1
|
Price OM, Thakur A, Ortolano A, Towne A, Velez C, Acevedo O, Hevel JM. Naturally occurring cancer-associated mutations disrupt oligomerization and activity of protein arginine methyltransferase 1 (PRMT1). J Biol Chem 2021; 297:101336. [PMID: 34688662 PMCID: PMC8592882 DOI: 10.1016/j.jbc.2021.101336] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 01/13/2023] Open
Abstract
Protein arginine methylation is a posttranslational modification catalyzed by the protein arginine methyltransferase (PRMT) enzyme family. Dysregulated protein arginine methylation is linked to cancer and a variety of other human diseases. PRMT1 is the predominant PRMT isoform in mammalian cells and acts in pathways regulating transcription, DNA repair, apoptosis, and cell proliferation. PRMT1 dimer formation, which is required for methyltransferase activity, is mediated by interactions between a structure called the dimerization arm on one monomer and a surface of the Rossman Fold of the other monomer. Given the link between PRMT1 dysregulation and disease and the link between PRMT1 dimerization and activity, we searched the Catalogue of Somatic Mutations in Cancer (COSMIC) database to identify potential inactivating mutations occurring in the PRMT1 dimerization arm. We identified three mutations that correspond to W215L, Y220N, and M224V substitutions in human PRMT1V2 (isoform 1) (W197L, Y202N, M206V in rat PRMT1V1). Using a combination of site-directed mutagenesis, analytical ultracentrifugation, native PAGE, and activity assays, we found that these conservative substitutions surprisingly disrupt oligomer formation and substantially impair both S-adenosyl-L-methionine (AdoMet) binding and methyltransferase activity. Molecular dynamics simulations suggest that these substitutions introduce novel interactions within the dimerization arm that lock it in a conformation not conducive to dimer formation. These findings provide a clear, if putative, rationale for the contribution of these mutations to impaired arginine methylation in cells and corresponding health consequences.
Collapse
Affiliation(s)
- Owen M Price
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah, USA
| | - Abhishek Thakur
- Department of Chemistry, University of Miami, Coral Gables, Florida, USA
| | - Ariana Ortolano
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah, USA
| | - Arianna Towne
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah, USA
| | - Caroline Velez
- Department of Chemistry, University of Miami, Coral Gables, Florida, USA
| | - Orlando Acevedo
- Department of Chemistry, University of Miami, Coral Gables, Florida, USA.
| | - Joan M Hevel
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah, USA.
| |
Collapse
|
2
|
Rapid and direct measurement of methyltransferase activity in about 30 min. Methods 2019; 175:3-9. [PMID: 31605745 DOI: 10.1016/j.ymeth.2019.10.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 10/05/2019] [Accepted: 10/07/2019] [Indexed: 11/24/2022] Open
Abstract
Protein arginine methylation is a widespread eukaryotic posttranslational modification that occurs to both histone and non-histone proteins. The S-adenosyl-L-methionine (AdoMet or SAM)-dependent modification is catalyzed by the protein arginine methyltransferase (PRMT) family of enzymes. In the last several years a series of both direct and indirect assay formats have been described that allow the rate of methylation to be measured. Here we provide a detailed protocol to directly measure PRMT activity using radiolabeled AdoMet, reversed-phase resin-filled pipette tips (ZipTips®) and a liquid scintillation counter. Because the ZipTips® based quantitation relies only on the straightforward separation of unreacted AdoMet from a methylated substrate, this protocol should be readily adaptable to other methyltransferases. The method is fast, simple to employ with both peptide and protein substrates, and produces very little radioactive waste.
Collapse
|
3
|
Akhtar MK, Vijay D, Umbreen S, McLean CJ, Cai Y, Campopiano DJ, Loake GJ. Hydrogen Peroxide-Based Fluorometric Assay for Real-Time Monitoring of SAM-Dependent Methyltransferases. Front Bioeng Biotechnol 2018; 6:146. [PMID: 30406092 PMCID: PMC6200863 DOI: 10.3389/fbioe.2018.00146] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 09/24/2018] [Indexed: 11/26/2022] Open
Abstract
Methylated chemicals are widely used as key intermediates for the syntheses of pharmaceuticals, fragrances, flavors, biofuels and plastics. In nature, the process of methylation is commonly undertaken by a super-family of S-adenosyl methionine-dependent enzymes known as methyltransferases. Herein, we describe a novel high throughput enzyme-coupled assay for determining methyltransferase activites. Adenosylhomocysteine nucleosidase, xanthine oxidase, and horseradish peroxidase enzymes were shown to function in tandem to generate a fluorescence signal in the presence of S-adenosyl-L-homocysteine and Amplex Red (10-acetyl-3,7-dihydroxyphenoxazine). Since S-adenosyl-L-homocysteine is a key by-product of reactions catalyzed by S-adenosyl methionine-dependent methyltransferases, the coupling enzymes were used to assess the activities of EcoRI methyltransferase and a salicylic acid methyltransferase from Clarkia breweri in the presence of S-adenosyl methionine. For the EcoRI methyltransferase, the assay was sensitive enough to allow the monitoring of DNA methylation in the nanomolar range. In the case of the salicylic acid methyltransferase, detectable activity was observed for several substrates including salicylic acid, benzoic acid, 3-hydroxybenzoic acid, and vanillic acid. Additionally, the de novo synthesis of the relatively expensive and unstable cosubstrate, S-adenosyl methionine, catalyzed by methionine adenosyltransferase could be incorporated within the assay. Overall, the assay offers an excellent level of sensitivity that permits continuous and reliable monitoring of methyltransferase activities. We anticipate this assay will serve as a useful bioanalytical tool for the rapid screening of S-adenosyl methionine-dependent methyltransferase activities.
Collapse
Affiliation(s)
- M Kalim Akhtar
- Department of Chemistry, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates.,Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Dhanya Vijay
- Department of Chemistry, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Saima Umbreen
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Chris J McLean
- EastChem School of Chemistry, Joseph Black Building, University of Edinburgh, Edinburgh, United Kingdom
| | - Yizhi Cai
- Manchester Institute of Biotechnology, University of Manchester, Manchester, United Kingdom
| | - Dominic J Campopiano
- EastChem School of Chemistry, Joseph Black Building, University of Edinburgh, Edinburgh, United Kingdom
| | - Gary J Loake
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
4
|
Hu H, Qian K, Ho MC, Zheng YG. Small Molecule Inhibitors of Protein Arginine Methyltransferases. Expert Opin Investig Drugs 2016; 25:335-58. [PMID: 26789238 DOI: 10.1517/13543784.2016.1144747] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
INTRODUCTION Arginine methylation is an abundant posttranslational modification occurring in mammalian cells and catalyzed by protein arginine methyltransferases (PRMTs). Misregulation and aberrant expression of PRMTs are associated with various disease states, notably cancer. PRMTs are prominent therapeutic targets in drug discovery. AREAS COVERED The authors provide an updated review of the research on the development of chemical modulators for PRMTs. Great efforts are seen in screening and designing potent and selective PRMT inhibitors, and a number of micromolar and submicromolar inhibitors have been obtained for key PRMT enzymes such as PRMT1, CARM1, and PRMT5. The authors provide a focus on their chemical structures, mechanism of action, and pharmacological activities. Pros and cons of each type of inhibitors are also discussed. EXPERT OPINION Several key challenging issues exist in PRMT inhibitor discovery. Structural mechanisms of many PRMT inhibitors remain unclear. There lacks consistency in potency data due to divergence of assay methods and conditions. Physiologically relevant cellular assays are warranted. Substantial engagements are needed to investigate pharmacodynamics and pharmacokinetics of the new PRMT inhibitors in pertinent disease models. Discovery and evaluation of potent, isoform-selective, cell-permeable and in vivo-active PRMT modulators will continue to be an active arena of research in years ahead.
Collapse
Affiliation(s)
- Hao Hu
- a Department of Pharmaceutical and Biomedical Sciences , The University of Georgia , Athens , GA , USA
| | - Kun Qian
- a Department of Pharmaceutical and Biomedical Sciences , The University of Georgia , Athens , GA , USA
| | - Meng-Chiao Ho
- b Institute of Biological Chemistry , Academia Sinica , Nankang , Taipei , Taiwan
| | - Y George Zheng
- a Department of Pharmaceutical and Biomedical Sciences , The University of Georgia , Athens , GA , USA
| |
Collapse
|
5
|
Petronikolou N, Nair SK. Biochemical Studies of Mycobacterial Fatty Acid Methyltransferase: A Catalyst for the Enzymatic Production of Biodiesel. ACTA ACUST UNITED AC 2015; 22:1480-1490. [PMID: 26526103 DOI: 10.1016/j.chembiol.2015.09.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 09/04/2015] [Accepted: 09/24/2015] [Indexed: 10/22/2022]
Abstract
Transesterification of fatty acids yields the essential component of biodiesel, but current processes are cost-prohibitive and generate waste. Recent efforts make use of biocatalysts that are effective in diverting products from primary metabolism to yield fatty acid methyl esters in bacteria. These biotransformations require the fatty acid O-methyltransferase (FAMT) from Mycobacterium marinum (MmFAMT). Although this activity was first reported in the literature in 1970, the FAMTs have yet to be biochemically characterized. Here, we describe several crystal structures of MmFAMT, which highlight an unexpected structural conservation with methyltransferases that are involved in plant natural product metabolism. The determinants for ligand recognition are analyzed by kinetic analysis of structure-based active-site variants. These studies reveal how an architectural fold employed in plant natural product biosynthesis is used in bacterial fatty acid O-methylation.
Collapse
Affiliation(s)
- Nektaria Petronikolou
- Department of Biochemistry, University of Illinois at Urbana Champaign, 600 South Mathews Avenue, Urbana, IL 61801, USA; Institute for Genomic Biology, University of Illinois at Urbana Champaign, 600 South Mathews Avenue, Urbana, IL 61801, USA
| | - Satish K Nair
- Department of Biochemistry, University of Illinois at Urbana Champaign, 600 South Mathews Avenue, Urbana, IL 61801, USA; Center for Biophysics and Computational Biology and University of Illinois at Urbana Champaign, 600 South Mathews Avenue, Roger Adams Lab Room 430, Urbana, IL 61801, USA; Institute for Genomic Biology, University of Illinois at Urbana Champaign, 600 South Mathews Avenue, Urbana, IL 61801, USA.
| |
Collapse
|
6
|
Richardson SL, Hanjra P, Zhang G, Mackie BD, Peterson DL, Huang R. A direct, ratiometric, and quantitative MALDI-MS assay for protein methyltransferases and acetyltransferases. Anal Biochem 2015; 478:59-64. [PMID: 25778392 DOI: 10.1016/j.ab.2015.03.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 02/18/2015] [Accepted: 03/04/2015] [Indexed: 01/22/2023]
Abstract
Protein methylation and acetylation play important roles in biological processes, and misregulation of these modifications is involved in various diseases. Therefore, it is critical to understand the activities of the enzymes responsible for these modifications. Herein we describe a sensitive method for ratiometric quantification of methylated and acetylated peptides via MALDI-MS by direct spotting of enzymatic methylation and acetylation reaction mixtures without tedious purification procedures. The quantifiable detection limit for peptides with our method is approximately 10 fmol. This is achieved by increasing the signal-to-noise ratio through the addition of NH4H2PO4 to the matrix solution and reduction of the matrix α-cyanohydroxycinnamic acid concentration to 2 mg/ml. We have demonstrated the application of this method in enzyme kinetic analysis and inhibition studies. The unique feature of this method is the simultaneous quantification of multiple peptide species for investigation of processivity mechanisms. Its wide buffer compatibility makes it possible to be adapted to investigate the activity of any protein methyltransferase or acetyltransferase.
Collapse
Affiliation(s)
- Stacie L Richardson
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23219, USA; Institute for Structural Biology and Drug Discovery, Virginia Commonwealth University, Richmond, VA 23219, USA
| | - Pahul Hanjra
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23219, USA; Institute for Structural Biology and Drug Discovery, Virginia Commonwealth University, Richmond, VA 23219, USA
| | - Gang Zhang
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23219, USA; Institute for Structural Biology and Drug Discovery, Virginia Commonwealth University, Richmond, VA 23219, USA
| | - Brianna D Mackie
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23219, USA; Institute for Structural Biology and Drug Discovery, Virginia Commonwealth University, Richmond, VA 23219, USA
| | - Darrell L Peterson
- Institute for Structural Biology and Drug Discovery, Virginia Commonwealth University, Richmond, VA 23219, USA; Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA 23219, USA
| | - Rong Huang
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23219, USA; Institute for Structural Biology and Drug Discovery, Virginia Commonwealth University, Richmond, VA 23219, USA.
| |
Collapse
|