction. ACTA ACUST UNITED AC 2005; 11:299-305. [PMID: 15734896 DOI: 10.1093/molehr/gah156] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Testicular protein Tpx-1, also known as CRISP-2, is a cysteine-rich secretory protein specifically expressed in the male reproductive tract. Since the information available on the human protein is limited to the identification and expression of its gene, in this work we have studied the presence and localization of human Tpx-1 (TPX1) in sperm, its fate after capacitation and acrosome reaction (AR), and its possible involvement in gamete interaction. Indirect immunofluorescence studies revealed the absence of significant staining in live or fixed non-permeabilized sperm, in contrast to a clear labelling in the acrosomal region of permeabilized sperm. These results, together with complementary evidence from protein extraction procedures strongly support that TPX1 would be mainly an intra-acrosomal protein in fresh sperm. After in vitro capacitation and ionophore-induced AR, TPX1 remained associated with the equatorial segment of the acrosome. The lack of differences in the electrophoretic mobility of TPX1 before and after capacitation and AR indicates that the protein would not undergo proteolytical modifications during these processes. The possible involvement of TPX1 in gamete interaction was evaluated by the hamster oocyte penetration test. The presence of anti-TPX1 during gamete co-incubation produced a significant and dose-dependent inhibition in the percentage of penetrated zona-free hamster oocytes without affecting sperm motility, the AR or sperm binding to the oolema. Together, these results indicate that human TPX1 would be a component of the sperm acrosome that remains associated with sperm after capacitation and AR, and is relevant for sperm-oocyte interaction.
Collapse
Affiliation(s)
- D Busso
- Instituto de Biología y Medicina Experimental (IBYME), Buenos Aires (1428), Argentina
| | | | | | | | | |
Collapse
|
49
|
Xiang X, Burnett L, Rawls A, Bieber A, Chandler D. The sperm chemoattractant "allurin" is expressed and secreted from the Xenopus oviduct in a hormone-regulated manner. Dev Biol 2005; 275:343-55. [PMID: 15501223 DOI: 10.1016/j.ydbio.2004.08.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2004] [Revised: 08/03/2004] [Accepted: 08/06/2004] [Indexed: 10/26/2022]
Abstract
Recently, we cloned and sequenced the cDNA of allurin, a sperm chemoattractant isolated from the jelly of Xenopus laevis eggs [Proc. Natl. Acad. Sci. U.S.A. 78 (2001) 11205]. In this report, we demonstrate that allurin mRNA is expressed almost exclusively in the oviduct and that its expression is increased 2.5-fold by human chorionic gonadotropin over a 12-h period. Both dot blots and immunocytochemistry show that allurin is secreted from the upper two thirds of the oviduct that includes the pars recta and the proximal pars convoluta. Allurin appears to be deposited on the ciliated surfaces of luminal epithelial cells that come in direct contact with eggs as they move through the oviduct. Immune staining also demonstrates the presence of allurin in the serosal capsule of the oviduct. In contrast, allurin is not found within the tubular jelly-secreting glands or ducts that constitute a major portion of the oviduct wall. Therefore, we hypothesize that allurin is synthesized by nonciliated secretory cells in the luminal epithelium of the oviduct, is displayed on the ciliary layer and then mechanically mixed with jelly, and applied to eggs as they progress down the oviduct. This hypothesis is consistent with the fact that eggs progressing down the oviduct initially show evidence of allurin being incorporated into the J1 layer. Subsequently, allurin within J1 diffuses outward to J3 and eggs stored in the uterus now demonstrate a J3 localization of this chemoattractant.
Collapse
Affiliation(s)
- Xueyu Xiang
- Molecular and Cellular Biology Program, School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA
| | | | | | | | | |
Collapse
|
50
|
Xiang X, Kittelson A, Olson J, Bieber A, Chandler D. Allurin, a 21 kD sperm chemoattractant, is rapidly released from the outermost jelly layer of theXenopus egg by diffusion and medium convection. Mol Reprod Dev 2004; 70:344-60. [PMID: 15625699 DOI: 10.1002/mrd.20201] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Allurin, a 21 kD protein from Xenopus laevis egg jelly, has been demonstrated to attract sperm by video microscopy and by quantitative chemotaxis chamber assays. Here, we use immunocytochemistry to demonstrate that this sperm chemoattractant is located in the outermost layer of egg jelly (J3) and is rapidly released into the surrounding medium. SDS-PAGE analysis and Western blotting confirm the appearance of allurin in the medium within 1.5 min and separation of proteins in the medium by anion exchange FPLC, shows that nearly half of the allurin released over a 12-hr period is discharged in the first 5 min. The kinetics of allurin release from J3 and its appearance in the medium were quantitatively accounted for, by computer simulation of mathematical diffusion and convection models. Comparison of simulation data to quantitative measurements of allurin appearance in the medium suggests that allurin, although larger than most chemoattractants, is effectively dispersed by a combination of diffusion and medium mixing at the jelly surface during spawning. Our model further predicts that the innermost jelly layer, J1, is less permeable to allurin than the other layers, allowing it to act as a "reflector" to speed up allurin discharge.
Collapse
Affiliation(s)
- Xueyu Xiang
- School of Life Sciences, Department of Chemistry and Biochemistry, and the Molecular and Cellular Biology Program, Arizona State University, Tempe, AZ 85287, USA
| | | | | | | | | |
Collapse
|