1
|
Solid-phase synthesis of fluorescent analogues of Park’s nucleotide, lipid I and lipid II. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153101] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
2
|
Mitachi K, Yun HG, Gillman CD, Skorupinska-Tudek K, Swiezewska E, Clemons WM, Kurosu M. Substrate Tolerance of Bacterial Glycosyltransferase MurG: Novel Fluorescence-Based Assays. ACS Infect Dis 2020; 6:1501-1516. [PMID: 31769280 DOI: 10.1021/acsinfecdis.9b00242] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
MurG (uridine diphosphate-N-acetylglucosamine/N-acetylmuramyl-(pentapeptide) pyrophosphoryl-undecaprenol N-acetylglucosamine transferase) is an essential bacterial glycosyltransferase that catalyzes the N-acetylglucosamine (GlcNAc) transformation of lipid I to lipid II during peptidoglycan biosynthesis. Park's nucleotide has been a convenient biochemical tool to study the function of MraY (phospho-MurNAc-(pentapeptide) translocase) and MurG; however, no fluorescent probe has been developed to differentiate individual processes in the biotransformation of Park's nucleotide to lipid II via lipid I. Herein, we report a robust assay of MurG using either the membrane fraction of a M. smegmatis strain or a thermostable MraY and MurG of Hydrogenivirga sp. as enzyme sources, along with Park's nucleotide or Park's nucleotide-Nε-C6-dansylthiourea and uridine diphosphate (UDP)-GlcN-C6-FITC as acceptor and donor substrates. Identification of both the MraY and MurG products can be performed simultaneously by HPLC in dual UV mode. Conveniently, the generated lipid II fluorescent analogue can also be quantitated via UV-Vis spectrometry without the separation of the unreacted lipid I derivative. The microplate-based assay reported here is amenable to high-throughput MurG screening. A preliminary screening of a collection of small molecules has demonstrated the robustness of the assays and resulted in rediscovery of ristocetin A as a strong antimycobacterial MurG and MraY inhibitor.
Collapse
Affiliation(s)
- Katsuhiko Mitachi
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, Tennessee 38163, United States
| | - Hyun Gi Yun
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E. California Blvd., Pasadena, California 91125, United States
| | - Cody D. Gillman
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E. California Blvd., Pasadena, California 91125, United States
| | - Karolina Skorupinska-Tudek
- Department of Lipid Biochemistry, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warszawa, Poland
| | - Ewa Swiezewska
- Department of Lipid Biochemistry, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warszawa, Poland
| | - William M. Clemons
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E. California Blvd., Pasadena, California 91125, United States
| | - Michio Kurosu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, Tennessee 38163, United States
| |
Collapse
|
3
|
Labischinski H, Johannsen L. Cell wall targets in methicillin-resistant staphylococci. Drug Resist Updat 1999; 2:319-325. [PMID: 11504506 DOI: 10.1054/drup.1999.0101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Multiresistant staphylococci pose an alarmingly growing problem, especially in serious hospital infections. The recent emergence of strains with reduced susceptibility against vancomycin, the last remaining drug effective against methicillin (multi) resistant Staphylococcus aureus, highlights the urgent need for new antimicrobial agents and new therapeutic regimen. Previously, new drugs were discovered exclusively in bacterial whole cell growth assays. Today's more rational approach depends on the identification of suitable target genes and proteins. These should be bacteria-specific and essential for growth either in vitro or in vivo. Targets within cell wall synthesis and remodeling pathways might be particularly attractive because the bacterial cell wall is a unique structure occurring only in prokaryots; many of the antibiotics in use today have confirmed its 'drugability'. However, several potential targets within this field have not yet been exploited successfully for anti-staphylococcal therapy and some were discovered only recently. After a short summary of known potential targets a set of genes involved in the pentaglycine interpeptide bridge formation of the staphylococcal cell wall will be introduced as interesting targets to combat multiresistant staphylococcal infections. Copyright 1999 Harcourt Publishers LtdCopyright DUMMY.
Collapse
|