1
|
Yao W, Zhang Y, Zhang G. Marine peptides as potential anti-aging agents: Preparation, characterization, mechanisms of action, and future perspectives. Food Chem 2024; 460:140413. [PMID: 39033641 DOI: 10.1016/j.foodchem.2024.140413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/19/2024] [Accepted: 07/08/2024] [Indexed: 07/23/2024]
Abstract
Aging is a universal biological process characterized by a decline in physiological functions, leading to increased susceptibility to diseases. With global aging trends, understanding and mitigating the aging process is paramount. Recent studies highlight marine peptides as promising bioactive substances with potential anti-aging properties. This review critically examines the potential of marine peptides as novel food ingredients in anti-aging, exploring their sources, preparation methods, physicochemical properties, and the underlying mechanisms through which they impact the aging process. Marine peptides exhibit significant potential in targeting aging, extending lifespan, and enhancing healthspan. They act through mechanisms such as reducing oxidative stress and inflammation, modulating mitochondrial dysfunction, inducing autophagy, maintaining extracellular matrix homeostasis, and regulating longevity-related pathways. Despite challenges in stability, bioavailability, and scalability, marine peptides offer significant potential in health, nutraceuticals, and pharmaceuticals, warranting further research and development in anti-aging.
Collapse
Affiliation(s)
- Wanzi Yao
- Department of Food Safety and Health, School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
| | - Yifeng Zhang
- Department of Food Safety and Health, School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China.
| | - Gaiping Zhang
- Department of Food Safety and Health, School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China; Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agriculture University, Zhengzhou 450046, China; School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; Longhu Laboratory of Advanced Immunology, Zhengzhou 450046, China.
| |
Collapse
|
2
|
Deulofeu M, Peña-Méndez EM, Vaňhara P, Havel J, Moráň L, Pečinka L, Bagó-Mas A, Verdú E, Salvadó V, Boadas-Vaello P. Discriminating fingerprints of chronic neuropathic pain following spinal cord injury using artificial neural networks and mass spectrometry analysis of female mice serum. Neurochem Int 2024; 181:105890. [PMID: 39455011 DOI: 10.1016/j.neuint.2024.105890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 10/28/2024]
Abstract
Spinal cord injury (SCI) often leads to central neuropathic pain, a condition associated with significant morbidity and is challenging in terms of the clinical management. Despite extensive efforts, identifying effective biomarkers for neuropathic pain remains elusive. Here we propose a novel approach combining matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) with artificial neural networks (ANNs) to discriminate between mass spectral profiles associated with chronic neuropathic pain induced by SCI in female mice. Functional evaluations revealed persistent chronic neuropathic pain following mild SCI as well as minor locomotor disruptions, confirming the value of collecting serum samples. Mass spectra analysis revealed distinct profiles between chronic SCI and sham controls. On applying ANNs, 100% success was achieved in distinguishing between the two groups through the intensities of m/z peaks. Additionally, the ANNs also successfully discriminated between chronic and acute SCI phases. When reflexive pain response data was integrated with mass spectra, there was no improvement in the classification. These findings offer insights into neuropathic pain pathophysiology and underscore the potential of MALDI-TOF MS coupled with ANNs as a diagnostic tool for chronic neuropathic pain, potentially guiding attempts to discover biomarkers and develop treatments.
Collapse
Affiliation(s)
- Meritxell Deulofeu
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, University of Girona, Girona, Catalonia, Spain; Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5/A14, 625 00, Brno, Czech Republic; Department of Histology and Embryology, Faculty of Medicine, Masaryk University, 62500, Brno, Czech Republic
| | - Eladia M Peña-Méndez
- Department of Chemistry, Analytical Chemistry Division, Faculty of Sciences, University of La Laguna, 38204 San Cristóbal de La Laguna, Tenerife, Spain
| | - Petr Vaňhara
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, 62500, Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital, 656 91, Brno, Czech Republic
| | - Josef Havel
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5/A14, 625 00, Brno, Czech Republic
| | - Lukáš Moráň
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, 62500, Brno, Czech Republic; Research Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Lukáš Pečinka
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5/A14, 625 00, Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital, 656 91, Brno, Czech Republic
| | - Anna Bagó-Mas
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, University of Girona, Girona, Catalonia, Spain
| | - Enrique Verdú
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, University of Girona, Girona, Catalonia, Spain
| | - Victoria Salvadó
- Department of Chemistry, Faculty of Science, University of Girona, 17071, Girona, Catalonia, Spain.
| | - Pere Boadas-Vaello
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, University of Girona, Girona, Catalonia, Spain.
| |
Collapse
|
3
|
Zadeh Moslabeh FG, Miar S, Habibi N. In Vitro Self-Assembly of a Modified Diphenylalanine Peptide to Nanofibers Induced by the Eye Absent Enzyme and Alkaline Phosphatase and Its Activity against Breast Cancer Cell Proliferation. ACS APPLIED BIO MATERIALS 2023; 6:164-170. [PMID: 36525564 DOI: 10.1021/acsabm.2c00829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Drug-resistant breast cancers such as Triple negative breast cancer (TNBC) do not respond successfully to chemotherapy treatments because they lack the expression of receptor targets. Drug-resistant anti-cancer treatments require innovative approaches to target these cells without relying on the receptors. Intracellular self-assembly of small molecules induced by enzymes is a nanotechnology approach for inhibiting cancer cell growth. In this approach, enzymes will induce the self-assembly of small molecules to nanofibers, which leads to cell death. Here, we investigate the self-assembly of a modified small peptide induced by two different phosphatases: alkaline phosphatase (ALP) and eye absent tyrosine phosphatase (EYA). ALPs are expressed in many adult human tissues and are critical for many cellular functions. EYAs are embryonic enzymes that are over-expressed in drug-resistant breast cancers. We synthesized a small diphenylalanine-based peptide with a tyrosine phosphate end group as the substrate of phosphatase enzymes. Peptides were synthesized with solid phase techniques and were characterized by HPLC and MALDI-TOF. To characterize the self-assembly of peptides exposed to enzymes, different techniques were used such as scattering light intensity, microscopes, and phosphate detection kit. We then determined the toxicity effect of the peptide against normal breast cancer cells, MCF-7, and drug-resistant breast cancer cells, MDA-MB-231. The results showed that the EYA enzyme is able to initiate self-assembly at lower peptide concentration with higher self-assembling intensity compared to ALP. A significant decrease in the TNBC cell number was observed even with a low peptide concentration of 60 μM. These results collectively support the exploration of enzyme self-assembly to treat TNBC.
Collapse
Affiliation(s)
- Forough Ghasem Zadeh Moslabeh
- Nanomedicine Lab, Department of Biomedical Engineering, University of North Texas, Denton, Texas 76207, United States
| | - Solaleh Miar
- Department of Civil, Environmental, and Biomedical Engineering, University of Hartford, West Hartford, Connecticut 06117, United States
| | - Neda Habibi
- Nanomedicine Lab, Department of Biomedical Engineering, University of North Texas, Denton, Texas 76207, United States
| |
Collapse
|
4
|
Connection between MHC class II binding and aggregation propensity: The antigenic peptide 10 of Paracoccidioides brasiliensis as a benchmark study. Comput Struct Biotechnol J 2023; 21:1746-1758. [PMID: 36890879 PMCID: PMC9986244 DOI: 10.1016/j.csbj.2023.02.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/17/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
The aggregation of epitopes that are also able to bind major histocompatibility complex (MHC) alleles raises questions around the potential connection between the formation of epitope aggregates and their affinities to MHC receptors. We first performed a general bioinformatic assessment over a public dataset of MHC class II epitopes, finding that higher experimental binding correlates with higher aggregation-propensity predictors. We then focused on the case of P10, an epitope used as a vaccine candidate against Paracoccidioides brasiliensis that aggregates into amyloid fibrils. We used a computational protocol to design variants of the P10 epitope to study the connection between the binding stabilities towards human MHC class II alleles and their aggregation propensities. The binding of the designed variants was tested experimentally, as well as their aggregation capacity. High-affinity MHC class II binders in vitro were more disposed to aggregate forming amyloid fibrils capable of binding Thioflavin T and congo red, while low affinity MHC class II binders remained soluble or formed rare amorphous aggregates. This study shows a possible connection between the aggregation propensity of an epitope and its affinity for the MHC class II cleft.
Collapse
|
5
|
Durrani R, Meiyun Y, Yang B, Durand E, Delavault A, Bowen H, Weiwei H, Yiyang L, Lili S, Fei G. Identification of novel bioactive proteins and their produced oligopeptides from Torreya grandis nuts using proteomic based prediction. Food Chem 2022; 405:134843. [DOI: 10.1016/j.foodchem.2022.134843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/21/2022] [Accepted: 10/31/2022] [Indexed: 11/05/2022]
|
6
|
Darie-Ion L, Whitham D, Jayathirtha M, Rai Y, Neagu AN, Darie CC, Petre BA. Applications of MALDI-MS/MS-Based Proteomics in Biomedical Research. Molecules 2022; 27:6196. [PMID: 36234736 PMCID: PMC9570737 DOI: 10.3390/molecules27196196] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 11/22/2022] Open
Abstract
Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS) is one of the most widely used techniques in proteomics to achieve structural identification and characterization of proteins and peptides, including their variety of proteoforms due to post-translational modifications (PTMs) or protein-protein interactions (PPIs). MALDI-MS and MALDI tandem mass spectrometry (MS/MS) have been developed as analytical techniques to study small and large molecules, offering picomole to femtomole sensitivity and enabling the direct analysis of biological samples, such as biofluids, solid tissues, tissue/cell homogenates, and cell culture lysates, with a minimized procedure of sample preparation. In the last decades, structural identification of peptides and proteins achieved by MALDI-MS/MS helped researchers and clinicians to decipher molecular function, biological process, cellular component, and related pathways of the gene products as well as their involvement in pathogenesis of diseases. In this review, we highlight the applications of MALDI ionization source and tandem approaches for MS for analyzing biomedical relevant peptides and proteins. Furthermore, one of the most relevant applications of MALDI-MS/MS is to provide "molecular pictures", which offer in situ information about molecular weight proteins without labeling of potential targets. Histology-directed MALDI-mass spectrometry imaging (MSI) uses MALDI-ToF/ToF or other MALDI tandem mass spectrometers for accurate sequence analysis of peptide biomarkers and biological active compounds directly in tissues, to assure complementary and essential spatial data compared with those obtained by LC-ESI-MS/MS technique.
Collapse
Affiliation(s)
- Laura Darie-Ion
- Laboratory of Biochemistry, Department of Chemistry, “Alexandru Ioan Cuza” University of Iasi, Carol I bvd, No. 11, 700506 Iasi, Romania
| | - Danielle Whitham
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699, USA
| | - Madhuri Jayathirtha
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699, USA
| | - Yashveen Rai
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699, USA
| | - Anca-Narcisa Neagu
- Laboratory of Animal Histology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iasi, Carol I bvd, No. 22, 700505 Iasi, Romania
| | - Costel C. Darie
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699, USA
| | - Brînduşa Alina Petre
- Laboratory of Biochemistry, Department of Chemistry, “Alexandru Ioan Cuza” University of Iasi, Carol I bvd, No. 11, 700506 Iasi, Romania
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699, USA
- Center for Fundamental Research and Experimental Development in Translation Medicine–TRANSCEND, Regional Institute of Oncology, 700483 Iasi, Romania
| |
Collapse
|
7
|
Ochoa R, Lunardelli VAS, Rosa DS, Laio A, Cossio P. Multiple-Allele MHC Class II Epitope Engineering by a Molecular Dynamics-Based Evolution Protocol. Front Immunol 2022; 13:862851. [PMID: 35572587 PMCID: PMC9094701 DOI: 10.3389/fimmu.2022.862851] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
Epitopes that bind simultaneously to all human alleles of Major Histocompatibility Complex class II (MHC II) are considered one of the key factors for the development of improved vaccines and cancer immunotherapies. To engineer MHC II multiple-allele binders, we developed a protocol called PanMHC-PARCE, based on the unsupervised optimization of the epitope sequence by single-point mutations, parallel explicit-solvent molecular dynamics simulations and scoring of the MHC II-epitope complexes. The key idea is accepting mutations that not only improve the affinity but also reduce the affinity gap between the alleles. We applied this methodology to enhance a Plasmodium vivax epitope for multiple-allele binding. In vitro rate-binding assays showed that four engineered peptides were able to bind with improved affinity toward multiple human MHC II alleles. Moreover, we demonstrated that mice immunized with the peptides exhibited interferon-gamma cellular immune response. Overall, the method enables the engineering of peptides with improved binding properties that can be used for the generation of new immunotherapies.
Collapse
Affiliation(s)
- Rodrigo Ochoa
- Biophysics of Tropical Diseases, Max Planck Tandem Group, University of Antioquia UdeA, Medellin, Colombia
| | | | - Daniela Santoro Rosa
- Department of Microbiology, Immunology and Parasitology, Federal University of Sao Paulo, Sao Paulo, Brazil.,Institute for Investigation in Immunology (iii), Instituto Nacional de Ciência e Tecnologia (INCT), Sao Paulo, Brazil
| | - Alessandro Laio
- Physics Area, International School for Advanced Studies (SISSA), Trieste, Italy.,Condensed Matter and Statistical Physics Section, International Centre for Theoretical Physics (ICTP), Trieste, Italy
| | - Pilar Cossio
- Biophysics of Tropical Diseases, Max Planck Tandem Group, University of Antioquia UdeA, Medellin, Colombia.,Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Frankfurt am Main, Germany.,Center for Computational Mathematics, Flatiron Institute, New York, NY, United States.,Center for Computational Biology, Flatiron Institute, New York, NY, United States
| |
Collapse
|
8
|
Weerakoon H, Miles JJ, Lepletier A, Hill MM. A high-resolution mass spectrometry based proteomic dataset of human regulatory T cells. Data Brief 2021; 40:107687. [PMID: 34950757 PMCID: PMC8671522 DOI: 10.1016/j.dib.2021.107687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 11/21/2021] [Accepted: 12/03/2021] [Indexed: 11/17/2022] Open
Abstract
Regulatory T cells (Tregs) play a core role in maintaining immune tolerance, homeostasis, and host health. High-resolution analysis of the Treg proteome is required to identify enriched biological processes and pathways distinct to this important immune cell lineage. We present a comprehensive proteomic dataset of Tregs paired with conventional CD4+ (Conv CD4+) T cells in healthy individuals. Tregs and Conv CD4+ T cells were sorted to high purity using dual magnetic bead-based and flow cytometry-based methodologies. Proteins were trypsin-digested and analysed using label-free data-dependent acquisition mass spectrometry (DDA-MS) followed by label free quantitation (LFQ) proteomics analysis using MaxQuant software. Approximately 4,000 T cell proteins were identified with a 1% false discovery rate, of which approximately 2,800 proteins were consistently identified and quantified in all the samples. Finally, flow cytometry with a monoclonal antibody was used to validate the elevated abundance of the protein phosphatase CD148 in Tregs. This proteomic dataset serves as a reference point for future mechanistic and clinical T cell immunology and identifies receptors, processes, and pathways distinct to Tregs. Collectively, these data will lead to a better understanding of Treg immunophysiology and potentially reveal novel leads for therapeutics seeking Treg regulation.
Collapse
Affiliation(s)
- Harshi Weerakoon
- Precision and Systems Biomedicine Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia.,School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia.,Department of Biochemistry, Faculty of Medicine and Allied Sciences, Rajarata University of Sri Lanka, Saliyapura, Sri Lanka
| | - John J Miles
- Human Immunity Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia.,Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Ailin Lepletier
- Human Immunity Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia.,Laboratory of Vaccines for the Developing World, Institute for Glycomics, Southport, QLD, Australia
| | - Michelle M Hill
- Precision and Systems Biomedicine Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia.,Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
9
|
Cruz J, Suárez-Barrera M, Rondón-Villarreal P, Olarte-Diaz A, Guzmán F, Visser L, Rueda-Forero N. Computational study, synthesis and evaluation of active peptides derived from Parasporin-2 and spike protein from Alphacoronavirus against colorectal cancer cells. Biosci Rep 2021; 41:BSR20211964. [PMID: 34796903 PMCID: PMC8661510 DOI: 10.1042/bsr20211964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/03/2021] [Accepted: 11/15/2021] [Indexed: 11/21/2022] Open
Abstract
Parasporin-2Aa1 (PS2Aa1) is a toxic protein of 37 KDa (30 kDa, activated form produced by proteolysis) that was shown to be cytotoxic against specific human cancer cells, although its mechanism of action has not been elucidated yet. In order to study the role of some native peptide fragments of proteins on anticancer activity, here we investigated the cytotoxic effect of peptide fragments from domain-1 of PS2Aa1 and one of the loops present in the binding region of the virus spike protein from Alphacoronavirus (HCoV-229E), the latter according to scientific reports, who showed interaction with the human APN (h-APN) receptor, evidence corroborated through computational simulations, and thus being possible active against colon cancer cells. Peptides namely P264-G274, Loop1-PS2Aa, and Loop2-PS2Aa were synthesized using the Fmoc solid-phase synthesis and characterized by mass spectrometry (MS). Additionally, one region from loop 1 of HCoV-229E, Loop1-HCoV-229E, was also synthesized and characterized. The A4W-GGN5 anticancer peptide and 5-fluorouracil (5-FU) were taken as a control in all experiments. Circular dichroism revealed an α-helix structure for the peptides derived from PS2Aa1 (P264-G274, Loop1-PS2Aa, and Loop2-PS2Aa) and β-laminar structure for the peptide derived from Alphacoronavirus spike protein Loop1-HCoV-229E. Peptides showed a hemolysis percentage of less than 20% at 100 µM concentration. Besides, peptides exhibited stronger anticancer activity against SW480 and SW620 cells after exposure for 48 h. Likewise, these compounds showed significantly lower toxicity against normal cells CHO-K1. The results suggest that native peptide fragments from Ps2Aa1 may be optimized as a novel potential cancer-therapeutic agents.
Collapse
Affiliation(s)
- Jenniffer Cruz
- Universidad de Santander, Facultad de Ciencias Médicas y de la Salud, Instituto de Investigación Masira, Bucaramanga, Colombia
| | - Miguel Orlando Suárez-Barrera
- Universidad de Santander, Facultad de Ciencias Médicas y de la Salud, Instituto de Investigación Masira, Bucaramanga, Colombia
- Department of Pathology and Medical Biology, University of Groningen, University medical Center Groningen, Groningen, Netherlands
- Corporación Académica Ciencias Básicas Biomédicas Universidad de Antioquia, Medellín, Colombia
| | - Paola Rondón-Villarreal
- Universidad de Santander, Facultad de Ciencias Médicas y de la Salud, Instituto de Investigación Masira, Bucaramanga, Colombia
| | - Andrés Olarte-Diaz
- Universidad de Santander, Facultad de Ciencias Médicas y de la Salud, Instituto de Investigación Masira, Bucaramanga, Colombia
| | - Fanny Guzmán
- NBC Núcleo de Biotecnología Curauma, Pontificia Universidad Católica de Valparaíso, Campus Curauma, Av. Universidad 330, Valparaíso, Chile
| | - Lydia Visser
- Department of Pathology and Medical Biology, University of Groningen, University medical Center Groningen, Groningen, Netherlands
| | - Nohora Juliana Rueda-Forero
- Universidad de Santander, Facultad de Ciencias Médicas y de la Salud, Instituto de Investigación Masira, Bucaramanga, Colombia
| |
Collapse
|
10
|
Weerakoon H, Potriquet J, Shah AK, Reed S, Jayakody B, Kapil C, Midha MK, Moritz RL, Lepletier A, Mulvenna J, Miles JJ, Hill MM. A primary human T-cell spectral library to facilitate large scale quantitative T-cell proteomics. Sci Data 2020; 7:412. [PMID: 33230158 PMCID: PMC7683684 DOI: 10.1038/s41597-020-00744-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 10/15/2020] [Indexed: 12/23/2022] Open
Abstract
Data independent analysis (DIA) exemplified by sequential window acquisition of all theoretical mass spectra (SWATH-MS) provides robust quantitative proteomics data, but the lack of a public primary human T-cell spectral library is a current resource gap. Here, we report the generation of a high-quality spectral library containing data for 4,833 distinct proteins from human T-cells across genetically unrelated donors, covering ~24% proteins of the UniProt/SwissProt reviewed human proteome. SWATH-MS analysis of 18 primary T-cell samples using the new human T-cell spectral library reliably identified and quantified 2,850 proteins at 1% false discovery rate (FDR). In comparison, the larger Pan-human spectral library identified and quantified 2,794 T-cell proteins in the same dataset. As the libraries identified an overlapping set of proteins, combining the two libraries resulted in quantification of 4,078 human T-cell proteins. Collectively, this large data archive will be a useful public resource for human T-cell proteomic studies. The human T-cell library is available at SWATHAtlas and the data are available via ProteomeXchange (PXD019446 and PXD019542) and PeptideAtlas (PASS01587).
Collapse
Affiliation(s)
- Harshi Weerakoon
- QIMR Berghofer Medical Research Institute, Herston, Brisbane, QLD, 4006, Australia
- School of Biomedical Sciences, The University of Queensland, St Lucia, QLD, 4072, Australia
- Faculty of Medicine and Allied Sciences, Rajarata University of Sri Lanka, Saliyapura, 50000, Sri Lanka
| | - Jeremy Potriquet
- QIMR Berghofer Medical Research Institute, Herston, Brisbane, QLD, 4006, Australia
- SCIEX Australia Pty Ltd, Mt Waverley, VIC, 3149, Australia
| | - Alok K Shah
- QIMR Berghofer Medical Research Institute, Herston, Brisbane, QLD, 4006, Australia
- CSL Limited, 45 Poplar Rd, Parkville, VIC, 3052, Australia
| | - Sarah Reed
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, QLD, 4006, Australia
| | - Buddhika Jayakody
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, QLD, 4006, Australia
| | - Charu Kapil
- Institute for Systems Biology, Seattle, WA, 98109, USA
| | - Mukul K Midha
- Institute for Systems Biology, Seattle, WA, 98109, USA
| | | | - Ailin Lepletier
- QIMR Berghofer Medical Research Institute, Herston, Brisbane, QLD, 4006, Australia
- Institute for Glycomics, Griffith University, Gold Coast, QLD, 4222, Australia
| | - Jason Mulvenna
- QIMR Berghofer Medical Research Institute, Herston, Brisbane, QLD, 4006, Australia
| | - John J Miles
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, 4878, Australia.
- Centre for Molecular Therapeutics, James Cook University, Cairns, QLD, 4878, Australia.
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Cairns, QLD, 4878, Australia.
| | - Michelle M Hill
- QIMR Berghofer Medical Research Institute, Herston, Brisbane, QLD, 4006, Australia.
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, QLD, 4006, Australia.
| |
Collapse
|
11
|
Singla R, Abidi SMS, Dar AI, Acharya A. Inhibition of Glycation-Induced Aggregation of Human Serum Albumin by Organic-Inorganic Hybrid Nanocomposites of Iron Oxide-Functionalized Nanocellulose. ACS OMEGA 2019; 4:14805-14819. [PMID: 31552320 PMCID: PMC6751540 DOI: 10.1021/acsomega.9b01392] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 07/31/2019] [Indexed: 05/06/2023]
Abstract
Protein aggregation leads to the transformation of proteins from their soluble form to the insoluble amyloid fibrils and these aggregates get deposited in the specific body tissues, accounting for various diseases. To prevent such an aggregation, organic-inorganic hybrid nanocomposites of iron oxide nanoparticle (NP, ∼6.5-7.0 nm)-conjugated cellulose nanocrystals (CNCs) isolated from Syzygium cumini (SC) and Pinus roxburghii (PR) were chemically synthesized. Transmission electron microscopy (TEM) images of the nanocomposites suggested that the in situ-synthesized iron oxide NPs were bound to the CNC surface in a uniform and regular fashion. The ThT fluorescence assay together with 8-anilino-1-naphthalenesulfonic acid, Congo Red, and CD studies suggested that short fiber-based SC nanocomposites showed better inhibition as well as dissociation of human serum albumin aggregates. The TEM and fluorescence microscopy studies supported similar observations. Native polyacrylamide gel electrophoresis results documented dissociation of higher protein aggregates in the presence of the developed nanocomposite. Interestingly, the dissociated proteins retained their biological function by maintaining a high amount of α-helix content. The in vitro studies with HEK-293 cells suggested that the developed nanocomposite reduces aggregation-induced cytotoxicity by intracellular reactive oxygen species scavenging and maintaining the Ca2+ ion-channel. These results indicated that the hybrid organic-inorganic nanocomposite, with simultaneous sites for hydrophobic and hydrophilic interactions, tends to provide a larger surface area for nanocomposite-protein interactions, which ultimately disfavors the nucleation step for fibrillation for protein aggregates.
Collapse
Affiliation(s)
- Rubbel Singla
- Biotechnology
Division and Academy of Scientific & Innovative Research (AcSIR), CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176061, India
| | - Syed M. S. Abidi
- Biotechnology
Division and Academy of Scientific & Innovative Research (AcSIR), CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176061, India
| | - Aqib Iqbal Dar
- Biotechnology
Division and Academy of Scientific & Innovative Research (AcSIR), CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176061, India
| | - Amitabha Acharya
- Biotechnology
Division and Academy of Scientific & Innovative Research (AcSIR), CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176061, India
| |
Collapse
|
12
|
Pegg CL, Cooper LT, Zhao J, Gerometta M, Smith FM, Yeh M, Bartlett PF, Gorman JJ, Boyd AW. Glycoengineering of EphA4 Fc leads to a unique, long-acting and broad spectrum, Eph receptor therapeutic antagonist. Sci Rep 2017; 7:6519. [PMID: 28747680 PMCID: PMC5529513 DOI: 10.1038/s41598-017-06685-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 06/15/2017] [Indexed: 11/09/2022] Open
Abstract
Eph receptors have emerged as targets for therapy in both neoplastic and non-neoplastic disease, however, particularly in non-neoplastic diseases, redundancy of function limits the effectiveness of targeting individual Eph proteins. We have shown previously that a soluble fusion protein, where the EphA4 ectodomain was fused to IgG Fc (EphA4 Fc), was an effective therapy in acute injuries and demonstrated that EphA4 Fc was a broad spectrum Eph/ephrin antagonist. However, a very short in vivo half-life effectively limited its therapeutic development. We report a unique glycoengineering approach to enhance the half-life of EphA4 Fc. Progressive deletion of three demonstrated N-linked sites in EphA4 progressively increased in vivo half-life such that the triple mutant protein showed dramatically improved pharmacokinetic characteristics. Importantly, protein stability, affinity for ephrin ligands and antagonism of cell expressed EphA4 was fully preserved, enabling it to be developed as a broad spectrum Eph/ephrin antagonist for use in both acute and chronic diseases.
Collapse
Affiliation(s)
- Cassandra L Pegg
- Protein Discovery Centre, QIMR Berghofer Medical Research Institute, Queensland, 4006, Australia.
- School of Chemistry and Molecular Biosciences, University of Queensland, Queensland, 4072, Australia.
| | - Leanne T Cooper
- Leukaemia Foundation Research Laboratory, QIMR Berghofer Medical Research Institute, Queensland, 4006, Australia
| | - Jing Zhao
- Queensland Brain Institute, University of Queensland, Queensland, 4072, Australia
| | - Michael Gerometta
- Queensland Brain Institute, University of Queensland, Queensland, 4072, Australia
| | - Fiona M Smith
- Leukaemia Foundation Research Laboratory, QIMR Berghofer Medical Research Institute, Queensland, 4006, Australia
| | - Michael Yeh
- The Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Queensland, 4006, Australia
| | - Perry F Bartlett
- Queensland Brain Institute, University of Queensland, Queensland, 4072, Australia
| | - Jeffrey J Gorman
- Protein Discovery Centre, QIMR Berghofer Medical Research Institute, Queensland, 4006, Australia
- School of Chemistry and Molecular Biosciences, University of Queensland, Queensland, 4072, Australia
| | - Andrew W Boyd
- Leukaemia Foundation Research Laboratory, QIMR Berghofer Medical Research Institute, Queensland, 4006, Australia
- Faculty of Medicine and Biomedical Sciences, University of Queensland, Queensland, 4006, Australia
| |
Collapse
|
13
|
Chaiyarit P, Jaresitthikunchai J, Phaonakrop N, Roytrakul S, Potempa B, Potempa J. Proteolytic effects of gingipains on trefoil factor family peptides. Clin Oral Investig 2017; 22:1009-1018. [PMID: 28726036 DOI: 10.1007/s00784-017-2181-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 07/10/2017] [Indexed: 01/05/2023]
Abstract
OBJECTIVES The present study was aimed to determine whether trefoil factor family (TFF) peptides which were generally considered to be resistant to proteolysis could be digested by gingipains, a major proteinases produced by Porphyromonas gingivalis. MATERIALS AND METHODS Recombinant human TFF1, TFF2, and TFF3 peptides were used as substrates. Gingipains including arginine gingipain (RgpB) and lysine gingipain (Kgp) were used as enzymes. Trypsin was used as a control protease. Matrix-assisted laser desorption/ionization with time-of-flight / time-of-flight (MALDI-TOF/TOF) and liquid chromatography mass spectrometry (LC-MS) were used for analyzing peptide mass signals and amino acid sequences of digested TFF peptides. RESULTS MALDI-TOF/TOF analyses demonstrated that Kgp, RgpB, and trypsin were able to cleave TFF1 and TFF2 peptides, resulting in different patterns of digested fragments. However, impurity in recombinant TFF3 peptide substrates affected the interpretations of enzymatic reaction by MALDI-TOF/TOF. LC-MS analyses demonstrated that identified fragments of TFF1, TFF2, and TFF3 from digestion by gingipains were similar to those by trypsin. CONCLUSIONS Using MALDI-TOF/TOF and LC-MS, the present study provides new information that gingipains containing trypsin-like activities are able to digest TFF peptides. CLINICAL RELEVANCE The proteolytic effects of gingipains on TFF peptides may be responsible for reduction of salivary TFF peptides in chronic periodontitis patients. Further investigations to determine the pathological effects of gingipains on TFF peptides in saliva and periodontal tissues of patients with chronic periodontitis would be of interest.
Collapse
Affiliation(s)
- Ponlatham Chaiyarit
- Department of Oral Diagnosis, Faculty of Dentistry, Khon Kaen University, Khon Kaen, 40002, Thailand. .,Research Group of Chronic Inflammatory Oral Diseases and Systemic Diseases Associated with Oral Health, Faculty of Dentistry, Khon Kaen University, Khon Kaen, Thailand.
| | - Janthima Jaresitthikunchai
- Proteomics Research Laboratory, National Center for Genetic Engineering and Biotechnology, Pathumthani, Thailand
| | - Narumon Phaonakrop
- Proteomics Research Laboratory, National Center for Genetic Engineering and Biotechnology, Pathumthani, Thailand
| | - Sittiruk Roytrakul
- Proteomics Research Laboratory, National Center for Genetic Engineering and Biotechnology, Pathumthani, Thailand
| | - Barbara Potempa
- Department of Oral Immunology and Infectious Disease, University of Louisville School of Dentistry, Louisville, KY, USA
| | - Jan Potempa
- Department of Oral Immunology and Infectious Disease, University of Louisville School of Dentistry, Louisville, KY, USA.,Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
14
|
Site-specific glycosylation of the Newcastle disease virus haemagglutinin-neuraminidase. Glycoconj J 2016; 34:181-197. [DOI: 10.1007/s10719-016-9750-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 11/10/2016] [Accepted: 11/14/2016] [Indexed: 12/14/2022]
|
15
|
Mass spectrometry identification of age-associated proteins from the malaria mosquitoes Anopheles gambiae s.s. and Anopheles stephensi. Data Brief 2015; 4:461-7. [PMID: 26306320 PMCID: PMC4534588 DOI: 10.1016/j.dib.2015.07.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 07/03/2015] [Accepted: 07/06/2015] [Indexed: 11/27/2022] Open
Abstract
This study investigated proteomic changes occurring in Anopheles gambiae and Anopheles stephensi during adult mosquito aging. These changes were evaluated using two-dimensional difference gel electrophoresis (2D-DIGE) and the identities of aging related proteins were determined using capillary high-pressure liquid chromatography (capHPLC) coupled with a linear ion-trap (LTQ)-Orbitrap XL hybrid mass spectrometry (MS). Here, we have described the techniques used to determine age associated proteomic changes occurring in heads and thoraces across three age groups; 1, 9 and 17 d old A. gambiae and 4 age groups; 1, 9, 17 and 34 d old A. stephensi. We have provided normalised spot volume raw data for all protein spots that were visible on 2D-DIGE images for both species and processed Orbitrap mass spectrometry data. For public access, mass spectrometry raw data are available via ProteomeXchange with identifier PXD002153. A detailed description of this study has been described elsewhere [1].
Collapse
|
16
|
Clark PM, Rexach JE, Hsieh-Wilson LC. Visualization of O-GlcNAc glycosylation stoichiometry and dynamics using resolvable poly(ethylene glycol) mass tags. ACTA ACUST UNITED AC 2015; 5:281-302. [PMID: 24391098 PMCID: PMC3931299 DOI: 10.1002/9780470559277.ch130153] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
O-linked N-acetylglucosamine (O-GlcNAc) glycosylation is a dynamic protein posttranslational modification with roles in processes such as transcription, cell cycle regulation, and metabolism. Detailed mechanistic studies of O-GlcNAc have been hindered by a lack of methods for measuring O-GlcNAc stoichiometries and the interplay of glycosylation with other posttranslational modifications. We recently developed a method for labeling O-GlcNAc-modified proteins with resolvable poly(ethylene glycol) mass tags. This mass-tagging approach enables the direct measurement of glycosylation stoichiometries and the visualization of distinct O-GlcNAc-modified subpopulations. Here, we describe procedures for labeling O-GlcNAc glycoproteins in cell lysates with mass tags.
Collapse
Affiliation(s)
- Peter M Clark
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California
| | | | | |
Collapse
|
17
|
Richardson SL, Hanjra P, Zhang G, Mackie BD, Peterson DL, Huang R. A direct, ratiometric, and quantitative MALDI-MS assay for protein methyltransferases and acetyltransferases. Anal Biochem 2015; 478:59-64. [PMID: 25778392 DOI: 10.1016/j.ab.2015.03.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 02/18/2015] [Accepted: 03/04/2015] [Indexed: 01/22/2023]
Abstract
Protein methylation and acetylation play important roles in biological processes, and misregulation of these modifications is involved in various diseases. Therefore, it is critical to understand the activities of the enzymes responsible for these modifications. Herein we describe a sensitive method for ratiometric quantification of methylated and acetylated peptides via MALDI-MS by direct spotting of enzymatic methylation and acetylation reaction mixtures without tedious purification procedures. The quantifiable detection limit for peptides with our method is approximately 10 fmol. This is achieved by increasing the signal-to-noise ratio through the addition of NH4H2PO4 to the matrix solution and reduction of the matrix α-cyanohydroxycinnamic acid concentration to 2 mg/ml. We have demonstrated the application of this method in enzyme kinetic analysis and inhibition studies. The unique feature of this method is the simultaneous quantification of multiple peptide species for investigation of processivity mechanisms. Its wide buffer compatibility makes it possible to be adapted to investigate the activity of any protein methyltransferase or acetyltransferase.
Collapse
Affiliation(s)
- Stacie L Richardson
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23219, USA; Institute for Structural Biology and Drug Discovery, Virginia Commonwealth University, Richmond, VA 23219, USA
| | - Pahul Hanjra
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23219, USA; Institute for Structural Biology and Drug Discovery, Virginia Commonwealth University, Richmond, VA 23219, USA
| | - Gang Zhang
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23219, USA; Institute for Structural Biology and Drug Discovery, Virginia Commonwealth University, Richmond, VA 23219, USA
| | - Brianna D Mackie
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23219, USA; Institute for Structural Biology and Drug Discovery, Virginia Commonwealth University, Richmond, VA 23219, USA
| | - Darrell L Peterson
- Institute for Structural Biology and Drug Discovery, Virginia Commonwealth University, Richmond, VA 23219, USA; Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA 23219, USA
| | - Rong Huang
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23219, USA; Institute for Structural Biology and Drug Discovery, Virginia Commonwealth University, Richmond, VA 23219, USA.
| |
Collapse
|
18
|
Lee SJ, Adler B, Ekström S, Rezeli M, Végvári Á, Park JW, Malm J, Laurell T. Aptamer/ISET-MS: a new affinity-based MALDI technique for improved detection of biomarkers. Anal Chem 2014; 86:7627-34. [PMID: 25001319 DOI: 10.1021/ac501488b] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
With the rapid progress in the development of new clinical biomarkers there is an unmet need of fast and sensitive multiplex analysis methods for disease specific protein monitoring. Immunoaffinity extraction integrated with matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) analysis offers a route to rapid and sensitive protein analysis and potentially multiplex biomarker analysis. In this study, the previously reported integrated selective enrichment target (ISET)-MALDI-MS analysis was implemented with ssDNA aptamer functionalized microbeads to address the specific capturing of thrombin in complex samples. The main objective for using an aptamer as the capturing ligand was to avoid the inherently high background components, which are produced during the digestion step following the target extraction when antibodies are used. By applying a thrombin specific aptamer linked to ISET-MALDI-MS detection, a proof of concept of antibody fragment background reduction in the ISET-MALDI-MS readout is presented. Detection sensitivity was significantly increased compared to the corresponding system based on antibody-specific binding as the aptamer ligand does not induce any interfering background residues from the antibodies. The limit of detection for thrombin was 10 fmol in buffer using the aptamer/ISET-MALDI-MS configuration as confirmed by MS/MS fragmentation. The aptamer/ISET-MALDI-MS platform also displayed a limit of detection of 10 fmol for thrombin in five different human serum samples (1/10 diluted), demonstrating the applicability of the aptamer/ISET-MALDI-MS analysis in clinical samples.
Collapse
Affiliation(s)
- Su Jin Lee
- Department of Biomedical Engineering, Lund University , P.O. Box 118, SE-211 00 Lund, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Poerschke RL, Fritz KS, Franklin CC. Methods to detect protein glutathionylation. ACTA ACUST UNITED AC 2013; 57:6.17.1-6.17.18. [PMID: 24510510 DOI: 10.1002/0471140856.tx0617s57] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Glutathionylation is a posttranslational modification that results in the formation of a mixed disulfide between glutathione and the thiol group of a protein cysteine residue. Glutathionylation of proteins occurs via both nonenzymatic mechanisms involving thiol/disulfide exchange and enzyme-mediated reactions. Protein glutathionylation is observed in response to oxidative or nitrosative stress and is redox-dependent, being readily reversible under reducing conditions. Such findings suggest that glutathionylation plays an important role in mediating redox-sensitive signaling. Indeed, glutathionylation can affect protein function by altering activity, protein-protein interactions, and ligand binding. Glutathionylation may also serve to prevent cysteine residues from undergoing irreversible oxidative modification. Thus, determining the ability of a given protein to become glutathionylated can provide insight into its redox regulation and putative role in dictating cellular response to oxidative and nitrosative stress. Methods to measure protein glutathionylation using immunoblotting and mass spectrometry are described.
Collapse
Affiliation(s)
- Robyn L Poerschke
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, Anschutz Medical Campus, University of Colorado Denver, Aurora, Colorado
| | - Kristofer S Fritz
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, Anschutz Medical Campus, University of Colorado Denver, Aurora, Colorado
| | - Christopher C Franklin
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, Anschutz Medical Campus, University of Colorado Denver, Aurora, Colorado.,University of Colorado Cancer Center, Anschutz Medical Campus, University of Colorado Denver, Aurora, Colorado
| |
Collapse
|
20
|
Hastie ML, Headlam MJ, Patel NB, Bukreyev AA, Buchholz UJ, Dave KA, Norris EL, Wright CL, Spann KM, Collins PL, Gorman JJ. The human respiratory syncytial virus nonstructural protein 1 regulates type I and type II interferon pathways. Mol Cell Proteomics 2012; 11:108-27. [PMID: 22322095 PMCID: PMC3418853 DOI: 10.1074/mcp.m111.015909] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Respiratory syncytial viruses encode a nonstructural protein (NS1) that interferes with type I and III interferon and other antiviral responses. Proteomic studies were conducted on human A549 type II alveolar epithelial cells and type I interferon-deficient Vero cells (African green monkey kidney cells) infected with wild-type and NS1-deficient clones of human respiratory syncytial virus to identify other potential pathway and molecular targets of NS1 interference. These analyses included two-dimensional differential gel electrophoresis and quantitative Western blotting. Surprisingly, NS1 was found to suppress the induction of manganese superoxide dismutase (SOD2) expression in A549 cells and to a much lesser degree Vero cells in response to infection. Because SOD2 is not directly inducible by type I interferons, it served as a marker to probe the impact of NS1 on signaling of other cytokines known to induce SOD2 expression and/or indirect effects of type I interferon signaling. Deductive analysis of results obtained from cell infection and cytokine stimulation studies indicated that interferon-γ signaling was a potential target of NS1, possibly as a result of modulation of STAT1 levels. However, this was not sufficient to explain the magnitude of the impact of NS1 on SOD2 induction in A549 cells. Vero cell infection experiments indicated that NS1 targeted a component of the type I interferon response that does not directly induce SOD2 expression but is required to induce another initiator of SOD2 expression. STAT2 was ruled out as a target of NS1 interference using quantitative Western blot analysis of infected A549 cells, but data were obtained to indicate that STAT1 was one of a number of potential targets of NS1. A label-free mass spectrometry-based quantitative approach is proposed as a means of more definitive identification of NS1 targets.
Collapse
Affiliation(s)
- Marcus L Hastie
- Protein Discovery Centre, Queensland Institute of Medical Research, Herston, Queensland 4029, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|