1
|
Fantini P, Jimenez-Aristizabal R, Iborra A, Miranda A, Maranhão R, Leme F, Palhares M, Prades M. Cellular components and TGF-β1 content of a closed Tube system for Platelet Rich Plasma acquisition in horse]. ARQ BRAS MED VET ZOO 2022. [DOI: 10.1590/1678-4162-12257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
ABSTRACT Platelet-rich plasma (PRP) has been proposed as an agent to accelerate the healing process and stimulate the regenerative capacity of tissues due to its abundance of growth factors. A large variety of kits and protocols are available to obtain PRP by different cell-separation systems. However, the lack of standardization may lead to inconsistent results. The aim of this study was to characterize cellular composition, platelet parameters using the ADVIA 120 flow cytometer, and TGF-β1 concentration from the PRP product obtained through a closed system, using simple centrifugation. Six clinically healthy horses were used in this study. The protocol in the closed system resulted in approximately 1.6-fold higher platelet and approximately 2.0-fold lower white blood cell concentrations in comparison with whole blood values. The evaluated system was efficient in concentrating platelets and in retrieving a small number of leukocytes, using a protocol of single centrifugation at low speed.
Collapse
Affiliation(s)
| | | | - A. Iborra
- Universitat Autònoma de Barcelona, Spain
| | | | | | - F.O.P. Leme
- Universidade Federal de Minas Gerais, Brazil; Ministry of Education of Brazil, Brazil
| | - M.S. Palhares
- Universidade Federal de Minas Gerais, Brazil; Ministry of Education of Brazil, Brazil
| | - M. Prades
- Universitat Autònoma de Barcelona, Spain
| |
Collapse
|
2
|
A Novel and Convenient Method for the Preparation and Activation of PRP without Any Additives: Temperature Controlled PRP. BIOMED RESEARCH INTERNATIONAL 2018; 2018:1761865. [PMID: 29862255 PMCID: PMC5971324 DOI: 10.1155/2018/1761865] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Accepted: 02/26/2018] [Indexed: 12/16/2022]
Abstract
Platelet rich plasma (PRP) is a concentrate of autologous platelets which contain enrichment growth factors (GFs). However, the addition of exogenous anticoagulant and procoagulant may result in clinical side effects and raise the price of PRP. Herein, we report a novel method named temperature controlled PRP (t-PRP), in which exogenous additives are dispensable in the preparation and activation process. Human blood samples were processed by a two-step centrifugation process under hypothermic conditions (4°C) to obtain t-PRP and rewarming up to 37°C to activate t-PRP. Contemporary PRP (c-PRP) was processed as the control. t-PRP showed a physiological pH value between 7.46 and 7.48 and up to 6.58 ± 0.45-fold significantly higher platelet concentration than that of whole blood compared with c-PRP (4.06-fold) in the preparation process. Meanwhile, t-PRP also maintained a stable GF level between plasma and PRP. After activation, t-PRP demonstrated natural fiber scaffolding, which trapped more platelet and GFs, and exhibited a slow release and degradation rate of GFs. In addition, t-PRP exhibited the function of promoting wound healing. t-PRP is a novel and convenient method for the preparation and activation of PRP without any additives. Compared to c-PRP, t-PRP reflects more physiologic characteristics while maintaining high quality.
Collapse
|
3
|
Skoog SA, Lu Q, Malinauskas RA, Sumant AV, Zheng J, Goering PL, Narayan RJ, Casey BJ. Effects of nanotopography on the in vitro hemocompatibility of nanocrystalline diamond coatings. J Biomed Mater Res A 2016; 105:253-264. [PMID: 27543370 DOI: 10.1002/jbm.a.35872] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 07/29/2016] [Accepted: 08/18/2016] [Indexed: 01/14/2023]
Abstract
Nanocrystalline diamond (NCD) coatings have been investigated for improved wear resistance and enhanced hemocompatibility of cardiovascular devices. The goal of this study was to evaluate the effects of NCD surface nanotopography on in vitro hemocompatibility. NCD coatings with small (NCD-S) and large (NCD-L) grain sizes were deposited using microwave plasma chemical vapor deposition and characterized using scanning electron microscopy, atomic force microscopy, contact angle testing, and Raman spectroscopy. NCD-S coatings exhibited average grain sizes of 50-80 nm (RMS 5.8 nm), while NCD-L coatings exhibited average grain sizes of 200-280 nm (RMS 23.1 nm). In vitro hemocompatibility testing using human blood included protein adsorption, hemolysis, nonactivated partial thromboplastin time, platelet adhesion, and platelet activation. Both NCD coatings demonstrated low protein adsorption, a nonhemolytic response, and minimal activation of the plasma coagulation cascade. Furthermore, the NCD coatings exhibited low thrombogenicity with minimal platelet adhesion and aggregation, and similar morphological changes to surface-bound platelets (i.e., activation) in comparison to the HDPE negative control material. For all assays, there were no significant differences in the blood-material interactions of NCD-S versus NCD-L. The two tested NCD coatings, regardless of nanotopography, had similar hemocompatibility profiles compared to the negative control material (HDPE) and should be further evaluated for use in blood-contacting medical devices. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 253-264, 2017.
Collapse
Affiliation(s)
- Shelby A Skoog
- Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Raleigh, North Carolina.,Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, Maryland
| | - Qijin Lu
- Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, Maryland
| | - Richard A Malinauskas
- Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, Maryland
| | - Anirudha V Sumant
- Center for Nanoscale Materials, Argonne National Laboratory, Argonne, Illinois
| | - Jiwen Zheng
- Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, Maryland
| | - Peter L Goering
- Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, Maryland
| | - Roger J Narayan
- Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Raleigh, North Carolina
| | - Brendan J Casey
- Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, Maryland
| |
Collapse
|
4
|
Platelet-Rich Plasma Obtained with Different Anticoagulants and Their Effect on Platelet Numbers and Mesenchymal Stromal Cells Behavior In Vitro. Stem Cells Int 2016; 2016:7414036. [PMID: 27340410 PMCID: PMC4909912 DOI: 10.1155/2016/7414036] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 04/09/2016] [Accepted: 04/27/2016] [Indexed: 02/06/2023] Open
Abstract
There are promising results in the use of platelet-rich plasma (PRP) for musculoskeletal tissue repair. However, the variability in the methodology for its obtaining may cause different and opposing findings in the literature. Particularly, the choice of the anticoagulant is the first definition to be made. In this work, blood was collected with sodium citrate (SC), ethylenediaminetetraacetic acid (EDTA), or anticoagulant citrate dextrose (ACD) solution A, as anticoagulants, prior to PRP obtaining. Hematological analysis and growth factors release quantification were performed, and the effects on mesenchymal stromal cell (MSC) culture, such as cytotoxicity and cell proliferation (evaluated by MTT method) and gene expression, were evaluated. The use of EDTA resulted in higher platelet yield in whole blood; however, it induced an increase in the mean platelet volume (MPV) following the blood centrifugation steps for PRP obtaining. The use of SC and ACD resulted in higher induction of MSC proliferation. On the other hand, PRP obtained in SC presented the higher platelet recovery after the blood first centrifugation step and a minimal change in MSC gene expression. Therefore, we suggest the use of SC as the anticoagulant for PRP obtaining.
Collapse
|
5
|
The effect of different speeds of centrifugation on platelet-rich plasma preparation. JOURNAL OF THE EGYPTIAN WOMEN’S DERMATOLOGIC SOCIETY 2015. [DOI: 10.1097/01.ewx.0000469302.93469.65] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
6
|
Lu Q, Malinauskas RA. Comparison of two platelet activation markers using flow cytometry after in vitro shear stress exposure of whole human blood. Artif Organs 2010; 35:137-44. [PMID: 20946295 DOI: 10.1111/j.1525-1594.2010.01051.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Platelet activation is the initiating step to thromboembolic complications in blood-contacting medical devices. Currently, there are no widely accepted testing protocols or relevant metrics to assess platelet activation during the in vitro evaluation of new medical devices. In this article, two commonly used platelet activation marker antibodies, CD62P (platelet surface P-selectin) and PAC1 (activated GP IIb/IIIa), were evaluated using flow cytometry. Anticoagulant citrate dextrose solution A (ACDA) and heparin anticoagulated human blood from healthy donors were separately exposed to shear stresses of 0, 10, 15, and 20 Pa for 120 s using a cone-plate rheometer model, and immediately mixed with the platelet marker antibodies for analysis. To monitor for changes in platelet reactivity between donors and over time, blood samples were also evaluated after exposure to 0, 2, and 20 µM of adenosine diphosphate (ADP). Following ADP stimulation, the percentage of both CD62P and PAC1 positive platelets increased in a dose dependent fashion, even 8 h after the blood was collected. After shear stress stimulation, both CD62P and PAC1 positive platelets increased significantly at shear stress levels of 15 and 20 Pa when ACDA was used as the anticoagulant. However, for heparinized blood, the PAC1 positive platelets decreased with increasing shear stress, while the CD62P positive platelets increased. Besides the anticoagulant effect, the platelet staining buffer also impacted PAC1 response, but had little effect on CD62P positive platelets. These data suggest that CD62P is a more reliable marker compared with PAC1 for measuring shear-dependent platelet activation and it has the potential for use during in vitro medical device testing.
Collapse
Affiliation(s)
- Qijin Lu
- Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, MD 20993, USA.
| | | |
Collapse
|
7
|
Lei H, Gui L, Xiao R. The effect of anticoagulants on the quality and biological efficacy of platelet-rich plasma. Clin Biochem 2009; 42:1452-60. [PMID: 19560449 DOI: 10.1016/j.clinbiochem.2009.06.012] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Revised: 06/12/2009] [Accepted: 06/18/2009] [Indexed: 11/30/2022]
Abstract
OBJECTIVES This study investigated the effect of anticoagulants on platelet-rich plasma (PRP) quality to determine the appropriate anticoagulants for PRP production. DESIGN AND METHODS This study was carried out at the Plastic Surgery Hospital of Peking Union Medical College. The microstructure of platelets collected with heparin, citrate, acid citrate dextrose (ACD) and citrate-theophylline-adenosine-dipyridamole (CTAD) was observed. The extent of spontaneous activation of platelets was detected by measuring sP-selectin in plasma. The amount of TGF-beta1 released from PRP and the effect of PRP on cell proliferation were also studied. RESULTS ACD and CTAD were superior to heparin and citrate in maintaining the integrity of platelet structures and preventing the platelet spontaneous activation. ACD-PRP and CTAD-PRP released more TGF-beta1 and significantly enhanced the proliferation of human marrow stromal cells compared to heparin-PRP and citrate-PRP. CONCLUSIONS The PRP quality was closely related to the type of anticoagulants. ACD and CTAD are appropriate anticoagulants for PRP production.
Collapse
Affiliation(s)
- Hua Lei
- Department Six of Plastic Surgery Hospital, Peking Union Medical College, China Academy of Medical Sciences, No.33 BaDaChu Road, Shijingshan District, Beijing, 100144, China
| | | | | |
Collapse
|
8
|
Schnabel LV, Mohammed HO, Miller BJ, McDermott WG, Jacobson MS, Santangelo KS, Fortier LA. Platelet rich plasma (PRP) enhances anabolic gene expression patterns in flexor digitorum superficialis tendons. J Orthop Res 2007; 25:230-40. [PMID: 17106885 DOI: 10.1002/jor.20278] [Citation(s) in RCA: 242] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Platelet rich plasma (PRP) has recently been investigated for use in tissue regeneration studies that seek to utilize the numerous growth factors released from platelet alpha-granules. This study examined gene expression patterns, DNA, and collagen content of equine flexor digitorum superficialis tendon (SDFT) explants cultured in media consisting of PRP and other blood products. Blood and bone marrow aspirate (BMA) were collected from horses and processed to obtain plasma, PRP, and platelet poor plasma (PPP). IGF-I, TGF-beta1, and PDGF-BB were quantified in all blood products using ELISA. Tendons were cultured in explant fashion with blood, plasma, PRP, PPP, or BMA at concentrations of 100%, 50%, or 10% in serum-free DMEM with amino acids. Quantitative RT-PCR for expression of collagen type I (COL1A1), collagen type III (COL3A1), cartilage oligomeric matrix protein (COMP), decorin, matrix metalloproteinase-3 (MMP-3), and matrix metalloproteinase-13 (MMP-13) was performed as were DNA and total soluble collagen assays. TGF-beta1 and PDGF-BB concentrations were higher in PRP compared to all other blood products tested. Tendons cultured in 100% PRP showed enhanced gene expression of the matrix molecules COL1A1, COL3A1, and COMP with no concomitant increase in the catabolic molecules MMP-3 and MMP-13. These findings support in vivo investigation of PRP as an autogenous, patient-side treatment for tendonitis.
Collapse
Affiliation(s)
- Lauren V Schnabel
- Department of Clinical Sciences, VMC C3-181, Cornell University, Ithaca, New York 14853, USA
| | | | | | | | | | | | | |
Collapse
|