1
|
Jones AN, Sattler M. Challenges and perspectives for structural biology of lncRNAs-the example of the Xist lncRNA A-repeats. J Mol Cell Biol 2020; 11:845-859. [PMID: 31336384 PMCID: PMC6917512 DOI: 10.1093/jmcb/mjz086] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 06/30/2019] [Accepted: 07/02/2019] [Indexed: 12/21/2022] Open
Abstract
Following the discovery of numerous long non-coding RNA (lncRNA) transcripts in the human genome, their important roles in biology and human disease are emerging. Recent progress in experimental methods has enabled the identification of structural features of lncRNAs. However, determining high-resolution structures is challenging as lncRNAs are expected to be dynamic and adopt multiple conformations, which may be modulated by interaction with protein binding partners. The X-inactive specific transcript (Xist) is necessary for X inactivation during dosage compensation in female placental mammals and one of the best-studied lncRNAs. Recent progress has provided new insights into the domain organization, molecular features, and RNA binding proteins that interact with distinct regions of Xist. The A-repeats located at the 5′ end of the transcript are of particular interest as they are essential for mediating silencing of the inactive X chromosome. Here, we discuss recent progress with elucidating structural features of the Xist lncRNA, focusing on the A-repeats. We discuss the experimental and computational approaches employed that have led to distinct structural models, likely reflecting the intrinsic dynamics of this RNA. The presence of multiple dynamic conformations may also play an important role in the formation of the associated RNPs, thus influencing the molecular mechanism underlying the biological function of the Xist A-repeats. We propose that integrative approaches that combine biochemical experiments and high-resolution structural biology in vitro with chemical probing and functional studies in vivo are required to unravel the molecular mechanisms of lncRNAs.
Collapse
Affiliation(s)
- Alisha N Jones
- Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, 85764, Germany.,Center for Integrated Protein Science Munich and Bavarian NMR Center at Department of Chemistry, Technical University of Munich, Garching, 85747, Germany
| | - Michael Sattler
- Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, 85764, Germany.,Center for Integrated Protein Science Munich and Bavarian NMR Center at Department of Chemistry, Technical University of Munich, Garching, 85747, Germany
| |
Collapse
|
2
|
Zhang X, Li M, Liu Y. Optimization and characterization of position-selective labelling of RNA (PLOR) for diverse RNA and DNA sequences. RNA Biol 2020; 17:1009-1017. [PMID: 32249673 DOI: 10.1080/15476286.2020.1749797] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Modifications of short RNAs at specific sites can be achieved commercially by solid-phase chemical synthesis method. However, labelling long RNAs is still challenging for the routine methods. Position-selective Labelling of RNA (PLOR) is a hybrid phase transcription method that allows to label RNAs at desired sites with great flexibility and decent efficiency. In principle, PLOR is a promising method for synthesis of long modified RNAs that are unable to be generated by solid-phase chemical synthesis and other methods. However, as a recently developed method, PLOR has been only applied to label a 71nt and a 104nt RNA, and the limited sequence applications of PLOR may hinder its potential usages. To extend PLOR to more RNAs, we tested the PLOR performances for various RNA sequences. Considering that the controlled transcriptional pauses at the initiation stage in PLOR may lead to different preferences on RNA sequences from in vitro transcription method, we here focused on identifying the effects of the 5'-end and initiated lengths of RNA on PLOR. In addition, our work demonstrated that PLOR efficiencies also varied with linker sizes of DNA templates. This work can facilitate PLOR to be the choice of synthesizing long modified RNAs for more users in the near future.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Science and Biotechnology, Shanghai Jiao Tong University , Shanghai, P. R. China
| | - Mengyang Li
- State Key Laboratory of Microbial Metabolism, School of Life Science and Biotechnology, Shanghai Jiao Tong University , Shanghai, P. R. China
| | - Yu Liu
- State Key Laboratory of Microbial Metabolism, School of Life Science and Biotechnology, Shanghai Jiao Tong University , Shanghai, P. R. China
| |
Collapse
|
3
|
Eubanks CS, Hargrove AE. RNA Structural Differentiation: Opportunities with Pattern Recognition. Biochemistry 2018; 58:199-213. [PMID: 30513196 DOI: 10.1021/acs.biochem.8b01090] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Our awareness and appreciation of the many regulatory roles of RNA have dramatically increased in the past decade. This understanding, in addition to the impact of RNA in many disease states, has renewed interest in developing selective RNA-targeted small molecule probes. However, the fundamental guiding principles in RNA molecular recognition that could accelerate these efforts remain elusive. While high-resolution structural characterization can provide invaluable insight, examples of well-characterized RNA structures, not to mention small molecule:RNA complexes, remain limited. This Perspective provides an overview of the current techniques used to understand RNA molecular recognition when high-resolution structural information is unavailable. We will place particular emphasis on a new method, pattern recognition of RNA with small molecules (PRRSM), that provides rapid insight into critical components of RNA recognition and differentiation by small molecules as well as into RNA structural features.
Collapse
Affiliation(s)
- Christopher S Eubanks
- Department of Chemistry , Duke University , Durham , North Carolina 27708-0354 , United States
| | - Amanda E Hargrove
- Department of Chemistry , Duke University , Durham , North Carolina 27708-0354 , United States
| |
Collapse
|
4
|
Daher M, Widom JR, Tay W, Walter NG. Soft Interactions with Model Crowders and Non-canonical Interactions with Cellular Proteins Stabilize RNA Folding. J Mol Biol 2017; 430:509-523. [PMID: 29128594 DOI: 10.1016/j.jmb.2017.10.030] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 10/22/2017] [Accepted: 10/30/2017] [Indexed: 12/18/2022]
Abstract
Living cells contain diverse biopolymers, creating a heterogeneous crowding environment, the impact of which on RNA folding is poorly understood. Here, we have used single-molecule fluorescence resonance energy transfer to monitor tertiary structure formation of the hairpin ribozyme as a model to probe the effects of polyethylene glycol and yeast cell extract as crowding agents. As expected, polyethylene glycol stabilizes the docked, catalytically active state of the ribozyme, in part through excluded volume effects; unexpectedly, we found evidence that it additionally displays soft, non-specific interactions with the ribozyme. Yeast extract has a profound effect on folding at protein concentrations 1000-fold lower than found intracellularly, suggesting the dominance of specific interactions over volume exclusion. Gel shift assays and affinity pull-down followed by mass spectrometry identified numerous non-canonical RNA-binding proteins that stabilize ribozyme folding; the apparent chaperoning activity of these ubiquitous proteins significantly compensates for the low-counterion environment of the cell.
Collapse
Affiliation(s)
- May Daher
- Single Molecule Analysis Group, Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA; Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Julia R Widom
- Single Molecule Analysis Group, Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA; Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Wendy Tay
- Single Molecule Analysis Group, Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA; Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Nils G Walter
- Single Molecule Analysis Group, Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA; Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI 48109-1055, USA.
| |
Collapse
|
5
|
Rinaldi AJ, Suddala KC, Walter NG. Native purification and labeling of RNA for single molecule fluorescence studies. Methods Mol Biol 2015; 1240:63-95. [PMID: 25352138 DOI: 10.1007/978-1-4939-1896-6_6] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The recent discovery that non-coding RNAs are considerably more abundant and serve a much wider range of critical cellular functions than recognized over previous decades of research into molecular biology has sparked a renewed interest in the study of structure-function relationships of RNA. To perform their functions in the cell, RNAs must dominantly adopt their native conformations, avoiding deep, non-productive kinetic traps that may exist along a frustrated (rugged) folding free energy landscape. Intracellularly, RNAs are synthesized by RNA polymerase and fold co-transcriptionally starting from the 5' end, sometimes with the aid of protein chaperones. By contrast, in the laboratory RNAs are commonly generated by in vitro transcription or chemical synthesis, followed by purification in a manner that includes the use of high concentrations of urea, heat and UV light (for detection), resulting in the denaturation and subsequent refolding of the entire RNA. Recent studies into the nature of heterogeneous RNA populations resulting from this process have underscored the need for non-denaturing (native) purification methods that maintain the co-transcriptional fold of an RNA. Here, we present protocols for the native purification of an RNA after its in vitro transcription and for fluorophore and biotin labeling methods designed to preserve its native conformation for use in single molecule fluorescence resonance energy transfer (smFRET) inquiries into its structure and function. Finally, we present methods for taking smFRET data and for analyzing them, as well as a description of plausible overall preparation schemes for the plethora of non-coding RNAs.
Collapse
Affiliation(s)
- Arlie J Rinaldi
- W. M. Keck Science Center, The Claremont Colleges, Claremont, CA, 91711, USA
| | | | | |
Collapse
|
6
|
Kahlscheuer ML, Widom J, Walter NG. Single-Molecule Pull-Down FRET to Dissect the Mechanisms of Biomolecular Machines. Methods Enzymol 2015; 558:539-570. [PMID: 26068753 PMCID: PMC4886477 DOI: 10.1016/bs.mie.2015.01.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Spliceosomes are multimegadalton RNA-protein complexes responsible for the faithful removal of noncoding segments (introns) from pre-messenger RNAs (pre-mRNAs), a process critical for the maturation of eukaryotic mRNAs for subsequent translation by the ribosome. Both the spliceosome and ribosome, as well as many other RNA and DNA processing machineries, contain central RNA components that endow biomolecular complexes with precise, sequence-specific nucleic acid recognition, and versatile structural dynamics. Single-molecule fluorescence (or Förster) resonance energy transfer (smFRET) microscopy is a powerful tool for the study of local and global conformational changes of both simple and complex biomolecular systems involving RNA. The integration of biochemical tools such as immunoprecipitation with advanced methods in smFRET microscopy and data analysis has opened up entirely new avenues toward studying the mechanisms of biomolecular machines isolated directly from complex biological specimens, such as cell extracts. Here, we detail the general steps for using prism-based total internal reflection fluorescence microscopy in exemplary single-molecule pull-down FRET studies of the yeast spliceosome and discuss the broad application potential of this technique.
Collapse
Affiliation(s)
- Matthew L Kahlscheuer
- Single Molecule Analysis Group, Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Julia Widom
- Single Molecule Analysis Group, Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Nils G Walter
- Single Molecule Analysis Group, Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA.
| |
Collapse
|
7
|
Abstract
Riboswitches are structured noncoding RNA elements that control the expression of their embedding messenger RNAs by sensing the intracellular concentration of diverse metabolites. As the name suggests, riboswitches are dynamic in nature so that studying their inherent conformational dynamics and ligand-mediated folding is important for understanding their mechanism of action. Single-molecule fluorescence energy transfer (smFRET) microscopy is a powerful and versatile technique for studying the folding pathways and intra- and intermolecular dynamics of biological macromolecules, especially RNA. The ability of smFRET to monitor intramolecular distances and their temporal evolution make it a particularly insightful tool for probing the structure and dynamics of riboswitches. Here, we detail the general steps for using prism-based total internal reflection fluorescence microscopy for smFRET studies of the structure, dynamics, and ligand-binding mechanisms of riboswitches.
Collapse
|
8
|
Pitchiaya S, Krishnan V, Custer TC, Walter NG. Dissecting non-coding RNA mechanisms in cellulo by Single-molecule High-Resolution Localization and Counting. Methods 2013; 63:188-99. [PMID: 23820309 PMCID: PMC3797162 DOI: 10.1016/j.ymeth.2013.05.028] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 05/17/2013] [Accepted: 05/18/2013] [Indexed: 12/28/2022] Open
Abstract
Non-coding RNAs (ncRNAs) recently were discovered to outnumber their protein-coding counterparts, yet their diverse functions are still poorly understood. Here we report on a method for the intracellular Single-molecule High-Resolution Localization and Counting (iSHiRLoC) of microRNAs (miRNAs), a conserved, ubiquitous class of regulatory ncRNAs that controls the expression of over 60% of all mammalian protein coding genes post-transcriptionally, by a mechanism shrouded by seemingly contradictory observations. We present protocols to execute single particle tracking (SPT) and single-molecule counting of functional microinjected, fluorophore-labeled miRNAs and thereby extract diffusion coefficients and molecular stoichiometries of micro-ribonucleoprotein (miRNP) complexes from living and fixed cells, respectively. This probing of miRNAs at the single molecule level sheds new light on the intracellular assembly/disassembly of miRNPs, thus beginning to unravel the dynamic nature of this important gene regulatory pathway and facilitating the development of a parsimonious model for their obscured mechanism of action.
Collapse
Affiliation(s)
| | - Vishalakshi Krishnan
- Single Molecule Analysis Group, Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Thomas C. Custer
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Nils G. Walter
- Single Molecule Analysis in Real-Time (SMART) Center, University of Michigan, Ann Arbor, MI 48109-1055, USA
- Single Molecule Analysis Group, Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA
| |
Collapse
|
9
|
Daher M, Rueda D. Fluorescence characterization of the transfer RNA-like domain of transfer messenger RNA in complex with small binding protein B. Biochemistry 2012; 51:3531-8. [PMID: 22482838 DOI: 10.1021/bi201751k] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Transfer messenger RNA (tmRNA) and small binding protein B (SmpB) are the main components of the trans-translation rescue machinery that releases stalled ribosomes from defective mRNAs. Little is known about how SmpB binding affects the conformation of the tRNA-like domain (TLD) of tmRNA. It has been previously hypothesized that the absence of a D stem in the TLD provides flexibility in the elbow region of tmRNA, which can be stabilized by its interaction with SmpB. Here, we have used Förster resonance energy transfer to characterize the global structure of the tRNA-like domain of tmRNA in the presence and absence of SmpB and as a function of Mg(2+) concentration. Our results show tight and specific binding of SmpB to tmRNA. Surprisingly, our data show that the global conformation and flexibility of tmRNA do not change upon SmpB binding. However, Mg(2+) ions induce an 11 Å compaction in the tmRNA structure, suggesting that the flexibility in the H2a stem may allow different conformations of tmRNA as the TLD and mRNA-like domain need to be positioned differently while moving through the ribosome.
Collapse
Affiliation(s)
- May Daher
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | | |
Collapse
|
10
|
Hoerter JAH, Krishnan V, Lionberger TA, Walter NG. siRNA-like double-stranded RNAs are specifically protected against degradation in human cell extract. PLoS One 2011; 6:e20359. [PMID: 21647381 PMCID: PMC3103583 DOI: 10.1371/journal.pone.0020359] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Accepted: 04/20/2011] [Indexed: 11/18/2022] Open
Abstract
RNA interference (RNAi) is a set of intracellular pathways in eukaryotes that controls both exogenous and endogenous gene expression. The power of RNAi to knock down (silence) any gene of interest by the introduction of synthetic small-interfering (si)RNAs has afforded powerful insight into biological function through reverse genetic approaches and has borne a new field of gene therapeutics. A number of questions are outstanding concerning the potency of siRNAs, necessitating an understanding of how short double-stranded RNAs are processed by the cell. Recent work suggests unmodified siRNAs are protected in the intracellular environment, although the mechanism of protection still remains unclear. We have developed a set of doubly-fluorophore labeled RNAs (more precisely, RNA/DNA chimeras) to probe in real-time the stability of siRNAs and related molecules by fluorescence resonance energy transfer (FRET). We find that these RNA probes are substrates for relevant cellular degradative processes, including the RNase H1 mediated degradation of an DNA/RNA hybrid and Dicer-mediated cleavage of a 24-nucleotide (per strand) double-stranded RNA. In addition, we find that 21- and 24-nucleotide double-stranded RNAs are relatively protected in human cytosolic cell extract, but less so in blood serum, whereas an 18-nucleotide double-stranded RNA is less protected in both fluids. These results suggest that RNAi effector RNAs are specifically protected in the cellular environment and may provide an explanation for recent results showing that unmodified siRNAs in cells persist intact for extended periods of time.
Collapse
Affiliation(s)
- John A. H. Hoerter
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, United States of America,
| | - Vishalakshi Krishnan
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, United States of America,
| | - Troy A. Lionberger
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Nils G. Walter
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, United States of America,
- * E-mail:
| |
Collapse
|
11
|
Rawlings RA, Krishnan V, Walter NG. Viral RNAi suppressor reversibly binds siRNA to outcompete Dicer and RISC via multiple turnover. J Mol Biol 2011; 408:262-76. [PMID: 21354178 DOI: 10.1016/j.jmb.2011.02.038] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2010] [Revised: 02/02/2011] [Accepted: 02/16/2011] [Indexed: 01/13/2023]
Abstract
RNA interference is a conserved gene regulatory mechanism employed by most eukaryotes as a key component of their innate immune response to viruses and retrotransposons. During viral infection, the RNase-III-type endonuclease Dicer cleaves viral double-stranded RNA into small interfering RNAs (siRNAs) 21-24 nucleotides in length and helps load them into the RNA-induced silencing complex (RISC) to guide the cleavage of complementary viral RNA. As a countermeasure, many viruses have evolved viral RNA silencing suppressors (RSS) that tightly, and presumably quantitatively, bind siRNAs to thwart RNA-interference-mediated degradation. Viral RSS proteins also act across kingdoms as potential immunosuppressors in gene therapeutic applications. Here we report fluorescence quenching and electrophoretic mobility shift assays that probe siRNA binding by the dimeric RSS p19 from Carnation Italian Ringspot Virus, as well as by human Dicer and RISC assembly complexes. We find that the siRNA:p19 interaction is readily reversible, characterized by rapid binding [(1.69 ± 0.07) × 10(8) M(-)(1) s(-1)] and marked dissociation (k(off)=0.062 ± 0.002 s(-1)). We also observe that p19 efficiently competes with recombinant Dicer and inhibits the formation of RISC-related assembly complexes found in human cell extract. Computational modeling based on these results provides evidence for the transient formation of a ternary complex between siRNA, human Dicer, and p19. An expanded model of RNA silencing indicates that multiple turnover by reversible binding of siRNAs potentiates the efficiency of the suppressor protein. Our predictive model is expected to be applicable to the dosing of p19 as a silencing suppressor in viral gene therapy.
Collapse
Affiliation(s)
- Renata A Rawlings
- Biophysics, University of Michigan, 930 North University Avenue, Ann Arbor, MI 48109-1055, USA
| | | | | |
Collapse
|
12
|
Kolesnikova O, Kazakova H, Comte C, Steinberg S, Kamenski P, Martin RP, Tarassov I, Entelis N. Selection of RNA aptamers imported into yeast and human mitochondria. RNA (NEW YORK, N.Y.) 2010; 16:926-941. [PMID: 20348443 PMCID: PMC2856887 DOI: 10.1261/rna.1914110] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2009] [Accepted: 02/01/2010] [Indexed: 05/29/2023]
Abstract
In the yeast Saccharomyces cerevisiae, nuclear DNA-encoded is partially imported into mitochondria. We previously found that the synthetic transcripts of yeast tRNA(Lys) and a number of their mutant versions could be specifically internalized by isolated yeast and human mitochondria. The mitochondrial targeting of tRNA(Lys) in yeast was shown to depend on the cytosolic precursor of mitochondrial lysyl-tRNA synthetase and the glycolytic enzyme enolase. Here we applied the approach of in vitro selection (SELEX) to broaden the spectrum of importable tRNA-derived molecules. We found that RNAs selected for their import into isolated yeast mitochondria have lost the potential to acquire a classical tRNA-shape. Analysis of conformational rearrangements in the importable RNAs by in-gel fluorescence resonance energy transfer (FRET) approach permitted us to suggest that protein factor binding and subsequent import require formation of an alternative structure, different from a classic L-form tRNA model. We show that in the complex with targeting protein factor, enolase 2, tRK1 adopts a particular conformation characterized by bringing together the 3'-end and the TPsiC loop. This is a first evidence for implication of RNA secondary structure rearrangement in the mechanism of mitochondrial import selectivity. Based on these data, a set of small RNA molecules with significantly improved efficiency of import into yeast and human mitochondria was constructed, opening the possibility of creating a new mitochondrial vector system able to target therapeutic oligoribonucleotides into deficient human mitochondria.
Collapse
MESH Headings
- Aptamers, Nucleotide/chemistry
- Aptamers, Nucleotide/genetics
- Aptamers, Nucleotide/metabolism
- Base Sequence
- Biological Transport, Active
- Fluorescence Resonance Energy Transfer
- Humans
- In Vitro Techniques
- Lysine-tRNA Ligase/metabolism
- Mitochondria/metabolism
- Models, Molecular
- Molecular Sequence Data
- Nucleic Acid Conformation
- Phosphopyruvate Hydratase/metabolism
- RNA, Fungal/genetics
- RNA, Fungal/metabolism
- RNA, Transfer, Amino Acyl/genetics
- RNA, Transfer, Amino Acyl/metabolism
- SELEX Aptamer Technique
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae/metabolism
- Sequence Homology, Nucleic Acid
Collapse
Affiliation(s)
- Olga Kolesnikova
- UMR 7156, Université de Strasbourg/Centre National de la Recherche Scientifique (UdS/CNRS), 67084 Strasbourg, France
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Helm M, Kobitski AY, Nienhaus GU. Single-molecule Förster resonance energy transfer studies of RNA structure, dynamics and function. Biophys Rev 2009; 1:161. [PMID: 28510027 PMCID: PMC5418384 DOI: 10.1007/s12551-009-0018-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2009] [Accepted: 10/09/2009] [Indexed: 11/24/2022] Open
Abstract
Single-molecule fluorescence microscopy experiments on RNA molecules brought to light the highly complex dynamics of key biological processes, including RNA folding, catalysis of ribozymes, ligand sensing of riboswitches and aptamers, and protein synthesis in the ribosome. By using highly advanced biophysical spectroscopy techniques in combination with sophisticated biochemical synthesis approaches, molecular dynamics of individual RNA molecules can be observed in real time and under physiological conditions in unprecedented detail that cannot be achieved with bulk experiments. Here, we review recent advances in RNA folding and functional studies of RNA and RNA-protein complexes addressed by using single-molecule Förster (fluorescence) resonance energy transfer (smFRET) technique.
Collapse
Affiliation(s)
- Mark Helm
- Institute of Pharmacy, University of Mainz, Staudinger Weg 5, 55128, Mainz, Germany.
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120, Heidelberg, Germany.
| | - Andrei Yu Kobitski
- Institute of Applied Physics and Center for Functional Nanostructures (CFN), Karlsruhe Institute of Technology (KIT), 76128, Karlsruhe, Germany
| | - G Ulrich Nienhaus
- Institute of Applied Physics and Center for Functional Nanostructures (CFN), Karlsruhe Institute of Technology (KIT), 76128, Karlsruhe, Germany
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| |
Collapse
|
14
|
Walter NG, Perumal S. The Small Ribozymes: Common and Diverse Features Observed through the FRET Lens. SPRINGER SERIES IN BIOPHYSICS 2009; 13:103-127. [PMID: 21796234 DOI: 10.1007/978-3-540-70840-7_5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The hammerhead, hairpin, HDV, VS and glmS ribozymes are the five known, naturally occurring catalytic RNAs classified as the "small ribozymes". They share common reaction chemistry in cleaving their own backbone by phosphodiester transfer, but are diverse in their secondary and tertiary structures, indicating that Nature has found at least five independent solutions to a common chemical task. Fluorescence resonance energy transfer (FRET) has been extensively used to detect conformational changes in these ribozymes and dissect their reaction pathways. Common and diverse features are beginning to emerge that, by extension, highlight general biophysical properties of non-protein coding RNAs.
Collapse
Affiliation(s)
- Nils G Walter
- Department of Chemistry, Single Molecule Analysis Group, University of Michigan, Ann Arbor, MI 48109
| | | |
Collapse
|
15
|
Abstract
Mechanistic studies of RNA enzymes (ribozymes) and ribonucleoprotein (RNP) complexes such as the ribosome and telomerase, often seek to characterize RNA structural features, either dynamic or static, and relate these properties to specific catalytic functions. Many experimental techniques that probe RNA structure-function relationships rely upon site-specific incorporation of chemically modified ribonucleotides into the RNA of interest, often in the form of chemical cross-linkers to probe for sites of protein-RNA interaction or small organic fluorophores to measure dynamic structural properties of RNAs. The ability to arbitrarily modify any RNA molecule has been greatly enabled by modern RNA synthesis techniques; however, there remains a practical size limitation (~70 bases). Consequently, experimental approaches involving specific chemical modifications of larger RNAs require the use of RNA ligation methods. The aim of this chapter is to describe a general approach for covalently joining multiple site-specifically modified RNA fragments, drawing from our fluorescence-based structural studies of telomerase RNA as an example.
Collapse
Affiliation(s)
- Benjamin M Akiyama
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, California, USA
| | | |
Collapse
|
16
|
Ditzler MA, Rueda D, Mo J, Håkansson K, Walter NG. A rugged free energy landscape separates multiple functional RNA folds throughout denaturation. Nucleic Acids Res 2008; 36:7088-99. [PMID: 18988629 PMCID: PMC2602785 DOI: 10.1093/nar/gkn871] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The dynamic mechanisms by which RNAs acquire biologically functional structures are of increasing importance to the rapidly expanding fields of RNA therapeutics and biotechnology. Large energy barriers separating misfolded and functional states arising from alternate base pairing are a well-appreciated characteristic of RNA. In contrast, it is typically assumed that functionally folded RNA occupies a single native basin of attraction that is free of deeply dividing energy barriers (ergodic hypothesis). This assumption is widely used as an implicit basis to interpret experimental ensemble-averaged data. Here, we develop an experimental approach to isolate persistent sub-populations of a small RNA enzyme and show by single molecule fluorescence resonance energy transfer (smFRET), biochemical probing and high-resolution mass spectrometry that commitment to one of several catalytically active folds occurs unexpectedly high on the RNA folding energy landscape, resulting in partially irreversible folding. Our experiments reveal the retention of molecular heterogeneity following the complete loss of all native secondary and tertiary structure. Our results demonstrate a surprising longevity of molecular heterogeneity and advance our current understanding beyond that of non-functional misfolds of RNA kinetically trapped on a rugged folding-free energy landscape.
Collapse
Affiliation(s)
- Mark A Ditzler
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | | | |
Collapse
|
17
|
Pereira MJB, Nikolova EN, Hiley SL, Jaikaran D, Collins RA, Walter NG. Single VS ribozyme molecules reveal dynamic and hierarchical folding toward catalysis. J Mol Biol 2008; 382:496-509. [PMID: 18656481 DOI: 10.1016/j.jmb.2008.07.020] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2008] [Revised: 07/01/2008] [Accepted: 07/08/2008] [Indexed: 01/18/2023]
Abstract
Non-coding RNAs of complex tertiary structure are involved in numerous aspects of the replication and processing of genetic information in many organisms; however, an understanding of the complex relationship between their structural dynamics and function is only slowly emerging. The Neurospora Varkud Satellite (VS) ribozyme provides a model system to address this relationship. First, it adopts a tertiary structure assembled from common elements, a kissing loop and two three-way junctions. Second, catalytic activity of the ribozyme is essential for replication of VS RNA in vivo and can be readily assayed in vitro. Here we exploit single molecule FRET to show that the VS ribozyme exhibits previously unobserved dynamic and heterogeneous hierarchical folding into an active structure. Readily reversible kissing loop formation combined with slow cleavage of the upstream substrate helix suggests a model whereby the structural dynamics of the VS ribozyme favor cleavage of the substrate downstream of the ribozyme core instead. This preference is expected to facilitate processing of the multimeric RNA replication intermediate into circular VS RNA, which is the predominant form observed in vivo.
Collapse
Affiliation(s)
- Miguel J B Pereira
- Department of Chemistry, Single Molecule Analysis Group, 930 N. University Ave., University of Michigan, Ann Arbor, MI 48109-1055, USA
| | | | | | | | | | | |
Collapse
|
18
|
Harris DA, Tinsley RA, Walter NG. Terbium-mediated Footprinting Probes a Catalytic Conformational Switch in the Antigenomic Hepatitis Delta Virus Ribozyme. J Mol Biol 2004; 341:389-403. [PMID: 15276831 DOI: 10.1016/j.jmb.2004.05.074] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2004] [Revised: 05/17/2004] [Accepted: 05/19/2004] [Indexed: 12/20/2022]
Abstract
The two forms of the hepatitis delta virus ribozyme are derived from the genomic and antigenomic RNA strands of the human hepatitis delta virus (HDV), where they serve a crucial role in pathogen replication by catalyzing site-specific self-cleavage reactions. The HDV ribozyme requires divalent metal ions for formation of its tertiary structure, consisting of a tight double-nested pseudoknot, and for efficient self- (or cis-) cleavage. Comparison of recently solved crystal structures of the cleavage precursor and 3' product indicates that a significant conformational switch is required for catalysis by the genomic HDV ribozyme. Here, we have used the lanthanide metal ion terbium(III) to footprint the precursor and product solution structures of the cis-acting antigenomic HDV ribozyme. Inhibitory Tb(3+) binds with high affinity to similar sites on RNA as Mg(2+) and subsequently promotes slow backbone scission. We find subtle, yet significant differences in the terbium(III) footprinting pattern between the precursor and product forms of the antigenomic HDV ribozyme, consistent with differences in conformation as observed in the crystal structures of the genomic ribozyme. In addition, UV melting profiles provide evidence for a less tight tertiary structure in the precursor. In both the precursor and product we observe high-affinity terbium(III) binding sites in joining sequence J4/2 (Tb(1/2) approximately 4 microM) and loop L3, which are key structural components forming the catalytic core of the HDV ribozyme, as well as in several single-stranded regions such as J1/2 and the L4 tetraloop (Tb(1/2) approximately 50 microM). Sensitized luminescence spectroscopy confirms that there are at least two affinity classes of Tb(3+) binding sites. Our results thus demonstrate that a significant conformational change accompanies catalysis in the antigenomic HDV ribozyme in solution, similar to the catalytic conformational switch observed in crystals of the genomic form, and that structural and perhaps catalytic metal ions bind close to the catalytic core.
Collapse
Affiliation(s)
- Dinari A Harris
- Department of Chemistry, The University of Michigan, 930 N. University, Ann Arbor, MI 48109-1055, USA
| | | | | |
Collapse
|