1
|
Chun LS, Vekariya RH, Free RB, Li Y, Lin DT, Su P, Liu F, Namkung Y, Laporte SA, Moritz AE, Aubé J, Frankowski KJ, Sibley DR. Structure-Activity Investigation of a G Protein-Biased Agonist Reveals Molecular Determinants for Biased Signaling of the D 2 Dopamine Receptor. Front Synaptic Neurosci 2018. [PMID: 29515433 PMCID: PMC5826336 DOI: 10.3389/fnsyn.2018.00002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The dopamine D2 receptor (D2R) is known to elicit effects through activating two major signaling pathways mediated by either G proteins (Gi/o) or β-arrestins. However, the specific role of each pathway in physiological or therapeutic activities is not known with certainty. One approach to the dissection of these pathways is through the use of drugs that can selectively modulate one pathway vs. the other through a mechanism known as functional selectivity or biased signaling. Our laboratory has previously described a G protein signaling-biased agonist, MLS1547, for the D2R using a variety of in vitro functional assays. To further evaluate the biased signaling activity of this compound, we investigated its ability to promote D2R internalization, a process known to be mediated by β-arrestin. Using multiple cellular systems and techniques, we found that MLS1547 promotes little D2R internalization, which is consistent with its inability to recruit β-arrestin. Importantly, we validated these results in primary striatal neurons where the D2R is most highly expressed suggesting that MLS1547 will exhibit biased signaling activity in vivo. In an effort to optimize and further explore structure-activity relationships (SAR) for this scaffold, we conducted an iterative chemistry campaign to synthesize and characterize novel analogs of MLS1547. The resulting analysis confirmed previously described SAR requirements for G protein-biased agonist activity and, importantly, elucidated new structural features that are critical for agonist efficacy and signaling bias of the MLS1547 scaffold. One of the most important determinants for G protein-biased signaling is the interaction of a hydrophobic moiety of the compound with a defined pocket formed by residues within transmembrane five and extracellular loop two of the D2R. These results shed new light on the mechanism of biased signaling of the D2R and may lead to improved functionally-selective molecules.
Collapse
Affiliation(s)
- Lani S Chun
- Molecular Neuropharmacology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Rakesh H Vekariya
- Department of Medicinal Chemistry and Specialized Chemistry Center, University of Kansas, Lawrence, KS, United States
| | - R Benjamin Free
- Molecular Neuropharmacology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Yun Li
- Neural Engineering Unit, Behavior Neuroscience Research Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, United States
| | - Da-Ting Lin
- Neural Engineering Unit, Behavior Neuroscience Research Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, United States
| | - Ping Su
- Molecular Neuroscience, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, University of Toronto, Toronto, ON, Canada
| | - Fang Liu
- Molecular Neuroscience, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, University of Toronto, Toronto, ON, Canada
| | - Yoon Namkung
- Department of Medicine, McGill University Health Center Research Institute, McGill University, Montreal, QC, Canada
| | - Stephane A Laporte
- Department of Medicine, McGill University Health Center Research Institute, McGill University, Montreal, QC, Canada
| | - Amy E Moritz
- Molecular Neuropharmacology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Jeffrey Aubé
- Department of Medicinal Chemistry and Specialized Chemistry Center, University of Kansas, Lawrence, KS, United States
| | - Kevin J Frankowski
- Department of Medicinal Chemistry and Specialized Chemistry Center, University of Kansas, Lawrence, KS, United States
| | - David R Sibley
- Molecular Neuropharmacology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
2
|
Zhang W, Daly KM, Liang B, Zhang L, Li X, Li Y, Lin DT. BDNF rescues prefrontal dysfunction elicited by pyramidal neuron-specific DTNBP1 deletion in vivo. J Mol Cell Biol 2017; 9:117-131. [PMID: 27330059 DOI: 10.1093/jmcb/mjw029] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 05/16/2016] [Indexed: 01/15/2023] Open
Abstract
Dystrobrevin-binding protein 1 (Dtnbp1) is one of the earliest identified schizophrenia susceptibility genes. Reduced expression of DTNBP1 is commonly found in brain areas of schizophrenic patients. Dtnbp1-null mutant mice exhibit abnormalities in behaviors and impairments in neuronal activities. However, how diminished DTNBP1 expression contributes to clinical relevant features of schizophrenia remains to be illustrated. Here, using a conditional Dtnbp1 knockout mouse line, we identified an in vivo schizophrenia-relevant function of DTNBP1 in pyramidal neurons of the medial prefrontal cortex (mPFC). We demonstrated that DTNBP1 elimination specifically in pyramidal neurons of the mPFC impaired mouse pre-pulse inhibition (PPI) behavior and reduced perisomatic GABAergic synapses. We further revealed that loss of DTNBP1 in pyramidal neurons diminished activity-dependent secretion of brain-derived neurotrophic factor (BDNF). Finally, we showed that chronic BDNF infusion in the mPFC fully rescued both GABAergic synaptic dysfunction and PPI behavioral deficit induced by DTNBP1 elimination from pyramidal neurons. Our findings highlight brain region- and cell type-specific functions of DTNBP1 in the pathogenesis of schizophrenia, and underscore BDNF restoration as a potential therapeutic strategy for schizophrenia.
Collapse
Affiliation(s)
- Wen Zhang
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, 333 Cassell Drive, Baltimore, MD 21224, USA
| | - Kathryn M Daly
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, 333 Cassell Drive, Baltimore, MD 21224, USA
| | - Bo Liang
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, 333 Cassell Drive, Baltimore, MD 21224, USA
| | - Lifeng Zhang
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, 333 Cassell Drive, Baltimore, MD 21224, USA
| | - Xuan Li
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, 333 Cassell Drive, Baltimore, MD 21224, USA
| | - Yun Li
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, 333 Cassell Drive, Baltimore, MD 21224, USA
| | - Da-Ting Lin
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, 333 Cassell Drive, Baltimore, MD 21224, USA.,The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA.,The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205, USA
| |
Collapse
|
3
|
Ki J, Shim Y, Song JM. High-content cell death imaging using quantum dot-based TIRF microscopy for the determination of anticancer activity against breast cancer stem cell. JOURNAL OF BIOPHOTONICS 2017; 10:118-127. [PMID: 26768511 DOI: 10.1002/jbio.201500282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 12/17/2015] [Accepted: 12/18/2015] [Indexed: 06/05/2023]
Abstract
We report a two color monitoring of drug-induced cell deaths using total internal reflection fluorescence (TIRF) as a novel method to determine anticancer activity. Instead of cancer cells, breast cancer stem cells (CSCs) were directly tested in the present assay to determine the effective concentration (EC50 ) values of camptothecin and cisplatin. Phosphatidylserine and HMGB1 protein were concurrently detected to observe apoptotic and necrotic cell death induced by anticancer drugs using quantum dot (Qdot)-antibody conjugates. Only 50-to-100 breast CSCs were consumed at each cell chamber due to the high sensitivity of Qdot-based TIRF. The high sensitivity of Qdot-based TIRF, that enables the consumption of a small number of cells, is advantageous for cost-effective large-scale drug screening. In addition, unlike MTT assay, this approach can provide a more uniform range of EC50 values because the average values of single breast CSCs fluorescence intensities are observed to acquire EC50 values as a function of dose. This research successfully demonstrated the possibility that Qdot-based TIRF can be widely used as an improved alternative to MTT assay for the determination of anticancer drug efficacies.
Collapse
Affiliation(s)
- Jieun Ki
- College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-ku, Seoul, 151-742, South Korea
| | - Yumi Shim
- College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-ku, Seoul, 151-742, South Korea
| | - Joon Myong Song
- College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-ku, Seoul, 151-742, South Korea
| |
Collapse
|