1
|
Sawyer TW, Ritzel DV, Wang Y, Josey T, Villanueva M, Nelson P, Song Y, Shei Y, Hennes G, Vair C, Parks S, Fan C, McLaws L. Primary Blast Causes Delayed Effects without Cell Death in Shell-Encased Brain Cell Aggregates. J Neurotrauma 2017; 35:174-186. [PMID: 28726571 DOI: 10.1089/neu.2016.4961] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Previous work in this laboratory used underwater explosive exposures to isolate the effects of shock-induced principle stress without shear on rat brain aggregate cultures. The current study has utilized simulated air blast to expose aggregates in suspension and enclosed within a spherical shell, enabling the examination of a much more complex biomechanical insult. Culture medium-filled spheres were exposed to single pulse overpressures of 15-30 psi (∼6-7 msec duration) and measurements within the sphere at defined sites showed complex and spatially dependent pressure changes. When brain aggregates were exposed to similar conditions, no cell death was observed and no changes in several commonly used biomarkers of traumatic brain injury (TBI) were noted. However, similarly to underwater blast, immediate and transient increases in the protein kinase B signaling pathway were observed at early time-points (3 days). In contrast, the oligodendrocyte marker 2',3'-cyclic nucleotide 3'-phosphodiesterase, as well as vascular endothelial growth factor, both displayed markedly delayed (14-28 days) and pressure-dependent responses. The imposition of a spherical shell between the single pulse shock wave and the target brain tissue introduces greatly increased complexity to the insult. This work shows that brain tissue can not only discriminate the nature of the pressure changes it experiences, but that a portion of its response is significantly delayed. These results have mechanistic implications for the study of primary blast-induced TBI and also highlight the importance of rigorously characterizing the actual pressure variations experienced by target tissue in primary blast studies.
Collapse
Affiliation(s)
- Thomas W Sawyer
- 1 Defence Research and Development Canada, Suffield Research Center , Medicine Hat, Alberta, Canada
| | | | - Yushan Wang
- 1 Defence Research and Development Canada, Suffield Research Center , Medicine Hat, Alberta, Canada
| | - Tyson Josey
- 1 Defence Research and Development Canada, Suffield Research Center , Medicine Hat, Alberta, Canada
| | - Mercy Villanueva
- 1 Defence Research and Development Canada, Suffield Research Center , Medicine Hat, Alberta, Canada
| | - Peggy Nelson
- 1 Defence Research and Development Canada, Suffield Research Center , Medicine Hat, Alberta, Canada
| | - Yanfeng Song
- 1 Defence Research and Development Canada, Suffield Research Center , Medicine Hat, Alberta, Canada
| | - Yimin Shei
- 1 Defence Research and Development Canada, Suffield Research Center , Medicine Hat, Alberta, Canada
| | - Grant Hennes
- 1 Defence Research and Development Canada, Suffield Research Center , Medicine Hat, Alberta, Canada
| | - Cory Vair
- 1 Defence Research and Development Canada, Suffield Research Center , Medicine Hat, Alberta, Canada
| | | | - Changyang Fan
- 4 Canada West Biosciences , Camrose, Alberta, Canada
| | - Lori McLaws
- 1 Defence Research and Development Canada, Suffield Research Center , Medicine Hat, Alberta, Canada
| |
Collapse
|
2
|
Sawyer TW, Lee JJ, Villanueva M, Wang Y, Nelson P, Song Y, Fan C, Barnes J, McLaws L. The Effect of Underwater Blast on Aggregating Brain Cell Cultures. J Neurotrauma 2017; 34:517-528. [PMID: 27163293 DOI: 10.1089/neu.2016.4430] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Although the deleterious effects of primary blast on gas-filled organs are well accepted, the effect of blast-induced shock waves on the brain is less clear because of factors that complicate the interpretation of clinical and experimental data. Brain cell aggregate cultures are comprised of multiple differentiated brain cell types and were used to examine the effects of underwater blast. Suspensions of these cultures encased in dialysis tubing were exposed to explosive-generated underwater blasts of low (∼300 kPa), medium (∼2,700 kPa), or high (∼14,000 kPa) intensities and harvested at 1-28 days post-exposure. No changes in gross morphology were noted immediately or weeks after blast wave exposure, and no increases in either apoptotic (caspase-3) or necrotic (lactate dehydrogenase) cell death were observed. Changes in neuronal (neurofilament H, acetylcholinesterase, and choline acetyltransferase) and glial (glial fibrillary acidic protein, glutamine synthetase) endpoints did not occur. However, significant time- and pressure-related increases in Akt (protein kinase B) phosphorylation were noted, as well as declines in vascular endothelial growth factor levels, implicating pathways involved in cellular survival mechanisms. The free-floating nature of the aggregates during blast wave exposure, coupled with their highly hydrolyzed dialysis tubing containment, results in minimized boundary effects, thus enabling accurate assessment of brain cell response to a simplified shock-induced stress wave. This work shows that, at its simplest, blast-induced shock waves produce subtle changes in brain tissue. This study has mechanistic implications for the study of primary blast-induced traumatic brain injury and supports the thesis that underwater blast may cause subtle changes in the brains of submerged individuals.
Collapse
Affiliation(s)
- Thomas W Sawyer
- 1 Defence Research and Development Canada, Suffield Research Center , Medicine Hat, Alberta, Canada
| | - Julian J Lee
- 1 Defence Research and Development Canada, Suffield Research Center , Medicine Hat, Alberta, Canada
| | - Mercy Villanueva
- 1 Defence Research and Development Canada, Suffield Research Center , Medicine Hat, Alberta, Canada
| | - Yushan Wang
- 1 Defence Research and Development Canada, Suffield Research Center , Medicine Hat, Alberta, Canada
| | - Peggy Nelson
- 1 Defence Research and Development Canada, Suffield Research Center , Medicine Hat, Alberta, Canada
| | - Yanfeng Song
- 1 Defence Research and Development Canada, Suffield Research Center , Medicine Hat, Alberta, Canada
| | - Chengyang Fan
- 2 Canada West Biosciences , Calgary, Alberta, Canada
| | - Julia Barnes
- 3 Hyland Quality Systems , Medicine Hat, Alberta, Canada
| | - Lori McLaws
- 1 Defence Research and Development Canada, Suffield Research Center , Medicine Hat, Alberta, Canada
| |
Collapse
|