1
|
Efthimiou M, Stephanou G, Demopoulos NA, Nikolaropoulos SS. Aneugenic potential of the anticancer drugs melphalan and chlorambucil. The involvement of apoptosis and chromosome segregation regulating proteins. J Appl Toxicol 2011; 33:537-45. [PMID: 22025197 DOI: 10.1002/jat.1743] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Revised: 08/20/2011] [Accepted: 08/20/2011] [Indexed: 12/31/2022]
Abstract
Previous findings showed that the anticancer drugs p-N,N-bis(2-chloroethyl) amino-l-phenylalanine (melphalan, MEL) and p-N,N-bis(2-chloroethyl)aminophenylbutyric acid (chlorambucil, CAB) belonging to the nitrogen mustard group, in addition to their clastogenic activity, also exert aneugenic potential, nondisjunction and chromosome delay. Their aneugenic potential is mainly mediated through centrosome defects. To further investigate their aneugenicity we (a) studied whether apoptosis is a mechanism responsible for the elimination of damaged cells generated by MEL and CAB and (b) investigated if proteins that regulate chromosome segregation are involved in the modulation of their aneugenic potential. Apoptosis was studied by Annexin-V/Propidium Iodide staining and fluorescence microscopy. The involvement of apoptosis on the exclusion of cells with genetic damage and centrosome disturbances was analyzed by DAPI staining and immunofluorescence of β- and γ-tubulin in the presence of pan-caspase inhibitor. The expressions of Aurora-A, Aurora-B, survivin and γ-tubulin were studied by western blot. We found that (a) apoptosis is not the mechanism of choice for selectively eliminating cells with supernumerary centrosomes, and (b) the proteins Aurora-A, Aurora-B and survivin are involved in the modulation of MEL and CAB aneugenicity. These findings are important for the understanding of the mechanism responsible for the aneugenic activity of the anticancer drugs melphalan and chlorambucil.
Collapse
Affiliation(s)
- Maria Efthimiou
- Division of Genetics, Cell and Developmental Biology, Department of Biology, University of Patras, 26 500, Patras, Greece
| | | | | | | |
Collapse
|
2
|
Abstract
The process of mitosis is a validated point of intervention in cancer therapy and a variety of anti-mitotic drugs are successfully being used in the clinic. To date, all approved antimitotics target the spindle microtubules, thus interfering with spindle dynamics, leading to mitotic arrest and apoptosis. While effective, these drugs are also associated with a variety of side effects, including neurotoxicity. In recent years, mitotic kinesins have attracted significant attention in the search for novel, alternative mitotic drug targets. Due to their specific function in mitosis, targeting these proteins creates an opportunity for the development of more selective antimitotics with an improved side effect profile. In addition, kinesin inhibitors may overcome resistance to microtubule targeting drugs. Drug discovery efforts in this area have initially focused on the plus-end directed kinesin spindle protein (KSP) and a variety of compounds are currently undergoing clinical testing.
Collapse
|
3
|
Zhou X, Cao X, Perlman Z, Wong STC. A computerized cellular imaging system for high content analysis in Monastrol suppressor screens. J Biomed Inform 2005; 39:115-25. [PMID: 16011909 DOI: 10.1016/j.jbi.2005.05.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2004] [Revised: 05/05/2005] [Accepted: 05/19/2005] [Indexed: 10/25/2022]
Abstract
In this paper, we describe a new bioimage informatics system developed for high content screening (HCS) applications with the goal to extract and analyze phenotypic features of hundreds of thousands of mitotic cells simultaneously. The system introduces the algorithm of multi-phenotypic mitotic analysis (MMA) and integrates that with algorithms of correlation analysis and compound clustering used in gene microarray studies. The HCS-MMA system combines different phenotypic information of cellular images obtained from three-channel acquisitions to distinguish and label individual cells at various phases of mitosis. The proposed system can also be used to extract and count the number of cells in each phase in cell-based assay experiments and archive the extracted data into a structured database for more sophisticated statistical and data analysis. To recognize different mitotic phases, binary patterns are set up based on a known biological mitotic spindle model to characterize cellular morphology of actin, microtubules, and DNA. To illustrate its utility, the HCS-MMA system has been applied to screen the quantitative response of 320 different drug compounds in suppressing Monastrol. The results are validated and evaluated by comparing the performance of HCS-MMA with visual analysis, as well as clustering of the drug compounds under evaluation.
Collapse
Affiliation(s)
- Xiaobo Zhou
- Harvard Center for Neurodegeneration and Repair-Center for Bioinformatics, Harvard Medical School, 1249 Boylston, Boston, MA 02215, USA.
| | | | | | | |
Collapse
|
4
|
Bishop JD, Han Z, Schumacher JM. The Caenorhabditis elegans Aurora B kinase AIR-2 phosphorylates and is required for the localization of a BimC kinesin to meiotic and mitotic spindles. Mol Biol Cell 2004; 16:742-56. [PMID: 15548597 PMCID: PMC545908 DOI: 10.1091/mbc.e04-08-0682] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
BimC kinesins are required for mitotic spindle assembly in a variety of organisms. These proteins are localized to centrosomes, spindle microtubules, and the spindle midzone. We have previously shown that the Caenorhabditis elegans Aurora B kinase AIR-2 is required for the localization of the ZEN-4 kinesin protein to midzone microtubules. To determine whether the association of BimC kinesins with spindle microtubules is also dependent on AIR-2, we examined the expression pattern of BMK-1, a C. elegans BimC kinesin, in wild-type and AIR-2-deficient embryos. BMK-1 is highly expressed in the hermaphrodite gonad and is localized to meiotic spindle microtubules in the newly fertilized embryo. In mitotic embryos, BMK-1 is associated with spindle microtubules from prophase through anaphase and is concentrated at the spindle midzone during anaphase and telophase. In the absence of AIR-2, BMK-1 localization to meiotic and mitotic spindles is greatly reduced. This is not a consequence of loss of ZEN-4 localization because BMK-1 is appropriately localized in ZEN-4-deficient embryos. Furthermore, AIR-2 and BMK-1 directly interact with one another and the C-terminal tail domain of BMK-1 is specifically phosphorylated by AIR-2 in vitro. Together with our previous data, these results suggest that at least one function of the Aurora B kinases is to recruit spindle-associated motor proteins to their sites of action.
Collapse
Affiliation(s)
- John D Bishop
- Department of Molecular Genetics, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | | | | |
Collapse
|
5
|
Schoch CL, Aist JR, Yoder OC, Gillian Turgeon B. A complete inventory of fungal kinesins in representative filamentous ascomycetes. Fungal Genet Biol 2003; 39:1-15. [PMID: 12742059 DOI: 10.1016/s1087-1845(03)00022-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Complete inventories of kinesins from three pathogenic filamentous ascomycetes, Botryotinia fuckeliana, Cochliobolus heterostrophus, and Gibberella moniliformis, are described. These protein sequences were compared with those of the filamentous saprophyte, Neurospora crassa and the two yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe. Data mining and phylogenetic analysis of the motor domain yielded a constant set of 10 kinesins in the filamentous fungal species, compared with a smaller set in S. cerevisiae and S. pombe. The filamentous fungal kinesins fell into nine subfamilies when compared with well-characterized kinesins from other eukaryotes. A few putative kinesins (one in B. fuckeliana and two in C. heterostrophus) could not be defined as functional, due to unorthodox organization and lack of experimental data. The broad representation of filamentous fungal kinesins across most of the known subfamilies and the ease of gene manipulation make fungi ideal models for functional and evolutionary investigation of these proteins.
Collapse
Affiliation(s)
- Conrad L Schoch
- Department of Plant Pathology, 334 Plant Science Building, Cornell University, Ithaca, NY 14853, USA
| | | | | | | |
Collapse
|
6
|
Chang MS, Huang CJ, Chen ML, Chen ST, Fan CC, Chu JM, Lin WC, Yang YC. Cloning and characterization of hMAP126, a new member of mitotic spindle-associated proteins. Biochem Biophys Res Commun 2001; 287:116-21. [PMID: 11549262 DOI: 10.1006/bbrc.2001.5554] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
One novel gene product, hMAP126, was demonstrated to interact with p29 in the yeast two-hybrid assay. The full-length cDNA of hMAP126 has been obtained and encodes a protein of 1120 amino acids. Multiple tissue Northern blot analysis showed that hMAP126 was abundantly expressed in the testis. Polyclonal antiserum against hMAP126 was raised and affinity-purification of anti-hMAP126 antibodies was performed. The subcellular distribution of hMAP126 was localized to the mitotic spindle. Furthermore, hMAP126 was identified to be post-translationally modified and phosphorylated by p34(cdc2) kinase in vitro. Taken together, we have isolated a novel protein, hMAP126, which may be involved in the functional and dynamic regulation of mitotic spindles.
Collapse
Affiliation(s)
- M S Chang
- Department of Medical Research, Mackay Memorial Hospital, 45 Ming-San Road, Tamshui, Taipei, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Touïtou I, Lhomond G, Prulière G. Boursin, a sea urchin bimC kinesin protein, plays a role in anaphase and cytokinesis. J Cell Sci 2001; 114:481-91. [PMID: 11171318 DOI: 10.1242/jcs.114.3.481] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have isolated and characterized Boursin, a kinesin-related protein of the bimC family, from Paracentrotus lividus sea urchin eggs. Boursin is expressed at high levels in eggs and embryos during early cleavage stages. Boursin was found to be associated with different parts of the mitotic spindle from early prophase to telophase. Expression of a form of the protein predicted to act as a dominant negative mutant caused severe defects in cell division and resulted in the formation of embryos with polyploid and multiastral blastomeres. Immunofluorescence analysis indicated that these defects did not arise from failure in either centrosome separation or bipolar spindle formation. Time-lapse observations showed rather that these perturbations in cell division resulted from abnormal anaphase and failure to complete cytokinesis. These phenotypes differ from the phenotype described following perturbation of the function of bimC family members in other organisms. Our study has thus uncovered roles for a bimC kinesin in late stages of cell division.
Collapse
Affiliation(s)
- I Touïtou
- UMR 7009 CNRS-UPMC, Observatoire Oceanologique, 06234 Villefranche-Sue-Mer Cedex, France.
| | | | | |
Collapse
|
8
|
Abstract
The Rab6-binding kinesin, Rab6-KIFL, was identified in a two-hybrid screen for proteins that interact with Rab6, a small GTPase involved in membrane traffic through the Golgi apparatus. We find that Rab6-KIFL accumulates in mitotic cells where it localizes to the midzone of the spindle during anaphase, and to the cleavage furrow and midbody during telophase. Overexpression of Rab6-KIFL causes a cell division defect resulting in cell death. Microinjection of antibodies to Rab6-KIFL results in the cells becoming binucleate after one cell cycle, and time-lapse microscopy reveals that this is due to a defect in cleavage furrow formation and thus cytokinesis. These data show that endogenous Rab6-KIFL functions in cell division during cleavage furrow formation and cytokinesis, in addition to its previously described role in membrane traffic.
Collapse
Affiliation(s)
- E Hill
- Beatson Institute for Cancer Research, and University of Glasgow Institute of Biological and Life Sciences, CRC-Beatson Laboratories, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | | | | |
Collapse
|
9
|
Abstract
During mitosis, replicated sister-chromatids must maintain cohesion as they attach to the mitotic spindle. At anaphase, cohesion is lost simultaneously along the entire chromosome, releasing sisters from one another and allowing them to segregate to opposite poles. During meiosis, sisters separate in a two-step process. At anaphase of meiosis I, cohesion is lost along the chromosome arms but is maintained at centromeric regions. Not until meiosis II are sister chromatids able to break the connection at the centromere and separate away from one another. Recent studies suggest that the centromere exhibits dynamics that are very different compared with those of the chromatid arms during both mitosis and meiosis. This review discusses the nature of the specialized chromatid cohesion seen at the centromere.
Collapse
Affiliation(s)
- K J Dej
- Whitehead Institute for Biomedical Research, Nine Cambridge Center, Cambridge, MA 02142, USA
| | | |
Collapse
|
10
|
Abstract
TPX2, the targeting protein for Xenopus kinesin-like protein 2 (Xklp2), was identified as a microtubule-associated protein that mediates the binding of the COOH-terminal domain of Xklp2 to microtubules (Wittmann, T., H. Boleti, C. Antony, E. Karsenti, and I. Vernos. 1998. J. Cell Biol. 143:673-685). Here, we report the cloning and functional characterization of Xenopus TPX2. TPX2 is a novel, basic 82.4-kD protein that is phosphorylated during mitosis in a microtubule-dependent way. TPX2 is nuclear during interphase and becomes localized to spindle poles in mitosis. Spindle pole localization of TPX2 requires the activity of the dynein-dynactin complex. In late anaphase TPX2 becomes relocalized from the spindle poles to the midbody. TPX2 is highly homologous to a human protein of unknown function and thus defines a new family of vertebrate spindle pole components. We investigated the function of TPX2 using spindle assembly in Xenopus egg extracts. Immunodepletion of TPX2 from mitotic egg extracts resulted in bipolar structures with disintegrating poles and a decreased microtubule density. Addition of an excess of TPX2 to spindle assembly reactions gave rise to monopolar structures with abnormally enlarged poles. We conclude that, in addition to its function in targeting Xklp2 to microtubule minus ends during mitosis, TPX2 also participates in the organization of spindle poles.
Collapse
Affiliation(s)
- Torsten Wittmann
- Cell Biology and Cell Biophysics Program, European Molecular Biology Laboratory, D-69117 Heidelberg, Germany
| | - Matthias Wilm
- Biochemical Instrumentation Program, European Molecular Biology Laboratory, D-69117 Heidelberg, Germany
| | - Eric Karsenti
- Cell Biology and Cell Biophysics Program, European Molecular Biology Laboratory, D-69117 Heidelberg, Germany
| | - Isabelle Vernos
- Cell Biology and Cell Biophysics Program, European Molecular Biology Laboratory, D-69117 Heidelberg, Germany
| |
Collapse
|