1
|
Plotnikov MB, Chernysheva GA, Aliev OI, Smol'iakova VI, Fomina TI, Osipenko AN, Rydchenko VS, Anfinogenova YJ, Khlebnikov AI, Schepetkin IA, Atochin DN. Protective Effects of a New C-Jun N-terminal Kinase Inhibitor in the Model of Global Cerebral Ischemia in Rats. Molecules 2019; 24:E1722. [PMID: 31058815 PMCID: PMC6539151 DOI: 10.3390/molecules24091722] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/27/2019] [Accepted: 05/01/2019] [Indexed: 12/23/2022] Open
Abstract
c-Jun N-terminal kinase (JNK) is activated by various brain insults and is implicated in neuronal injury triggered by reperfusion-induced oxidative stress. Some JNK inhibitors demonstrated neuroprotective potential in various models, including cerebral ischemia/reperfusion injury. The objective of the present work was to study the neuroprotective activity of a new specific JNK inhibitor, IQ-1S (11H-indeno[1,2-b]quinoxalin-11-one oxime sodium salt), in the model of global cerebral ischemia (GCI) in rats compared with citicoline (cytidine-5'-diphosphocholine), a drug approved for the treatment of acute ischemic stroke and to search for pleiotropic mechanisms of neuroprotective effects of IQ-1S. The experiments were performed in a rat model of ischemic stroke with three-vessel occlusion (model of 3VO) affecting the brachiocephalic artery, the left subclavian artery, and the left common carotid artery. After 7-min episode of GCI in rats, 25% of animals died, whereas survived animals had severe neurological deficit at days 1, 3, and 5 after GCI. At day 5 after GCI, we observing massive loss of pyramidal neurons in the hippocampal CA1 area, increase in lipid peroxidation products in the brain tissue, and decrease in local cerebral blood flow (LCBF) in the parietal cortex. Moreover, blood hyperviscosity syndrome and endothelial dysfunction were found after GCI. Administration of IQ-1S (intragastrically at a dose 50 mg/kg daily for 5 days) was associated with neuroprotective effect comparable with the effect of citicoline (intraperitoneal at a dose of 500 mg/kg, daily for 5 days).The neuroprotective effect was accompanied by a decrease in the number of animals with severe neurological deficit, an increase in the number of animals with moderate degree of neurological deficit compared with control GCI group, and an increase in the number of unaltered neurons in the hippocampal CA1 area along with a significant decrease in the number of neurons with irreversible morphological damage. In rats with IQ-1S administration, the LCBF was significantly higher (by 60%) compared with that in the GCI control. Treatment with IQ-1S also decreases blood viscosity and endothelial dysfunction. A concentration-dependent decrease (IC50 = 0.8 ± 0.3 μM) of tone in isolated carotid arterial rings constricted with phenylephrine was observed after IQ-1S application in vitro. We also found that IQ-1S decreased the intensity of the lipid peroxidation in the brain tissue in rats with GCI. 2.2-Diphenyl-1-picrylhydrazyl scavenging for IQ-1S in acetonitrile and acetone exceeded the corresponding values for ionol, a known antioxidant. Overall, these results suggest that the neuroprotective properties of IQ-1S may be mediated by improvement of cerebral microcirculation due to the enhanced vasorelaxation, beneficial effects on blood viscosity, attenuation of the endothelial dysfunction, and antioxidant/antiradical IQ-1S activity.
Collapse
Affiliation(s)
- Mark B Plotnikov
- Department of Pharmacology, Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk NRMC, Tomsk 634028, Russia.
- National Research Tomsk State University, Tomsk 634050, Russia.
| | - Galina A Chernysheva
- Department of Pharmacology, Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk NRMC, Tomsk 634028, Russia.
| | - Oleg I Aliev
- Department of Pharmacology, Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk NRMC, Tomsk 634028, Russia.
| | - Vera I Smol'iakova
- Department of Pharmacology, Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk NRMC, Tomsk 634028, Russia.
| | - Tatiana I Fomina
- Department of Medicine Toxicology, Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk NRMC, Tomsk 634028, Russia.
| | - Anton N Osipenko
- Department of Pharmacology, Siberian State Medical University, Tomsk 634050, Russia.
| | - Victoria S Rydchenko
- Department of Biophysics, Siberian State Medical University, Tomsk 634050, Russia.
| | - Yana J Anfinogenova
- Cardiology Research Institute, Tomsk NRMC, Tomsk 634012, Russia.
- Kizhner Research Center, Tomsk Polytechnic University, Tomsk 634050, Russia.
| | - Andrei I Khlebnikov
- Kizhner Research Center, Tomsk Polytechnic University, Tomsk 634050, Russia.
- Research Institute of Biological Medicine, Altai State University, Barnaul 656049, Russia.
| | - Igor A Schepetkin
- Kizhner Research Center, Tomsk Polytechnic University, Tomsk 634050, Russia.
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA.
| | - Dmitriy N Atochin
- Kizhner Research Center, Tomsk Polytechnic University, Tomsk 634050, Russia.
- Cardiovascular Research Center, Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA.
| |
Collapse
|
2
|
Percie du Sert N, Alfieri A, Allan SM, Carswell HV, Deuchar GA, Farr TD, Flecknell P, Gallagher L, Gibson CL, Haley MJ, Macleod MR, McColl BW, McCabe C, Morancho A, Moon LD, O'Neill MJ, Pérez de Puig I, Planas A, Ragan CI, Rosell A, Roy LA, Ryder KO, Simats A, Sena ES, Sutherland BA, Tricklebank MD, Trueman RC, Whitfield L, Wong R, Macrae IM. The IMPROVE Guidelines (Ischaemia Models: Procedural Refinements Of in Vivo Experiments). J Cereb Blood Flow Metab 2017; 37:3488-3517. [PMID: 28797196 PMCID: PMC5669349 DOI: 10.1177/0271678x17709185] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Most in vivo models of ischaemic stroke target the middle cerebral artery and a spectrum of stroke severities, from mild to substantial, can be achieved. This review describes opportunities to improve the in vivo modelling of ischaemic stroke and animal welfare. It provides a number of recommendations to minimise the level of severity in the most common rodent models of middle cerebral artery occlusion, while sustaining or improving the scientific outcomes. The recommendations cover basic requirements pre-surgery, selecting the most appropriate anaesthetic and analgesic regimen, as well as intraoperative and post-operative care. The aim is to provide support for researchers and animal care staff to refine their procedures and practices, and implement small incremental changes to improve the welfare of the animals used and to answer the scientific question under investigation. All recommendations are recapitulated in a summary poster (see supplementary information).
Collapse
Affiliation(s)
- Nathalie Percie du Sert
- 1 National Centre for the Replacement, Refinement and Reduction of Animals in Research (NC3Rs), London, UK
| | - Alessio Alfieri
- 2 The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Midlothian, UK
| | - Stuart M Allan
- 3 Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Hilary Vo Carswell
- 4 Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), University of Strathclyde, Glasgow, UK
| | - Graeme A Deuchar
- 5 Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow/Arum Biosciences, Glasgow, UK
| | - Tracy D Farr
- 6 School of Life Sciences, University of Nottingham Medical School, Nottingham, UK
| | | | - Lindsay Gallagher
- 5 Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow/Arum Biosciences, Glasgow, UK
| | - Claire L Gibson
- 8 Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, UK
| | - Michael J Haley
- 3 Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Malcolm R Macleod
- 9 Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Barry W McColl
- 2 The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Midlothian, UK
| | - Christopher McCabe
- 5 Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow/Arum Biosciences, Glasgow, UK
| | - Anna Morancho
- 10 Neurovascular Research Laboratory. Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona; Barcelona, Spain
| | - Lawrence Df Moon
- 11 Wolfson Centre for Age-Related Diseases, King's College London, London, UK
| | | | - Isabel Pérez de Puig
- 13 Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), IDIBAPS, Barcelona, Spain
| | - Anna Planas
- 13 Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), IDIBAPS, Barcelona, Spain
| | | | - Anna Rosell
- 10 Neurovascular Research Laboratory. Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona; Barcelona, Spain
| | - Lisa A Roy
- 5 Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow/Arum Biosciences, Glasgow, UK
| | | | - Alba Simats
- 10 Neurovascular Research Laboratory. Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona; Barcelona, Spain
| | - Emily S Sena
- 9 Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Brad A Sutherland
- 16 Acute Stroke Programme, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.,17 School of Medicine, Faculty of Health, University of Tasmania, Hobart, Australia
| | - Mark D Tricklebank
- 18 Centre for Neuroimaging Sciences, Institute of Psychiatry Psychology and Neuroscience, King's College London, London, UK
| | - Rebecca C Trueman
- 6 School of Life Sciences, University of Nottingham Medical School, Nottingham, UK
| | | | - Raymond Wong
- 3 Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - I Mhairi Macrae
- 5 Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow/Arum Biosciences, Glasgow, UK
| |
Collapse
|