1
|
Shirzad H, Esmaeili F, Bakhshalizadeh S, Ebrahimie M, Ebrahimie E. Production of stable GFP-expressing neural cells from P19 embryonal carcinoma stem cells. Mol Cell Probes 2016; 32:46-54. [PMID: 28013042 DOI: 10.1016/j.mcp.2016.12.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 10/26/2016] [Accepted: 12/20/2016] [Indexed: 11/18/2022]
Abstract
Murine P19 embryonal carcinoma (EC) cells are convenient to differentiate into all germ layer derivatives. One of the advantages of P19 cells is that the exogenous DNA can be easily inserted into them. Here, at the first part of this study, we generated stable GFP-expressing P19 cells (P19-GFP+). FACS and western-blot analysis confirmed stable expression of GFP in the cells. We previously demonstrated the efficient induction of neuronal differentiation from mouse ES and EC cells by application of a neuroprotective drug, selegiline In the second part of this study selegiline was used to induce differentiation of P19-GFP+ into stable GFP-expressing neuron-like cells. Cresyl violet staining confirmed neuronal morphology of the differentiated cells. Furthermore, real-time PCR and immunoflourescence approved the expression of neuron specific markers. P19-GFP+ cells were able to survive, migrate and integrated into host tissues when transplanted to developing chick embryo CNS. The obtained live GFP-expressing cells can be used as an abundant source of developmentally pluripotent material for transplantation studies, investigating the cellular and molecular aspects of early differentiation.
Collapse
Affiliation(s)
- Hedayatollah Shirzad
- Cellular & Molecular Research Center, Shahrekord University of Medical Sciences, PO Box 8815713471, Shahrekord, Iran.
| | - Fariba Esmaeili
- Department of Biology, Faculty of Sciences, University of Isfahan, PO Box 8174673441, Isfahan, Iran.
| | - Shabnam Bakhshalizadeh
- Department of Anatomy, Tehran University of Medical Science, PO Box 1417653955, Tehran, Iran.
| | - Marzieh Ebrahimie
- Cellular & Molecular Research Center, Shahrekord University of Medical Sciences, PO Box 8815713471, Shahrekord, Iran.
| | - Esmaeil Ebrahimie
- School of Animal and Veterinary Sciences, The University of Adelaide, SA, Australia; School of Information Technology and Mathematical Sciences, Division of Information Technology, Engineering and the Environment, University of South Australia, Adelaide, Australia; Institute of Biotechnology, Shiraz University, Shiraz, Iran; School of Biological Sciences, Faculty of Science and Engineering, Flinders University, Adelaide, Australia; School of Medicine, The University of Adelaide, Adelaide, Australia.
| |
Collapse
|
2
|
Cao C, Rioult-Pedotti MS, Migani P, Yu CJ, Tiwari R, Parang K, Spaller MR, Goebel DJ, Marshall J. Impairment of TrkB-PSD-95 signaling in Angelman syndrome. PLoS Biol 2013; 11:e1001478. [PMID: 23424281 PMCID: PMC3570550 DOI: 10.1371/journal.pbio.1001478] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Accepted: 01/02/2013] [Indexed: 11/19/2022] Open
Abstract
Brain-derived neurotrophic factor signaling is defective in Angelman syndrome and can be rescued by disruption of Arc/PSD95 binding. Angelman syndrome (AS) is a neurodevelopment disorder characterized by severe cognitive impairment and a high rate of autism. AS is caused by disrupted neuronal expression of the maternally inherited Ube3A ubiquitin protein ligase, required for the proteasomal degradation of proteins implicated in synaptic plasticity, such as the activity-regulated cytoskeletal-associated protein (Arc/Arg3.1). Mice deficient in maternal Ube3A express elevated levels of Arc in response to synaptic activity, which coincides with severely impaired long-term potentiation (LTP) in the hippocampus and deficits in learning behaviors. In this study, we sought to test whether elevated levels of Arc interfere with brain-derived neurotrophic factor (BDNF) TrkB receptor signaling, which is known to be essential for both the induction and maintenance of LTP. We report that TrkB signaling in the AS mouse is defective, and show that reduction of Arc expression to control levels rescues the signaling deficits. Moreover, the association of the postsynaptic density protein PSD-95 with TrkB is critical for intact BDNF signaling, and elevated levels of Arc were found to impede PSD-95/TrkB association. In Ube3A deficient mice, the BDNF-induced recruitment of PSD-95, as well as PLCγ and Grb2-associated binder 1 (Gab1) with TrkB receptors was attenuated, resulting in reduced activation of PLCγ-α-calcium/calmodulin-dependent protein kinase II (CaMKII) and PI3K-Akt, but leaving the extracellular signal-regulated kinase (Erk) pathway intact. A bridged cyclic peptide (CN2097), shown by nuclear magnetic resonance (NMR) studies to uniquely bind the PDZ1 domain of PSD-95 with high affinity, decreased the interaction of Arc with PSD-95 to restore BDNF-induced TrkB/PSD-95 complex formation, signaling, and facilitate the induction of LTP in AS mice. We propose that the failure of TrkB receptor signaling at synapses in AS is directly linked to elevated levels of Arc associated with PSD-95 and PSD-95 PDZ-ligands may represent a promising approach to reverse cognitive dysfunction. Angelman syndrome (AS) is a debilitating neurological disorder caused by a dysfunctional Ube3A gene. Most children with AS exhibit developmental delay, movement disorders, speech impairment, and often autistic features. The Ube3A enzyme normally regulates the degradation of the synaptic protein Arc, and in its absence the resulting elevated levels of Arc weaken synaptic contacts, making it difficult to generate long-term potentiation (LTP) and to process and store memory. In this study, we show that increased levels of Arc disrupt brain-derived neurotrophic factor (BDNF) signaling through the TrkB receptor (which is important for both the induction and maintenance of LTP). We find that the association of the postsynaptic density protein PSD-95 with TrkB is critical for intact BDNF signaling, and that the high levels of Arc in AS interfere with BDNF-induced recruitment of postsynaptic density protein-95 (PSD-95) and other effectors to TrkB. By disrupting the interaction between Arc and PSD-95 with the novel cyclic peptidomimetic compound CN2097, we were able to restore BDNF signaling and improve the induction of LTP in a mouse model of AS. We propose that the disruption of TrkB receptor signaling at synapses contributes to the cognitive dysfunction that occurs in Angelman syndrome.
Collapse
Affiliation(s)
- Cong Cao
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, Rhode Island, United States of America
- Institute of Neuroscience, The Second Affiliated Hospital of Soochow University, Soochow University, Suzhou, China
| | - Mengia S. Rioult-Pedotti
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, Rhode Island, United States of America
| | - Paolo Migani
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Ancona, Italy
| | - Crystal J. Yu
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, Rhode Island, United States of America
| | - Rakesh Tiwari
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island, United States of America
| | - Keykavous Parang
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island, United States of America
| | - Mark R. Spaller
- Norris Cotton Cancer Center and Department of Pharmacology and Toxicology, Dartmouth Medical School, Lebanon, New Hampshire, United States of America
| | - Dennis J. Goebel
- Department of Anatomy and Cell Biology, Wayne State University, Detroit, Michigan, United States of America
- * E-mail: (DJG); (JM)
| | - John Marshall
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, Rhode Island, United States of America
- * E-mail: (DJG); (JM)
| |
Collapse
|