1
|
Quantitative analysis of metastatic breast cancer in mice using deep learning on cryo-image data. Sci Rep 2021; 11:17527. [PMID: 34471169 PMCID: PMC8410829 DOI: 10.1038/s41598-021-96838-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 08/17/2021] [Indexed: 11/30/2022] Open
Abstract
Cryo-imaging sections and images a whole mouse and provides ~ 120-GBytes of microscopic 3D color anatomy and fluorescence images, making fully manual analysis of metastases an onerous task. A convolutional neural network (CNN)-based metastases segmentation algorithm included three steps: candidate segmentation, candidate classification, and semi-automatic correction of the classification result. The candidate segmentation generated > 5000 candidates in each of the breast cancer-bearing mice. Random forest classifier with multi-scale CNN features and hand-crafted intensity and morphology features achieved 0.8645 ± 0.0858, 0.9738 ± 0.0074, and 0.9709 ± 0.0182 sensitivity, specificity, and area under the curve (AUC) of the receiver operating characteristic (ROC), with fourfold cross validation. Classification results guided manual correction by an expert with our in-house MATLAB software. Finally, 225, 148, 165, and 344 metastases were identified in the four cancer mice. With CNN-based segmentation, the human intervention time was reduced from > 12 to ~ 2 h. We demonstrated that 4T1 breast cancer metastases spread to the lung, liver, bone, and brain. Assessing the size and distribution of metastases proves the usefulness and robustness of cryo-imaging and our software for evaluating new cancer imaging and therapeutics technologies. Application of the method with only minor modification to a pancreatic metastatic cancer model demonstrated generalizability to other tumor models.
Collapse
|
2
|
Martine LC, Holzapfel BM, McGovern JA, Wagner F, Quent VM, Hesami P, Wunner FM, Vaquette C, De-Juan-Pardo EM, Brown TD, Nowlan B, Wu DJ, Hutmacher CO, Moi D, Oussenko T, Piccinini E, Zandstra PW, Mazzieri R, Lévesque JP, Dalton PD, Taubenberger AV, Hutmacher DW. Engineering a humanized bone organ model in mice to study bone metastases. Nat Protoc 2017; 12:639-663. [PMID: 28253234 DOI: 10.1038/nprot.2017.002] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Current in vivo models for investigating human primary bone tumors and cancer metastasis to the bone rely on the injection of human cancer cells into the mouse skeleton. This approach does not mimic species-specific mechanisms occurring in human diseases and may preclude successful clinical translation. We have developed a protocol to engineer humanized bone within immunodeficient hosts, which can be adapted to study the interactions between human cancer cells and a humanized bone microenvironment in vivo. A researcher trained in the principles of tissue engineering will be able to execute the protocol and yield study results within 4-6 months. Additive biomanufactured scaffolds seeded and cultured with human bone-forming cells are implanted ectopically in combination with osteogenic factors into mice to generate a physiological bone 'organ', which is partially humanized. The model comprises human bone cells and secreted extracellular matrix (ECM); however, other components of the engineered tissue, such as the vasculature, are of murine origin. The model can be further humanized through the engraftment of human hematopoietic stem cells (HSCs) that can lead to human hematopoiesis within the murine host. The humanized organ bone model has been well characterized and validated and allows dissection of some of the mechanisms of the bone metastatic processes in prostate and breast cancer.
Collapse
Affiliation(s)
- Laure C Martine
- Queensland University of Technology (QUT), Brisbane, Queensland, Australia
| | - Boris M Holzapfel
- Queensland University of Technology (QUT), Brisbane, Queensland, Australia.,Orthopedic Center for Musculoskeletal Research, University of Wuerzburg, Wuerzburg, Germany
| | - Jacqui A McGovern
- Queensland University of Technology (QUT), Brisbane, Queensland, Australia
| | - Ferdinand Wagner
- Queensland University of Technology (QUT), Brisbane, Queensland, Australia.,Department of Orthopedics for the University of Regensburg, Asklepios Klinikum Bad Abbach, Bad Abbach, Germany.,Department of Pediatric Surgery, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Verena M Quent
- Queensland University of Technology (QUT), Brisbane, Queensland, Australia.,Department of Obstetrics and Gynecology, Martin-Luther-Krankenhaus, Academic Teaching Hospital of the Charité Berlin, Berlin, Germany
| | - Parisa Hesami
- Queensland University of Technology (QUT), Brisbane, Queensland, Australia
| | - Felix M Wunner
- Queensland University of Technology (QUT), Brisbane, Queensland, Australia
| | - Cedryck Vaquette
- Queensland University of Technology (QUT), Brisbane, Queensland, Australia
| | | | - Toby D Brown
- Queensland University of Technology (QUT), Brisbane, Queensland, Australia
| | - Bianca Nowlan
- The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Queensland, Australia
| | - Dan Jing Wu
- Queensland University of Technology (QUT), Brisbane, Queensland, Australia.,Institute for Complex Molecular Systems, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | | | - Davide Moi
- The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Queensland, Australia
| | - Tatiana Oussenko
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Elia Piccinini
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Peter W Zandstra
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Roberta Mazzieri
- The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Queensland, Australia
| | - Jean-Pierre Lévesque
- Stem Cell Biology Group - Blood and Bone Diseases Program, Mater Research Institute - The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia.,Faculty of Medicine and Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Paul D Dalton
- Queensland University of Technology (QUT), Brisbane, Queensland, Australia.,Department of Functional Materials in Medicine and Dentistry, and Bavarian Polymer Institute, University of Wuerzburg, Wuerzburg, Germany
| | - Anna V Taubenberger
- Queensland University of Technology (QUT), Brisbane, Queensland, Australia.,Biotec TU Dresden, Dresden, Germany
| | - Dietmar W Hutmacher
- Queensland University of Technology (QUT), Brisbane, Queensland, Australia.,George W Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA.,Institute for Advanced Study, Technical University Munich, Garching, Germany
| |
Collapse
|
3
|
Thibaudeau L, Taubenberger AV, Holzapfel BM, Quent VM, Fuehrmann T, Hesami P, Brown TD, Dalton PD, Power CA, Hollier BG, Hutmacher DW. A tissue-engineered humanized xenograft model of human breast cancer metastasis to bone. Dis Model Mech 2014; 7:299-309. [PMID: 24713276 PMCID: PMC3917251 DOI: 10.1242/dmm.014076] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The skeleton is a preferred homing site for breast cancer metastasis. To date, treatment options for patients with bone metastases are mostly palliative and the disease is still incurable. Indeed, key mechanisms involved in breast cancer osteotropism are still only partially understood due to the lack of suitable animal models to mimic metastasis of human tumor cells to a human bone microenvironment. In the presented study, we investigate the use of a human tissue-engineered bone construct to develop a humanized xenograft model of breast cancer-induced bone metastasis in a murine host. Primary human osteoblastic cell-seeded melt electrospun scaffolds in combination with recombinant human bone morphogenetic protein 7 were implanted subcutaneously in non-obese diabetic/severe combined immunodeficient mice. The tissue-engineered constructs led to the formation of a morphologically intact ‘organ’ bone incorporating a high amount of mineralized tissue, live osteocytes and bone marrow spaces. The newly formed bone was largely humanized, as indicated by the incorporation of human bone cells and human-derived matrix proteins. After intracardiac injection, the dissemination of luciferase-expressing human breast cancer cell lines to the humanized bone ossicles was detected by bioluminescent imaging. Histological analysis revealed the presence of metastases with clear osteolysis in the newly formed bone. Thus, human tissue-engineered bone constructs can be applied efficiently as a target tissue for human breast cancer cells injected into the blood circulation and replicate the osteolytic phenotype associated with breast cancer-induced bone lesions. In conclusion, we have developed an appropriate model for investigation of species-specific mechanisms of human breast cancer-related bone metastasis in vivo.
Collapse
Affiliation(s)
- Laure Thibaudeau
- Regenerative Medicine Group, Institute of Health and Biomedical Innovation, Queensland University of Technology, 60 Musk Avenue, Kelvin Grove, Brisbane, QLD 4049, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|