1
|
Jiang N, Wu J, Leng T, Yang T, Zhou Y, Jiang Q, Wang B, Hu Y, Ji YH, Simon RP, Chu XP, Xiong ZG, Zha XM. Region specific contribution of ASIC2 to acidosis-and ischemia-induced neuronal injury. J Cereb Blood Flow Metab 2017; 37:528-540. [PMID: 26861816 PMCID: PMC5381448 DOI: 10.1177/0271678x16630558] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Acidosis in the brain plays a critical role in neuronal injury in neurological diseases, including brain ischemia. One key mediator of acidosis-induced neuronal injury is the acid-sensing ion channels (ASICs). Current literature has focused on ASIC1a when studying acid signaling. The importance of ASIC2, which is also widely expressed in the brain, has not been appreciated. We found here a region-specific effect of ASIC2 on acid-mediated responses. Deleting ASIC2 reduced acid-activated current in cortical and striatal neurons, but had no significant effect in cerebellar granule neurons. In addition, we demonstrated that ASIC2 was important for ASIC1a expression, and that ASIC2a but not 2b facilitated ASIC1a surface trafficking in the brain. Further, we showed that ASIC2 deletion attenuated acidosis/ischemia-induced neuronal injury in organotypic hippocampal slices but had no effect in organotypic cerebellar slices. Consistent with an injurious role of ASIC2, we showed that ASIC2 deletion significantly protected the mouse brain from ischemic damage in vivo. These data suggest a critical region-specific contribution of ASIC2 to neuronal injury and reveal an important functional difference between ASIC2a and 2b in the brain.
Collapse
Affiliation(s)
- Nan Jiang
- 1 Department of Physiology and Cell Biology, University of South Alabama, Mobile, USA.,2 School of Life Sciences, Shanghai University, Shanghai, China
| | - Junjun Wu
- 1 Department of Physiology and Cell Biology, University of South Alabama, Mobile, USA.,3 China State Institute of Pharmaceutical Industry, Shanghai, China
| | - Tiandong Leng
- 4 Department of Neurobiology, Morehouse School of Medicine, Atlanta, USA
| | - Tao Yang
- 4 Department of Neurobiology, Morehouse School of Medicine, Atlanta, USA
| | - Yufan Zhou
- 1 Department of Physiology and Cell Biology, University of South Alabama, Mobile, USA
| | - Qian Jiang
- 5 Department of Basic Medical Science, University of Missouri-Kansas City, Kansas City, USA
| | - Bin Wang
- 6 Department of Mathematics and Statistics, University of South Alabama, Mobile, USA
| | - Youjia Hu
- 3 China State Institute of Pharmaceutical Industry, Shanghai, China
| | - Yong-Hua Ji
- 2 School of Life Sciences, Shanghai University, Shanghai, China
| | - Roger P Simon
- 4 Department of Neurobiology, Morehouse School of Medicine, Atlanta, USA
| | - Xiang-Ping Chu
- 5 Department of Basic Medical Science, University of Missouri-Kansas City, Kansas City, USA
| | - Zhi-Gang Xiong
- 4 Department of Neurobiology, Morehouse School of Medicine, Atlanta, USA
| | - Xiang-Ming Zha
- 1 Department of Physiology and Cell Biology, University of South Alabama, Mobile, USA
| |
Collapse
|