1
|
Polypyrrole Nanomaterials: Structure, Preparation and Application. Polymers (Basel) 2022; 14:polym14235139. [PMID: 36501534 PMCID: PMC9738686 DOI: 10.3390/polym14235139] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/23/2022] [Accepted: 11/23/2022] [Indexed: 11/30/2022] Open
Abstract
In the past decade, nanostructured polypyrrole (PPy) has been widely studied because of its many specific properties, which have obvious advantages over bulk-structured PPy. This review outlines the main structures, preparation methods, physicochemical properties, potential applications, and future prospects of PPy nanomaterials. The preparation approaches include the soft micellar template method, hard physical template method and templateless method. Due to their excellent electrical conductivity, biocompatibility, environmental stability and reversible redox properties, PPy nanomaterials have potential applications in the fields of energy storage, biomedicine, sensors, adsorption and impurity removal, electromagnetic shielding, and corrosion resistant. Finally, the current difficulties and future opportunities in this research area are discussed.
Collapse
|
2
|
Kataoka H. In-tube solid-phase microextraction: Current trends and future perspectives. J Chromatogr A 2020; 1636:461787. [PMID: 33359971 DOI: 10.1016/j.chroma.2020.461787] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 12/02/2020] [Accepted: 12/04/2020] [Indexed: 01/01/2023]
Abstract
In-tube solid-phase microextraction (IT-SPME) was developed about 24 years ago as an effective sample preparation technique using an open tubular capillary column as an extraction device. IT-SPME is useful for micro-concentration, automated sample cleanup, and rapid online analysis, and can be used to determine the analytes in complex matrices simple sample processing methods such as direct sample injection or filtration. IT-SPME is usually performed in combination with high-performance liquid chromatography using an online column switching technology, in which the entire process from sample preparation to separation to data analysis is automated using the autosampler. Furthermore, IT-SPME minimizes the use of harmful organic solvents and is simple and labor-saving, making it a sustainable and environmentally friendly green analytical technique. Various operating systems and new sorbent materials have been developed to improve its extraction efficiency by, for example, enhancing its sorption capacity and selectivity. In addition, IT-SPME methods have been widely applied in environmental analysis, food analysis and bioanalysis. This review describes the present state of IT-SPME technology and summarizes its current trends and future perspectives, including method development and strategies to improve extraction efficiency.
Collapse
Affiliation(s)
- Hiroyuki Kataoka
- School of Pharmacy, Shujitsu University, Nishigawara, Okayama 703-8516, Japan.
| |
Collapse
|
3
|
Manousi N, Tzanavaras PD, Zacharis CK. Bioanalytical HPLC Applications of In-Tube Solid Phase Microextraction: A Two-Decade Overview. Molecules 2020; 25:molecules25092096. [PMID: 32365828 PMCID: PMC7248733 DOI: 10.3390/molecules25092096] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 04/28/2020] [Accepted: 04/29/2020] [Indexed: 12/18/2022] Open
Abstract
In-tube solid phase microextraction is a cutting-edge sample treatment technique offering significant advantages in terms of miniaturization, green character, automation, and preconcentration prior to analysis. During the past years, there has been a considerable increase in the reported publications, as well as in the research groups focusing their activities on this technique. In the present review article, HPLC bioanalytical applications of in-tube SPME are discussed, covering a wide time frame of twenty years of research reports. Instrumental aspects towards the coupling of in-tube SPME and HPLC are also discussed, and detailed information on materials/coatings and applications in biological samples are provided.
Collapse
Affiliation(s)
- Natalia Manousi
- Laboratory of Analytical Chemistry, School of Chemistry, Faculty of Sciences, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece; (N.M.); (P.D.T.)
| | - Paraskevas D. Tzanavaras
- Laboratory of Analytical Chemistry, School of Chemistry, Faculty of Sciences, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece; (N.M.); (P.D.T.)
| | - Constantinos K. Zacharis
- Laboratory of Pharmaceutical Analysis, Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
- Correspondence: ; Tel.: +30-231-099-7663
| |
Collapse
|
4
|
Lab-made solid phase microextraction phases for off line extraction and direct mass spectrometry analysis: Evaluating the extraction parameters. J Chromatogr A 2019; 1603:23-32. [DOI: 10.1016/j.chroma.2019.06.038] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 06/13/2019] [Accepted: 06/14/2019] [Indexed: 01/10/2023]
|
5
|
Noori AH, Rezaee M, Kazemipour M, Mashayekhi HA. Development of magnetic solid-phase extraction coupled with dispersive liquid–liquid microextraction method for the simultaneous determination of biphenyl and biphenyl oxide in water samples. ACTA CHROMATOGR 2019. [DOI: 10.1556/1326.2018.00134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Arezoo Hassan Noori
- Department of Chemistry, Kerman Branch, Islamic Azad University, Kerman, Iran
| | - Mohammad Rezaee
- Materials and Nuclear Fuel Research School, Nuclear Science & Technology Research Institute, Atomic Energy Organization of Iran, P.O. Box 14395-836, Tehran, Iran
| | - Maryam Kazemipour
- Department of Chemistry, Kerman Branch, Islamic Azad University, Kerman, Iran
| | | |
Collapse
|
6
|
Farjadian F, Azadi S, Mohammadi-Samani S, Ashrafi H, Azadi A. A novel approach to the application of hexagonal mesoporous silica in solid-phase extraction of drugs. Heliyon 2018; 4:e00930. [PMID: 30456326 PMCID: PMC6234517 DOI: 10.1016/j.heliyon.2018.e00930] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 10/29/2018] [Accepted: 11/08/2018] [Indexed: 11/01/2022] Open
Abstract
Mesoporous silica with hexagonal type structure containing amine functional group was introduced. Firstly, aminopropyl hexagonal mesoporous silica was synthetized in a co-condensation process, via templating route of n-dodecylamine. Then synthesized mesoporous material were characterized, and FT-IR spectrum confirmed the presence of amine group and CHN analysis determined the amount of organic layer. The high surface area (750 m2/g) was determined by applying nitrogen adsorption-desorption technique. The morphology was examined by scanning electron microscopy which proved hexagonal structure. The crystallinity of mesoporous material was observed in XRD pattern of this material. According to previous background of such material in adsorbing drug, herein, the efficiency of this material in adsorbing of 5-fluorouracil was evaluated through solid phase extraction method in aqueous and plasma media with high performance liquid chromatography. The extraction efficiency was evaluated for drug concentrations of 500-2000 ng/ml by means of 5-20 mg/ml hexagonal mesoporous silica in both media. The results showed good to excellent recovery rate of in both aqueous and plasma medium which confirmed that the aminopropyl functionalized hexagonal mesoporous silica could be considered as promising device for drug bioanalysis.
Collapse
Affiliation(s)
- Fatemeh Farjadian
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Soha Azadi
- Department of Clinical Pharmacy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Soliman Mohammadi-Samani
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Pharmaceutics, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hajar Ashrafi
- Department of Pharmaceutics, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Azadi
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Pharmaceutics, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
7
|
Rodina TA, Mel’nikov ES, Dmitriev AI, Belkov SA, Sokolov AV, Arkhipov VV, Prokof’ev AB. Simultaneous Determination of Metoprolol and Bisoprolol in Human Serum by HPLC-MS/MS for Clinical Drug Monitoring. Pharm Chem J 2018. [DOI: 10.1007/s11094-018-1750-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
8
|
Wang X, Feng J, Bu Y, Tian Y, Luo C, Sun M. Mesoporous titanium oxide with high-specific surface area as a coating for in-tube solid-phase microextraction combined with high-performance liquid chromatography for the analysis of polycyclic aromatic hydrocarbons. J Sep Sci 2017; 40:2474-2481. [DOI: 10.1002/jssc.201700214] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 04/05/2017] [Accepted: 04/06/2017] [Indexed: 01/03/2023]
Affiliation(s)
- Xiuqin Wang
- Key Laboratory of Chemical Sensing and Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering; University of Jinan; Jinan China
| | - Juanjuan Feng
- Key Laboratory of Chemical Sensing and Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering; University of Jinan; Jinan China
| | - Yanan Bu
- Key Laboratory of Chemical Sensing and Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering; University of Jinan; Jinan China
| | - Yu Tian
- Key Laboratory of Chemical Sensing and Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering; University of Jinan; Jinan China
| | - Chuannan Luo
- Key Laboratory of Chemical Sensing and Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering; University of Jinan; Jinan China
| | - Min Sun
- Key Laboratory of Chemical Sensing and Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering; University of Jinan; Jinan China
| |
Collapse
|
9
|
Mohammadkhani E, Yamini Y, Rezazadeh M, Seidi S. Electromembrane surrounded solid phase microextraction using electrochemically synthesized nanostructured polypyrrole fiber. J Chromatogr A 2016; 1443:75-82. [DOI: 10.1016/j.chroma.2016.03.067] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 02/28/2016] [Accepted: 03/22/2016] [Indexed: 10/22/2022]
|
10
|
|
11
|
Li C, Feng J, Ju H. Supramolecular interaction of labetalol with cucurbit[7]uril for its sensitive fluorescence detection. Analyst 2015; 140:230-5. [DOI: 10.1039/c4an01601g] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The supramolecular interaction between labetalol and cucurbit[7]uril is studied for simple and sensitive fluorescence detection of labetalol through its competitive interaction with berberine, palmatine or coptisine for occupancy of the cucurbit[7]uril cavity.
Collapse
Affiliation(s)
- Changfeng Li
- State Key Laboratory of Analytical Chemistry for Life Science
- Department of Chemistry
- Nanjing University
- Nanjing 210093
- P. R. China
| | - Jianxia Feng
- School of Chemistry and Materials Science
- Shanxi Normal University
- Linfen 041004
- P.R. China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science
- Department of Chemistry
- Nanjing University
- Nanjing 210093
- P. R. China
| |
Collapse
|
12
|
Electrochemically controlled in-tube solid phase microextraction. Anal Chim Acta 2015; 853:335-341. [DOI: 10.1016/j.aca.2014.10.040] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 10/23/2014] [Accepted: 10/27/2014] [Indexed: 11/21/2022]
|
13
|
Ahmadi SH, Manbohi A, Heydar KT. Electrochemically controlled in-tube solid phase microextraction of naproxen from urine samples using an experimental design. Analyst 2015; 140:497-505. [DOI: 10.1039/c4an01664e] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Electrochemically controlled in-tube SPME approach, which increased the sensitivity and decreased the extraction time, was reported.
Collapse
Affiliation(s)
| | - Ahmad Manbohi
- Chemistry & Chemical Engineering Research Center of Iran
- Tehran
- Iran
| | | |
Collapse
|
14
|
Sanagi MM, Hussain I, Ibrahim WAW, Yahaya N, Kamaruzaman S, Abidin NNZ, Ali I. Micro-extraction of Xenobiotics and Biomolecules from Different Matrices on Nanostructures. SEPARATION AND PURIFICATION REVIEWS 2014. [DOI: 10.1080/15422119.2014.973507] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
15
|
Abstract
Since the complexity origin of biological samples, the research trends have been directed to the development of new miniaturized sample preparation techniques. This review provides a comprehensive survey of past and present microextraction methods followed by GC analysis for preconcentration and determination of various analytes in urine samples. These techniques have been classified in three general groups, including liquid-, solid- and membrane-based techniques. The principal of different microextraction methods that are located in each general group as well as their various extraction modes and the recent developments introduced for them has been presented. Subsequently, a comparison survey has been carried out among different microextraction techniques and finally a future perspective has been predicted based on the existing literature.
Collapse
|
16
|
Yang Y, Rodriguez-Lafuente A, Pawliszyn J. Thermoelectric-based temperature-controlling system for in-tube solid-phase microextraction. J Sep Sci 2014; 37:1617-21. [DOI: 10.1002/jssc.201400041] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 04/03/2014] [Accepted: 04/04/2014] [Indexed: 11/08/2022]
Affiliation(s)
- Yang Yang
- Department of Chemistry; University of Waterloo; Waterloo Ontario Canada
| | | | - Janusz Pawliszyn
- Department of Chemistry; University of Waterloo; Waterloo Ontario Canada
| |
Collapse
|
17
|
Yang Y, Lord H, Pawliszyn J. A new strategy to eliminate sample mixing during in-tube solid phase microextraction. J Chromatogr A 2014; 1318:12-21. [PMID: 24353998 DOI: 10.1016/j.chroma.2013.10.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
During in-tube solid phase microextraction, sample mixing with mobile phase contained in the autosampler tubing during extraction may result in some amount of sample becoming entrained in the mobile phase rather than returning to the sample vial or being directed to waste after extraction. In cases where target analytes have relatively low affinity for the sorbent on the wall of the capillary, mixing can impact data quality. Where the sample contains components that may interfere with either the separation (e.g. proteins) or detection (e.g. ions with MS detection), additional difficulties can arise. In the current research, the magnitude of the sample mixing effect was illustrated by analyzing ranitidine and a series of polycyclic aromatic hydrocarbons (PAH). The sample volume equivalent of mixing was calculated as 37 μL for ranitidine and 20 μL for PAHs using the same inner diameter of capillary. To address this issue, a novel approach involving adding a switching valve located between the metering pump and the capillary was developed. Capillary flush conditions, draw/eject speed and extraction time were optimized for ranitidine with the result that in the final method, no mixing of sample with mobile phase was apparent in the detected amounts. To provide information on a compound class with intermediate polarity, two -blockers were also extracted using the optimized washing conditions respectively. The results indicated that the issue of sample mixing had been resolved for these as well. Finally, in-tube SPME calibration of these three analyte classes was shown to be highly linear, providing further indication that sample mixing was not impacting data quality. Available literature on the subject was surveyed, and a discussion on the rational selection of conditions to guide method development was also provided.
Collapse
|
18
|
Cudjoe E, Pawliszyn J. Optimization of solid phase microextraction coatings for liquid chromatography mass spectrometry determination of neurotransmitters. J Chromatogr A 2014; 1341:1-7. [DOI: 10.1016/j.chroma.2014.03.035] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2013] [Revised: 03/10/2014] [Accepted: 03/11/2014] [Indexed: 10/25/2022]
|
19
|
Queiroz M, Melo L. Selective capillary coating materials for in-tube solid-phase microextraction coupled to liquid chromatography to determine drugs and biomarkers in biological samples: A review. Anal Chim Acta 2014; 826:1-11. [DOI: 10.1016/j.aca.2014.03.024] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 03/10/2014] [Accepted: 03/17/2014] [Indexed: 11/25/2022]
|
20
|
Moein MM, Said R, Bassyouni F, Abdel-Rehim M. Solid phase microextraction and related techniques for drugs in biological samples. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2014; 2014:921350. [PMID: 24688797 PMCID: PMC3943203 DOI: 10.1155/2014/921350] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 10/24/2013] [Accepted: 10/25/2013] [Indexed: 06/03/2023]
Abstract
In drug discovery and development, the quantification of drugs in biological samples is an important task for the determination of the physiological performance of the investigated drugs. After sampling, the next step in the analytical process is sample preparation. Because of the low concentration levels of drug in plasma and the variety of the metabolites, the selected extraction technique should be virtually exhaustive. Recent developments of sample handling techniques are directed, from one side, toward automatization and online coupling of sample preparation units. The primary objective of this review is to present the recent developments in microextraction sample preparation methods for analysis of drugs in biological fluids. Microextraction techniques allow for less consumption of solvent, reagents, and packing materials, and small sample volumes can be used. In this review the use of solid phase microextraction (SPME), microextraction in packed sorbent (MEPS), and stir-bar sorbtive extraction (SBSE) in drug analysis will be discussed. In addition, the use of new sorbents such as monoliths and molecularly imprinted polymers will be presented.
Collapse
Affiliation(s)
- Mohammad Mahdi Moein
- Department of Chemistry, Amirkabir University of Technology, Tehran, Iran
- Department of Analytical Chemistry, Stockholm University, SE10691 Stockholm, Sweden
| | - Rana Said
- Department of Analytical Chemistry, Stockholm University, SE10691 Stockholm, Sweden
| | | | - Mohamed Abdel-Rehim
- Department of Analytical Chemistry, Stockholm University, SE10691 Stockholm, Sweden
- National Research Center of Egypt, Cairo 12622, Egypt
| |
Collapse
|
21
|
Pourbasheer E, Sadafi S, Ganjali MR, Abbasghorbani M. Dispersive liquid–liquid microextraction for preconcentration and determination of phenytoin in real samples using response surface methodology-high performance liquid chromatography. RSC Adv 2014. [DOI: 10.1039/c4ra10223a] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In the present study, dispersive liquid–liquid microextraction (DLLME) was developed for preconcentration and determination of phenytoin in real samples by high performance liquid chromatography (HPLC).
Collapse
Affiliation(s)
| | - Samira Sadafi
- Department of Chemistry
- Payame Noor University (PNU)
- Tehran, Iran
| | - Mohammad Reza Ganjali
- Center of Excellence in Electrochemistry
- Faculty of Chemistry
- University of Tehran
- Tehran, Iran
- Biosensor Research Center
| | | |
Collapse
|
22
|
Boyacı E, Gorynski K, Rodriguez-Lafuente A, Bojko B, Pawliszyn J. Introduction of solid-phase microextraction as a high-throughput sample preparation tool in laboratory analysis of prohibited substances. Anal Chim Acta 2013; 809:69-81. [PMID: 24418135 DOI: 10.1016/j.aca.2013.11.056] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 11/19/2013] [Accepted: 11/29/2013] [Indexed: 10/25/2022]
Abstract
A fully automated, high-throughput method based on thin-film solid-phase microextraction (SPME) and liquid chromatography-mass spectrometry was developed for simultaneous quantitative analysis of 110 doping compounds, selected from ten classes and varying in physical and chemical properties. Among four tested extraction phases, C18 blades were chosen, as they provided optimum recoveries and the lowest carryover effect. The SPME method was optimized in terms of extraction pH, ionic strength of the sample, washing solution, extraction and desorption times for analysis of urine samples. Chromatographic separation was obtained in reversed-phase model; for detection, two mass spectrometers were used: triple quadrupole and full scan orbitrap. These combinations allowed for selective analysis of targeted compounds, as well as a retrospective study for known and unknown compounds. The developed method was validated according to the Food and Drug Administration (FDA) criteria, taking into account Minimum Required Performance Level (MRPL) values required by the World Anti-Doping Agency (WADA). In addition to analysis of free substances, it was also shown that the proposed method is able to extract the glucuronated forms of the compounds. The developed assay offers fast and reliable analysis of various prohibited substances, an attractive alternative to the standard methods that are currently used in anti-doping laboratories.
Collapse
Affiliation(s)
- Ezel Boyacı
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, ON, Canada N2L 3G1
| | - Krzysztof Gorynski
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, ON, Canada N2L 3G1
| | - Angel Rodriguez-Lafuente
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, ON, Canada N2L 3G1
| | - Barbara Bojko
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, ON, Canada N2L 3G1
| | - Janusz Pawliszyn
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, ON, Canada N2L 3G1.
| |
Collapse
|
23
|
Conductive polymer-based microextraction methods: A review. Anal Chim Acta 2013; 767:1-13. [DOI: 10.1016/j.aca.2012.12.013] [Citation(s) in RCA: 140] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 12/06/2012] [Accepted: 12/08/2012] [Indexed: 11/22/2022]
|
24
|
Spietelun A, Kloskowski A, Chrzanowski W, Namieśnik J. Understanding solid-phase microextraction: key factors influencing the extraction process and trends in improving the technique. Chem Rev 2012; 113:1667-85. [PMID: 23273266 DOI: 10.1021/cr300148j] [Citation(s) in RCA: 142] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Agata Spietelun
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, 11/12 Narutowicza Street, 80-233 Gdańsk, Poland
| | | | | | | |
Collapse
|
25
|
Newsome TE, Zewe JW, Olesik SV. Electrospun nanofibrous solid-phase microextraction coatings for preconcentration of pharmaceuticals prior to liquid chromatographic separations. J Chromatogr A 2012; 1262:1-7. [DOI: 10.1016/j.chroma.2012.08.046] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2012] [Revised: 08/12/2012] [Accepted: 08/13/2012] [Indexed: 10/28/2022]
|
26
|
Li X, Wang Y, Yang X, Chen J, Fu H, Cheng T, Wang Y. Conducting polymers in environmental analysis. Trends Analyt Chem 2012. [DOI: 10.1016/j.trac.2012.06.003] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
27
|
Solid phase microextraction and LC–MS/MS for the determination of paliperidone after stereoselective fungal biotransformation of risperidone. Anal Chim Acta 2012; 742:80-9. [DOI: 10.1016/j.aca.2012.05.056] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 05/25/2012] [Accepted: 05/29/2012] [Indexed: 11/17/2022]
|
28
|
Towards greater mechanical, thermal and chemical stability in solid-phase microextraction. Trends Analyt Chem 2012. [DOI: 10.1016/j.trac.2011.11.004] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
29
|
Bojko B, Vuckovic D, Cudjoe E, Hoque ME, Mirnaghi F, Wąsowicz M, Jerath A, Pawliszyn J. Determination of tranexamic acid concentration by solid phase microextraction and liquid chromatography–tandem mass spectrometry: First step to in vivo analysis. J Chromatogr B Analyt Technol Biomed Life Sci 2011; 879:3781-7. [DOI: 10.1016/j.jchromb.2011.08.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Revised: 07/28/2011] [Accepted: 08/02/2011] [Indexed: 10/17/2022]
|
30
|
Gao Q, Luo D, Bai M, Chen ZW, Feng YQ. Rapid determination of estrogens in milk samples based on magnetite nanoparticles/polypyrrole magnetic solid-phase extraction coupled with liquid chromatography-tandem mass spectrometry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:8543-8549. [PMID: 21749040 DOI: 10.1021/jf201372r] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
In this study, a nanocomposite of polypyrrole-coated magnetite nanoparticles (denoted as MNPs/PPy) was prepared and employed as magnetic solid-phase extraction (MSPE) sorbent for extraction of estrogens from milk samples. Because the polypyrrole coating possessed a highly π-conjugated structure and hydrophobicity, MNPs/PPy showed excellent performance for the estrogen extraction. Estrogens could be captured directly by MNPs/PPy from milk samples without protein precipitation. Moreover, the extraction could be carried out within 3 min. Thus, a rapid, simple, and effective method for the analysis of estrogens in milk samples was established by coupling MNPs/PPy-based MSPE with liquid chromatography-tandem mass spectrometry (LC-MS/MS). The limits of detections for estrogens investigated were in the range of 5.1-66.7 ng/L. The recoveries of estrogens (concentration range of 0.5-20 ng/mL) from milk samples were in the range of 83.4-108.5%, with relative standard deviations ranging between 4.2 and 15.4%.
Collapse
Affiliation(s)
- Qiang Gao
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan, People's Republic of China
| | | | | | | | | |
Collapse
|
31
|
Mehdinia A, Roohi F, Jabbari A, Manafi MR. Self-doped polyaniline as new polyaniline substitute for solid-phase microextraction. Anal Chim Acta 2011; 683:206-11. [DOI: 10.1016/j.aca.2010.10.031] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Revised: 10/17/2010] [Accepted: 10/22/2010] [Indexed: 09/30/2022]
|
32
|
Buszewski B, Szultka M, Olszowy P, Bocian S, Ligor T. A novel approach to the rapid determination of amoxicillin in human plasma by solid phase microextraction and liquid chromatography. Analyst 2011; 136:2635-42. [DOI: 10.1039/c1an00005e] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
33
|
Kole PL, Venkatesh G, Kotecha J, Sheshala R. Recent advances in sample preparation techniques for effective bioanalytical methods. Biomed Chromatogr 2010; 25:199-217. [DOI: 10.1002/bmc.1560] [Citation(s) in RCA: 247] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Accepted: 10/01/2010] [Indexed: 11/12/2022]
|
34
|
Kaykhaii M, Dicinoski GW, Haddad PR. Solid-Phase Microextraction for the Determination of Inorganic Ions: Applications and Possibilities. ANAL LETT 2010. [DOI: 10.1080/00032711003653809] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
35
|
Buszewski B, Olszowy P, Ligor T, Szultka M, Nowaczyk J, Jaworski M, Jackowski M. Determination of adrenolytic drugs by SPME–LC–MS. Anal Bioanal Chem 2010; 397:173-179. [DOI: 10.1007/s00216-010-3483-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Revised: 01/07/2010] [Accepted: 01/15/2010] [Indexed: 11/29/2022]
|
36
|
Automated solid-phase microextraction and thin-film microextraction for high-throughput analysis of biological fluids and ligand–receptor binding studies. Nat Protoc 2010; 5:140-61. [DOI: 10.1038/nprot.2009.180] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
37
|
Strand N, Bhushan A, Schivo M, Kenyon NJ, Davis CE. Chemically Polymerized Polypyrrole for On-Chip Concentration of Volatile Breath Metabolites. SENSORS AND ACTUATORS. B, CHEMICAL 2010; 143:516-523. [PMID: 20161533 PMCID: PMC2802078 DOI: 10.1016/j.snb.2009.09.052] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
A wide range of metabolites are measured in the gas phase of exhaled human breath, and some of these biomarkers are frequently observed to be up- or down-regulated in certain disease states. Portable breath analysis systems have the potential for a wide range of applications in health diagnostics. However, this is currently limited by the lack of concentration mechanisms to enhance trace metabolites found in the breath to levels that can be adequately recorded using miniaturized gas-phase sensors. In this study we have created chip-based polymeric pre-concentration devices capable of absorbing and desorbing breath volatiles for subsequent chemical analysis. These devices appear to concentrate chemicals from both environmental air samples as well as directly from exhaled human breath, and these devices may have applications in lab-on-a-chip-based environmental and health monitoring systems.
Collapse
Affiliation(s)
- Nicholas Strand
- Mechanical and Aerospace Engineering Department, University of California, Davis, One Shields Avenue, Davis, CA 95616
| | - Abhinav Bhushan
- Mechanical and Aerospace Engineering Department, University of California, Davis, One Shields Avenue, Davis, CA 95616
| | - Michael Schivo
- Division of Pulmonary and Critical Care Medicine, Genome and Biomedical Sciences Facility, University of California, Davis, CA 95616
| | - Nicholas J. Kenyon
- Division of Pulmonary and Critical Care Medicine, Genome and Biomedical Sciences Facility, University of California, Davis, CA 95616
| | - Cristina E. Davis
- Mechanical and Aerospace Engineering Department, University of California, Davis, One Shields Avenue, Davis, CA 95616
| |
Collapse
|
38
|
Spietelun A, Pilarczyk M, Kloskowski A, Namieśnik J. Current trends in solid-phase microextraction (SPME) fibre coatings. Chem Soc Rev 2010; 39:4524-37. [DOI: 10.1039/c003335a] [Citation(s) in RCA: 234] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
39
|
Determination of fluoxetine and norfluoxetine enantiomers in human plasma by polypyrrole-coated capillary in-tube solid-phase microextraction coupled with liquid chromatography-fluorescence detection. J Chromatogr A 2009; 1216:8590-7. [DOI: 10.1016/j.chroma.2009.10.034] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Revised: 10/08/2009] [Accepted: 10/13/2009] [Indexed: 11/17/2022]
|
40
|
Kataoka H, Ishizaki A, Nonaka Y, Saito K. Developments and applications of capillary microextraction techniques: A review. Anal Chim Acta 2009; 655:8-29. [DOI: 10.1016/j.aca.2009.09.032] [Citation(s) in RCA: 147] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2009] [Revised: 09/19/2009] [Accepted: 09/22/2009] [Indexed: 11/30/2022]
|
41
|
Recent developments and applications of microextraction techniques in drug analysis. Anal Bioanal Chem 2009; 396:339-64. [DOI: 10.1007/s00216-009-3076-2] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2009] [Revised: 08/12/2009] [Accepted: 08/17/2009] [Indexed: 10/20/2022]
|
42
|
Vuckovic D, Shirey R, Chen Y, Sidisky L, Aurand C, Stenerson K, Pawliszyn J. In vitro evaluation of new biocompatible coatings for solid-phase microextraction: Implications for drug analysis and in vivo sampling applications. Anal Chim Acta 2009; 638:175-85. [DOI: 10.1016/j.aca.2009.02.049] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2008] [Revised: 02/27/2009] [Accepted: 02/27/2009] [Indexed: 11/28/2022]
|
43
|
Li T, Xu J, Wu JH, Feng YQ. Liquid-phase deposition of silica nanoparticles into a capillary for in-tube solid-phase microextraction coupled with high-performance liquid chromatography. J Chromatogr A 2009; 1216:2989-95. [DOI: 10.1016/j.chroma.2009.01.076] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2008] [Revised: 01/18/2009] [Accepted: 01/21/2009] [Indexed: 10/21/2022]
|
44
|
Chaves AR, Chiericato Júnior G, Queiroz MEC. Solid-phase microextraction using poly(pyrrole) film and liquid chromatography with UV detection for analysis of antidepressants in plasma samples. J Chromatogr B Analyt Technol Biomed Life Sci 2009; 877:587-93. [DOI: 10.1016/j.jchromb.2008.12.070] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2008] [Revised: 12/03/2008] [Accepted: 12/23/2008] [Indexed: 11/29/2022]
|
45
|
Critical review on recent developments in solventless techniques for extraction of analytes. Anal Bioanal Chem 2008; 393:809-33. [DOI: 10.1007/s00216-008-2437-6] [Citation(s) in RCA: 189] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2008] [Accepted: 09/24/2008] [Indexed: 10/21/2022]
|
46
|
Vuckovic D, Cudjoe E, Hein D, Pawliszyn J. Automation of Solid-Phase Microextraction in High-Throughput Format and Applications to Drug Analysis. Anal Chem 2008; 80:6870-80. [DOI: 10.1021/ac800936r] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Dajana Vuckovic
- Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada, and PAS Technology, Magdala, Germany
| | - Erasmus Cudjoe
- Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada, and PAS Technology, Magdala, Germany
| | - Dietmar Hein
- Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada, and PAS Technology, Magdala, Germany
| | - Janusz Pawliszyn
- Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada, and PAS Technology, Magdala, Germany
| |
Collapse
|
47
|
Fontanals N, Marcé RM, Borrull F. New materials in sorptive extraction techniques for polar compounds. J Chromatogr A 2007; 1152:14-31. [PMID: 17187808 DOI: 10.1016/j.chroma.2006.11.077] [Citation(s) in RCA: 194] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2006] [Revised: 11/17/2006] [Accepted: 11/22/2006] [Indexed: 11/28/2022]
Abstract
This paper provides an overview of the new developments in material and format technology that improve the extraction of polar compounds in several extraction techniques. They mainly include solid-phase extraction, but there are also other sorptive extraction techniques, such as stir bar sorptive extraction and solid-phase microextraction that use either fibers or in-tube devices. We focus on new synthesised materials that are both commercially available and "in-house". Most novel materials that enhance the extraction of polar compounds are hydrophilic and have large specific surface area; however, we also cover other leading technologies, such as sol-gel or monolith. We describe the morphological and chemical properties of these new sorbents so that we can better understand them and relate them to their capability of retaining polar compounds. We discuss the extraction efficiency for polar compounds when these polymers are used as sorptive material and compare them to other materials. We also mention some representative examples of applications.
Collapse
Affiliation(s)
- N Fontanals
- Departament de Química Analítica i Química Orgànica, Universitat Rovira i Virgili, Campus Sescelades, Marcel lí Domingo, s/n, 43007 Tarragona, Spain
| | | | | |
Collapse
|
48
|
Hutchinson JP, Setkova L, Pawliszyn J. Automation of solid-phase microextraction on a 96-well plate format. J Chromatogr A 2007; 1149:127-37. [PMID: 17418854 DOI: 10.1016/j.chroma.2007.02.117] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2007] [Revised: 02/23/2007] [Accepted: 02/27/2007] [Indexed: 11/20/2022]
Abstract
Studies have been performed assessing the feasibility and characterizing the automation of solid-phase microextraction (SPME) on a multi-well plate format. Four polycyclic aromatic hydrocarbons (PAHs), naphthalene, fluorene, anthracene and fluoranthene, were chosen as test analytes to demonstrate the technique due to their favorable partition coefficients, K(fw), between polydimethylsiloxane (PDMS) extraction phases and water. Four different PDMS configurations were investigated regarding their suitability. These included (i) a PDMS membrane; (ii) a multi-fiber device containing lengths of PDMS-coated flexible wire; (iii) a stainless steel pin covered with silicone hollow fiber membrane and (iv) commercial PDMS-coated flexible metal fiber assemblies. Of these configurations, the stainless steel pin covered with silicone tubing was chosen as a robust alternative. An array of 96 SPME devices that can be placed simultaneously into a 96-well plate was constructed to demonstrate the high-throughput potential when performing multiple microextractions in parallel. Different agitation methods were assessed including magnetic stirring, sonication, and orbital shaking at different speeds. Orbital shaking whilst holding the SPME device in a stationary position provided the optimum agitation conditions for liquid SPME. Once the analytes had been extracted, desorption of the analytes into an appropriate solvent was investigated. Liquid-phase SPME and solvent desorption on the multi-well plate format is shown to be a viable alternative for automated high-throughput SPME analysis compatible with both gas- and liquid-chromatography platforms.
Collapse
Affiliation(s)
- Joseph P Hutchinson
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | | | | |
Collapse
|
49
|
|
50
|
Hu W, Hu B, Jiang Z. On-line preconcentration and separation of Co, Ni and Cd via capillary microextraction on ordered mesoporous alumina coating and determination by inductively plasma mass spectrometry (ICP-MS). Anal Chim Acta 2006; 572:55-62. [PMID: 17723461 DOI: 10.1016/j.aca.2006.05.024] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2005] [Revised: 04/27/2006] [Accepted: 05/08/2006] [Indexed: 11/30/2022]
Abstract
In this paper, an ordered mesoporous alumina coating was prepared and applied to capillary microextraction (CME) of trace Co, Ni and Cd for the first time. The coated capillary was used for on-line coupling CME with inductively plasma mass spectrometry (ICP-MS) for the determination of trace metals of Co, Ni and Cd. The porous structure of Al2O3 coating was examined by SEM and TEM. The effects of the extraction parameters including pH, sample flow rate and volume, elution solution and interfering ions on the recovery of analytes have been investigated and optimized. Under the optimized conditions, the limits of detection were 0.33, 1.5 and 1.4 ng L(-1) for Co, Ni and Cd, respectively, with a preconcentration factor of 10 times. The precisions for all investigated elements were 2.7, 4.1 and 2.5% (c=0.05 ng L(-1), n=7), for Co, Ni and Cd, respectively, and the sample frequency was 8 h(-1). The proposed method was successfully applied for the analysis of trace metals in water, rice and urine samples with the recovery of 94-105%. In order to validate the proposed method, two certified reference materials of GBW 0913 human urine and NIES No.10-b rice flour were analyzed, and the determination values are in good agreement with the certified values. The ordered mesoporous Al2O3 coated capillary can be used more than 20 times without decreasing the extraction efficiency.
Collapse
Affiliation(s)
- Wenling Hu
- Department of Chemistry, Wuhan 430072, PR China
| | | | | |
Collapse
|