1
|
Luo J, Chen P, Song C. An Overview of the Synthesis of Pyrazolotriazolopyrimidine Compounds. MINI-REV ORG CHEM 2020. [DOI: 10.2174/1570193x16666190723124839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Pyrazolotriazolopyrimidines are an important class of nitrogen-containing heterocycles
that can act as a charismatic target and exhibit diverse pharmacological activities. These compounds
have received much attention because they are an attractive scaffold for the preparation of adenosine
receptor antagonists. Herein, we focus on an overview of the synthesis of these compounds with the
aim of assisting in the discovery of new pyrazolotriazolopyrimidine derivatives.
Collapse
Affiliation(s)
- Jin Luo
- Analytical and Testing Center, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Puqing Chen
- Analytical and Testing Center, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Chonghu Song
- Analytical and Testing Center, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| |
Collapse
|
2
|
Federico S, Margiotta E, Moro S, Kozma E, Gao ZG, Jacobson KA, Spalluto G. Conjugable A 3 adenosine receptor antagonists for the development of functionalized ligands and their use in fluorescent probes. Eur J Med Chem 2019; 186:111886. [PMID: 31787357 DOI: 10.1016/j.ejmech.2019.111886] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 11/12/2019] [Accepted: 11/12/2019] [Indexed: 12/31/2022]
Abstract
Compounds able to simultaneously bind a biological target and be conjugated to a second specific moiety are attractive tools for the development of multi-purpose ligands useful as multi-target ligands, receptor probes or drug delivery systems, with both therapeutic and diagnostic applications. The human A3 adenosine receptor is a G protein-coupled receptor involved in many physio-pathological conditions, e.g. cancer and inflammation, thus representing a promising research target. In this work, two series of conjugable hA3AR antagonists, based on the pyrazolo[4,3-e]-1,2,4-triazolo[1,5-c]pyrimidine nucleus, were developed. The introduction of an aromatic ring at the 5 position of the scaffold, before (phenylacetamido moiety) or after (1,2,3-triazole obtained by click chemistry) the conjugation is aimed to increase affinity and selectivity towards the hA3AR receptor. As expected, conjugable compounds showed good affinity towards the hA3AR. In order to prove their potential in the development of hA3AR ligands for different purposes, compounds were also functionalized with fluorescent probes. Unfortunately, conjugation decreased affinity and selectivity for the target as compared to the hA2AAR. Computational studies identified specific non-conserved residues of the extracellular loops which constitute a structural barrier able to discriminate between ligands, giving insights into the rational development of new highly selective ligands.
Collapse
Affiliation(s)
- Stephanie Federico
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università Degli Studi di Trieste, Via Licio Giorgeri 1, 34127, Trieste, Italy.
| | - Enrico Margiotta
- Molecular Modeling Section (MMS), Dipartimento di Scienze Del Farmaco, Università di Padova, Via Marzolo 5, 35131, Padova, Italy
| | - Stefano Moro
- Molecular Modeling Section (MMS), Dipartimento di Scienze Del Farmaco, Università di Padova, Via Marzolo 5, 35131, Padova, Italy
| | - Eszter Kozma
- Laboratory of Bioorganic Chemistry, NIDDK, National Institute of Health, Bethesda, MD, USA
| | - Zhan-Guo Gao
- Laboratory of Bioorganic Chemistry, NIDDK, National Institute of Health, Bethesda, MD, USA
| | - Kenneth A Jacobson
- Laboratory of Bioorganic Chemistry, NIDDK, National Institute of Health, Bethesda, MD, USA
| | - Giampiero Spalluto
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università Degli Studi di Trieste, Via Licio Giorgeri 1, 34127, Trieste, Italy
| |
Collapse
|
3
|
Deverakonda M, Mailavaram RP, Deb PK, Banda N, Vedula GS. Rapid and Efficient, Microwave-Assisted, Base-Catalyzed Synthesis of Some Novel 2,7-Disubstituted Pyrrolopyrimidinones. SYNTHETIC COMMUN 2012. [DOI: 10.1080/00397911.2011.576324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
4
|
Sidorov GV, Myasoedov NF. Synthesis of tritium-labelled biologically important diazines. RUSSIAN CHEMICAL REVIEWS 2007. [DOI: 10.1070/rc1999v068n03abeh000471] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
5
|
Kiselgof E, Tulshian DB, Arik L, Zhang H, Fawzi A. 6-(2-Furanyl)-9H-purin-2-amine derivatives as A2A adenosine antagonists. Bioorg Med Chem Lett 2005; 15:2119-22. [PMID: 15808481 DOI: 10.1016/j.bmcl.2005.02.031] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2005] [Revised: 02/08/2005] [Accepted: 02/09/2005] [Indexed: 11/28/2022]
Abstract
Structure-activity relationships have been investigated through substitutions at the 9-position of the 2-amino-6-(2-furanyl) purine (5) to identify novel and selective A(2A) adenosine receptor antagonists. Several potent and selective antagonists were identified. In particular, compounds 20, 25, and 26 show very high affinity with excellent selectivity.
Collapse
Affiliation(s)
- Eugenia Kiselgof
- Schering-Plough Research Institute, Chemical Research, 2015 Galloping Hill Road, MS 2545, Kenilworth, NJ 07033, USA
| | | | | | | | | |
Collapse
|
6
|
|
7
|
Baraldi PG, Tabrizi MA, Bovero A, Avitabile B, Preti D, Fruttarolo F, Romagnoli R, Varani K, Borea PA. Recent developments in the field of A2A and A3 adenosine receptor antagonists. Eur J Med Chem 2003; 38:367-82. [PMID: 12750024 DOI: 10.1016/s0223-5234(03)00042-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In the last years adenosine receptors have been extensively studied, and mainly at present we understand the importance of A(2A) and A(3) adenosine receptors. A(2A) selective adenosine receptors antagonists are promising new drugs for the treatment of Parkinson's disease, while A(3) selective adenosine receptors antagonists have been postulated as novel anti-inflammatory and antiallergic agents; recent studies also indicated a possible employment of these derivatives as antitumour agents. Lately different classes of compounds have been identified as potent A(2A) and A(3) antagonists. In this article we report the past and present efforts which led to development of more potent and selective A(2A) and A(3) antagonists. Our group has mainly worked on the pyrazolo[4,3-e]-1,2,4-triazolo[1,5-c]pyrimidine nucleus both as A(2A) and A(3) antagonists, aiming to improve the affinity, selectivity and the hydrophilic profile. In fact, we have synthesised several compounds endowed with high affinity and selectivity versus A(2A) adenosine receptors, as 2, 2a-c (K(i)A(2A)=0.12-0.19 nM), or A(3) adenosine receptors, as 4p (K(i)A(3)=0.01 nM) and 4q (K(i)A(3)=0.04 nM).
Collapse
Affiliation(s)
- Pier Giovanni Baraldi
- Dipartimento di Scienze Farmaceutiche, Università di Ferrara, Via fossato di Mortara 17-19, 44100, Ferrara, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Synthesis and characterization of tritium-labeled lipids and their analogs (a review). Pharm Chem J 1999. [DOI: 10.1007/bf02509950] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
9
|
Baraldi PG, Borea PA, Bergonzoni M, Cacciari B, Ongini E, Recanatini M, Spalluto G. Comparative molecular field analysis (CoMFA) of a series of selective adenosine receptor A2A antagonists. Drug Dev Res 1999. [DOI: 10.1002/(sici)1098-2299(199902)46:2<126::aid-ddr5>3.0.co;2-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
10
|
Dionisotti S, Ongini E, Zocchi C, Kull B, Arslan G, Fredholm BB. Characterization of human A2A adenosine receptors with the antagonist radioligand [3H]-SCH 58261. Br J Pharmacol 1997; 121:353-60. [PMID: 9179373 PMCID: PMC1564691 DOI: 10.1038/sj.bjp.0701119] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
1. We have characterized the binding of the new potent and selective antagonist radioligand [3H]-5-amino-7-(2-phenylethyl)-2-(2-furyl)-pyrazolo[4,3-e]-1,2,4-triazol o[1,5- c]pyrimidine, [3H]-SCH 58261, to human cloned A2A adenosine receptors. 2. In Chinese hamster ovary (CHO) cells transfected with the human cloned A2A receptor, [3H]-SCH 58261 specific binding (about 70%) was rapid, saturable, reversible and proportional to protein concentration. The kinetic KD value was 0.75 nM. Saturation experiments showed that [3H]-SCH 58261 labelled a single class of recognition sites with high affinity (KD = 2.3 nM) and limited capacity (apparent Bmax = 526 fmol mg-1 protein). 3. Competition experiments revealed that binding of 0.5 nM [3H]-SCH 58261 was displaced by adenosine receptor agonists with the following order of potency: 2-hexynyl-5'-N-ethylcarboxamidoadenosine (2HE-NECA) > 5'-N-ethylcarboxamidoadenosine (NECA) = 2-phenylaminoadenosine (CV 1808) > 2-[4-(2-carboxyethyl)-phenethylamino]-5'-N-ethylcarboxamidoadenosi ne (CGS 21680) > R-N6-phenylisopropyladenosine (R-PIA) > or = N6-cyclohexyladenosine (CHA) > S-N6-phenylisopropyladenosine (S-PIA). 4. Adenosine receptor antagonists inhibited [3H]-SCH 58261 binding with the following order: 5-amino-9-chloro-2-(2-furyl)-[1,2,4]-triazolo[1,5-c] quinazoline (CGS 15943) > SCH 58261 > xanthine amine congener (XAC) > (E,18%-Z,82%)7-methyl-8-(3,4-dimethoxystyryl)-1,3- dipropylxanthine (KF 17837S) > 8-cyclopentyl-1,3-dipropylxanthine (DPCPX) > theophylline. 5. Affinity values and rank order of potency of both receptor agonists and antagonists were similar to those previously obtained in human platelet and rat striatal membranes, except for CV 1808 which was more potent than CGS 21680. SCH 58261 was a competitive antagonist at inhibiting NECA-induced adenosine 3':5'-cyclic monophosphate (cyclic AMP) accumulation in CHO cells transfected with human A2A receptors. Good agreement was found between binding and functional data. 6. Thus, the new antagonist radioligand is preferable to the receptor agonist radioligand [3H]-CGS 21680 hitherto used to examine the pharmacology of human cloned A2A adenosine receptors.
Collapse
Affiliation(s)
- S Dionisotti
- Schering-Plough Research Institute, San Raffaele Science Park, Milan, Italy
| | | | | | | | | | | |
Collapse
|