1
|
Berdis A. Nucleobase-modified nucleosides and nucleotides: Applications in biochemistry, synthetic biology, and drug discovery. Front Chem 2022; 10:1051525. [PMID: 36531317 PMCID: PMC9748101 DOI: 10.3389/fchem.2022.1051525] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/08/2022] [Indexed: 09/29/2023] Open
Abstract
. DNA is often referred to as the "molecule of life" since it contains the genetic blueprint for all forms of life on this planet. The core building blocks composing DNA are deoxynucleotides. While the deoxyribose sugar and phosphate group are ubiquitous, it is the composition and spatial arrangement of the four natural nucleobases, adenine (A), cytosine (C), guanine (G), and thymine (T), that provide diversity in the coding information present in DNA. The ability of DNA to function as the genetic blueprint has historically been attributed to the formation of proper hydrogen bonding interactions made between complementary nucleobases. However, recent chemical and biochemical studies using nucleobase-modified nucleotides that contain "non-hydrogen bonding" functional groups have challenged many of the dogmatic views for the necessity of hydrogen-bonding interactions for DNA stability and function. Based on years of exciting research, this area has expanded tremendously and is thus too expansive to provide a comprehensive review on the topic. As such, this review article provides an opinion highlighting how nucleobase-modified nucleotides are being applied in diverse biomedical fields, focusing on three exciting areas of research. The first section addresses how these analogs are used as mechanistic probes for DNA polymerase activity and fidelity during replication. This section outlines the synthetic logic and medicinal chemistry approaches used to replace hydrogen-bonding functional groups to examine the contributions of shape/size, nucleobase hydrophobicity, and pi-electron interactions. The second section extends these mechanistic studies to provide insight into how nucleobase-modified nucleosides are used in synthetic biology. One example is through expansion of the genetic code in which changing the composition of DNA makes it possible to site-specifically incorporate unnatural amino acids bearing unique functional groups into enzymes and receptors. The final section describes results of pre-clinical studies using nucleobase-modified nucleosides as potential therapeutic agents against diseases such as cancer.
Collapse
Affiliation(s)
- Anthony Berdis
- Department of Chemistry, Cleveland State University, Cleveland, OH, United States
| |
Collapse
|
2
|
Kowalska E, Bartnicki F, Fujisawa R, Bonarek P, Hermanowicz P, Tsurimoto T, Muszynska K, Strzalka W. Inhibition of DNA replication by an anti-PCNA aptamer/PCNA complex. Nucleic Acids Res 2019; 46:25-41. [PMID: 29186524 PMCID: PMC5758903 DOI: 10.1093/nar/gkx1184] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 11/13/2017] [Indexed: 12/29/2022] Open
Abstract
Proliferating cell nuclear antigen (PCNA) is a multifunctional protein present in the nuclei of eukaryotic cells that plays an important role as a component of the DNA replication machinery, as well as DNA repair systems. PCNA was recently proposed as a potential non-oncogenic target for anti-cancer therapy. In this study, using the Systematic Evolution of Ligands by EXponential enrichment (SELEX) method, we developed a short DNA aptamer that binds human PCNA. In the presence of PCNA, the anti-PCNA aptamer inhibited the activity of human DNA polymerase δ and ϵ at nM concentrations. Moreover, PCNA protected the anti-PCNA aptamer against the exonucleolytic activity of these DNA polymerases. Investigation of the mechanism of anti-PCNA aptamer-dependent inhibition of DNA replication revealed that the aptamer did not block formation, but was a component of PCNA/DNA polymerase δ or ϵ complexes. Additionally, the anti-PCNA aptamer competed with the primer-template DNA for binding to the PCNA/DNA polymerase δ or ϵ complex. Based on the observations, a model of anti-PCNA aptamer/PCNA complex-dependent inhibition of DNA replication was proposed.
Collapse
Affiliation(s)
- Ewa Kowalska
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Krakow 30-387, Poland
| | - Filip Bartnicki
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Krakow 30-387, Poland
| | - Ryo Fujisawa
- Department of Biology, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Piotr Bonarek
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Krakow 30-387, Poland
| | - Pawel Hermanowicz
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Krakow 30-387, Poland.,Laboratory of Photobiology, Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, Krakow 30-387, Poland
| | - Toshiki Tsurimoto
- Department of Biology, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Klaudia Muszynska
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Krakow 30-387, Poland
| | - Wojciech Strzalka
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Krakow 30-387, Poland
| |
Collapse
|
3
|
Ray P, Cheek MA, Sharaf ML, Li N, Ellington AD, Sullenger BA, Shaw BR, White RR. Aptamer-mediated delivery of chemotherapy to pancreatic cancer cells. Nucleic Acid Ther 2012; 22:295-305. [PMID: 23030589 PMCID: PMC3464421 DOI: 10.1089/nat.2012.0353] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Accepted: 09/11/2012] [Indexed: 01/05/2023] Open
Abstract
Gemcitabine is a nucleoside analog that is currently the best available single-agent chemotherapeutic drug for pancreatic cancer. However, efficacy is limited by our inability to deliver sufficient active metabolite into cancer cells without toxic effects on normal tissues. Targeted delivery of gemcitabine into cancer cells could maximize effectiveness and concurrently minimize toxic side effects by reducing uptake into normal cells. Most pancreatic cancers overexpress epidermal growth factor receptor (EGFR), a trans-membrane receptor tyrosine kinase. We utilized a nuclease resistant RNA aptamer that binds and is internalized by EGFR on pancreatic cancer cells to deliver gemcitabine-containing polymers into EGFR-expressing cells and inhibit cell proliferation in vitro. This approach to cell type-specific therapy can be adapted to other targets and to other types of therapeutic cargo.
Collapse
Affiliation(s)
- Partha Ray
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina
| | - Marcus A. Cheek
- Department of Chemistry, Duke University, Durham, North Carolina
| | - Mariam L. Sharaf
- Department of Chemistry, Duke University, Durham, North Carolina
| | - Na Li
- Department of Chemistry & Biochemistry, The University of Texas at Austin, Austin, Texas
| | - Andrew D. Ellington
- Department of Chemistry & Biochemistry, The University of Texas at Austin, Austin, Texas
| | - Bruce A. Sullenger
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina
| | | | - Rebekah R. White
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina
| |
Collapse
|
4
|
Ray P, Rialon-Guevara KL, Veras E, Sullenger BA, White RR. Comparing human pancreatic cell secretomes by in vitro aptamer selection identifies cyclophilin B as a candidate pancreatic cancer biomarker. J Clin Invest 2012; 122:1734-41. [PMID: 22484812 DOI: 10.1172/jci62385] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Accepted: 02/22/2012] [Indexed: 12/25/2022] Open
Abstract
Most cases of pancreatic cancer are not diagnosed until they are no longer curable with surgery. Therefore, it is critical to develop a sensitive, preferably noninvasive, method for detecting the disease at an earlier stage. In order to identify biomarkers for pancreatic cancer, we devised an in vitro positive/negative selection strategy to identify RNA ligands (aptamers) that could detect structural differences between the secretomes of pancreatic cancer and non-cancerous cells. Using this molecular recognition approach, we identified an aptamer (M9-5) that differentially bound conditioned media from cancerous and non-cancerous human pancreatic cell lines. This aptamer further discriminated between the sera of pancreatic cancer patients and healthy volunteers with high sensitivity and specificity. We utilized biochemical purification methods and mass-spectrometric analysis to identify the M9-5 target as cyclophilin B (CypB). This molecular recognition-based strategy simultaneously identified CypB as a serum biomarker and generated a new reagent to recognize it in body fluids. Moreover, this approach should be generalizable to other diseases and complementary to traditional approaches that focus on differences in expression level between samples. Finally, we suggest that the aptamer we identified has the potential to serve as a tool for the early detection of pancreatic cancer.
Collapse
Affiliation(s)
- Partha Ray
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina 27710, USA.
| | | | | | | | | |
Collapse
|
5
|
Aptamers for Targeted Drug Delivery. Pharmaceuticals (Basel) 2010; 3:1761-1778. [PMID: 27713328 PMCID: PMC4033951 DOI: 10.3390/ph3061761] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Revised: 05/19/2010] [Accepted: 05/26/2010] [Indexed: 12/20/2022] Open
Abstract
Aptamers are a class of therapeutic oligonucleotides that form specific three-dimensional structures that are dictated by their sequences. They are typically generated by an iterative screening process of complex nucleic acid libraries employing a process termed Systemic Evolution of Ligands by Exponential Enrichment (SELEX). SELEX has traditionally been performed using purified proteins, and cell surface receptors may be challenging to purify in their properly folded and modified conformations. Therefore, relatively few aptamers have been generated that bind cell surface receptors. However, improvements in recombinant fusion protein technology have increased the availability of receptor extracellular domains as purified protein targets, and the development of cell-based selection techniques has allowed selection against surface proteins in their native configuration on the cell surface. With cell-based selection, a specific protein target is not always chosen, but selection is performed against a target cell type with the goal of letting the aptamer choose the target. Several studies have demonstrated that aptamers that bind cell surface receptors may have functions other than just blocking receptor-ligand interactions. All cell surface proteins cycle intracellularly to some extent, and many surface receptors are actively internalized in response to ligand binding. Therefore, aptamers that bind cell surface receptors have been exploited for the delivery of a variety of cargoes into cells. This review focuses on recent progress and current challenges in the field of aptamer-mediated delivery.
Collapse
|
6
|
Appella DH. Non-natural nucleic acids for synthetic biology. Curr Opin Chem Biol 2009; 13:687-96. [PMID: 19879178 PMCID: PMC3152792 DOI: 10.1016/j.cbpa.2009.09.030] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2009] [Revised: 09/24/2009] [Accepted: 09/29/2009] [Indexed: 11/29/2022]
Abstract
Genetic manipulation is an important facet of synthetic biology but can be complicated by undesired nuclease degradation. Incorporating non-natural nucleic acids into a gene could convey resistance to nucleases and promote expression. The compatibility of non-natural nucleosides with polymerases is reviewed with a focus on results from the past two years. Details are provided about how the different systems could be useful in synthetic biology.
Collapse
Affiliation(s)
- Daniel H Appella
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, USA.
| |
Collapse
|