Gonzalez-Béjar M, Stiriba SE, Domingo LR, Pérez-Prieto J, Miranda MA. Mechanism of Triplet Photosensitized Diels−Alder Reaction between Indoles and Cyclohexadienes: Theoretical Support for an Adiabatic Pathway.
J Org Chem 2006;
71:6932-41. [PMID:
16930047 DOI:
10.1021/jo061078m]
[Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Diels-Alder reactions between indoles (InHs) and 1,3-cyclohexadienes (CHDs) were achieved by using aromatic ketones as photosensitizers. For instance, irradiation of deaerated dichloromethane solutions containing benzoylthiophene (BT, 1 mM), indole (20 mM), and phellandrene (40 mM), in the presence of an acylating agent, led to the N-acetylated Diels-Alder cycloadduct in 46% yield (endo:exo ratio of 1.8:1). Energy transfer from the BT triplet to the CHD gave rise to diene dimers as byproducts. Several combinations of CHDs, InHs, and aromatic ketones were tested; the Diels-Alder reaction was found to be a general process, except when the indole nucleus was substituted at position 2 or 7 and when aromatization of the CHD was favored. Theoretical calculations support a stepwise mechanism involving a triplet ternary complex TC(T1), arising from a nearly barrierless reaction between CHD and the 3(BT...HIn) exciplex. All subsequent steps proceed downhill in the triplet excited state, leading to a triplet cycloadduct-sensitizer CA-BT(T1) radical pair. Attempts to detect this species, which is basically an aminyl/BT ketyl radical pair, were performed by laser excitation of a solution containing BT, phellandrene, and indole. The observed transient absorption spectra could be compatible with the added spectra of the expected components of the radical pair.
Collapse