1
|
Brango-Vanegas J, Leite ML, de Oliveira KBS, da Cunha NB, Franco OL. From exploring cancer and virus targets to discovering active peptides through mRNA display. Pharmacol Ther 2023; 252:108559. [PMID: 37952905 DOI: 10.1016/j.pharmthera.2023.108559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/26/2023] [Accepted: 11/06/2023] [Indexed: 11/14/2023]
Abstract
During carcinogenesis, neoplastic cells accumulate mutations in genes important for cellular homeostasis, producing defective proteins. Viral infections occur when viral capsid proteins bind to the host cell receptor, allowing the virus to enter the cells. In both cases, proteins play important roles in cancer development and viral infection, so these targets can be exploited to develop alternative treatments. mRNA display technology is a very powerful tool for the development of peptides capable of acting on specific targets in neoplastic cells or on viral capsid proteins. mRNA display technology allows the selection and evolution of peptides with desired functional properties from libraries of many nucleic acid variants. Among other advantages of this technology, the use of flexizymes allows the production of peptides with unnatural amino acid residues, which can enhance the activity of these molecules. From target immobilization, peptides with greater specificity for the targets of interest are generated during the selection rounds. Herein, we will explore the use of mRNA display technology for the development of active peptides after successive rounds of selection, using proteins present in neoplastic cells and viral particles as targets.
Collapse
Affiliation(s)
- José Brango-Vanegas
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil; S-inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, MS, Brazil
| | - Michel Lopes Leite
- Departamento de Biologia Molecular, Instituto de Ciências Biológicas, Universidade de Brasília, Campus Darcy Ribeiro, Brasília, DF, Brazil
| | - Kamila Botelho Sampaio de Oliveira
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil; S-inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, MS, Brazil
| | - Nicolau Brito da Cunha
- Universidade de Brasília, Faculdade de Agronomia e Medicina Veterinária, Campus Darcy Ribeiro, Brasília, DF, Brazil
| | - Octávio Luiz Franco
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil; S-inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, MS, Brazil.
| |
Collapse
|
2
|
Xiao H, Bao Z, Zhao H. High Throughput Screening and Selection Methods for Directed Enzyme Evolution. Ind Eng Chem Res 2014; 54:4011-4020. [PMID: 26074668 PMCID: PMC4461044 DOI: 10.1021/ie503060a] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 10/02/2014] [Accepted: 10/03/2014] [Indexed: 02/08/2023]
Abstract
Successful
evolutionary enzyme engineering requires a high throughput
screening or selection method, which considerably increases the chance
of obtaining desired properties and reduces the time and cost. In
this review, a series of high throughput screening and selection methods
are illustrated with significant and recent examples. These high throughput
strategies are also discussed with an emphasis on compatibility with
phenotypic analysis during directed enzyme evolution. Lastly, certain
limitations of current methods, as well as future developments, are
briefly summarized.
Collapse
Affiliation(s)
- Han Xiao
- Department of Chemical and Biomolecular Engineering, Department of Biochemistry, and Departments of Chemistry and Bioengineering and Institute for Genomic Biology, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Zehua Bao
- Department of Chemical and Biomolecular Engineering, Department of Biochemistry, and Departments of Chemistry and Bioengineering and Institute for Genomic Biology, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Huimin Zhao
- Department of Chemical and Biomolecular Engineering, Department of Biochemistry, and Departments of Chemistry and Bioengineering and Institute for Genomic Biology, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| |
Collapse
|
3
|
Chen F, Zhao Y, Liu M, Li D, Wu H, Chen H, Zhu Y, Luo F, Zhong J, Zhou Y, Qi Z, Zhang XL. Functional selection of hepatitis C virus envelope E2-binding Peptide ligands by using ribosome display. Antimicrob Agents Chemother 2010; 54:3355-64. [PMID: 20479194 PMCID: PMC2916351 DOI: 10.1128/aac.01357-09] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2009] [Revised: 12/07/2009] [Accepted: 04/29/2010] [Indexed: 02/07/2023] Open
Abstract
Small peptides that inhibit the hepatitis C virus (HCV) at the stage of viral entry have the potential to serve as attractive antiviral drugs. Ribosome display is a cell-free system for in vitro selection of peptides from large random peptide libraries. Thus, we utilized a ribosome display library technique for affinity selection of HCV envelope protein E2-binding peptide ligands. Through 13 rounds of selection, the ribosome display system generated high-affinity 12-mer peptides, and the selected peptide PE2D (MARHRNWPLVMV) demonstrated the highest specificity and affinity to the HCV E2 protein. Furthermore, amino acids 489 to 508 (YPPRPCGIVPAKSVCGPVYC) of E2 were identified as crucial for binding to PE2D. The selected peptides, especially PE2D, not only dramatically blocked E2 protein binding to hepatocytes but also dramatically inhibited HCV cell culture (HCVcc) entry into hepatocytes. HCVcc and HCV particles from HCV patient serum samples could also be specifically captured using PE2D. Our study demonstrates that the newly selected peptide ligand PE2D holds great promise for developing a new molecular probe, a therapeutic drug specifically for HCV, or an early-diagnostic reagent for HCV surface envelope antigen E2.
Collapse
Affiliation(s)
- Fang Chen
- State Key Laboratory of Virology and Department of Immunology and Hubei Province Key Laboratory of Allergy and Immune-Related Diseases, Wuhan University School of Medicine, Wuhan 430071, People's Republic of China, Department of Microbiology, Second Military Medical University, Shanghai 200433, People's Republic of China, The Unit of Viral Hepatitis, Institut Pasteur of Shanghai, Shanghai 200025, People's Republic of China, Jianghan University, College of Life Science, Department of Biotechnology, Wuhan 430056, People's Republic of China
| | - Yinglan Zhao
- State Key Laboratory of Virology and Department of Immunology and Hubei Province Key Laboratory of Allergy and Immune-Related Diseases, Wuhan University School of Medicine, Wuhan 430071, People's Republic of China, Department of Microbiology, Second Military Medical University, Shanghai 200433, People's Republic of China, The Unit of Viral Hepatitis, Institut Pasteur of Shanghai, Shanghai 200025, People's Republic of China, Jianghan University, College of Life Science, Department of Biotechnology, Wuhan 430056, People's Republic of China
| | - Min Liu
- State Key Laboratory of Virology and Department of Immunology and Hubei Province Key Laboratory of Allergy and Immune-Related Diseases, Wuhan University School of Medicine, Wuhan 430071, People's Republic of China, Department of Microbiology, Second Military Medical University, Shanghai 200433, People's Republic of China, The Unit of Viral Hepatitis, Institut Pasteur of Shanghai, Shanghai 200025, People's Republic of China, Jianghan University, College of Life Science, Department of Biotechnology, Wuhan 430056, People's Republic of China
| | - Dongqing Li
- State Key Laboratory of Virology and Department of Immunology and Hubei Province Key Laboratory of Allergy and Immune-Related Diseases, Wuhan University School of Medicine, Wuhan 430071, People's Republic of China, Department of Microbiology, Second Military Medical University, Shanghai 200433, People's Republic of China, The Unit of Viral Hepatitis, Institut Pasteur of Shanghai, Shanghai 200025, People's Republic of China, Jianghan University, College of Life Science, Department of Biotechnology, Wuhan 430056, People's Republic of China
| | - Hongyan Wu
- State Key Laboratory of Virology and Department of Immunology and Hubei Province Key Laboratory of Allergy and Immune-Related Diseases, Wuhan University School of Medicine, Wuhan 430071, People's Republic of China, Department of Microbiology, Second Military Medical University, Shanghai 200433, People's Republic of China, The Unit of Viral Hepatitis, Institut Pasteur of Shanghai, Shanghai 200025, People's Republic of China, Jianghan University, College of Life Science, Department of Biotechnology, Wuhan 430056, People's Republic of China
| | - Haidan Chen
- State Key Laboratory of Virology and Department of Immunology and Hubei Province Key Laboratory of Allergy and Immune-Related Diseases, Wuhan University School of Medicine, Wuhan 430071, People's Republic of China, Department of Microbiology, Second Military Medical University, Shanghai 200433, People's Republic of China, The Unit of Viral Hepatitis, Institut Pasteur of Shanghai, Shanghai 200025, People's Republic of China, Jianghan University, College of Life Science, Department of Biotechnology, Wuhan 430056, People's Republic of China
| | - Yongzhe Zhu
- State Key Laboratory of Virology and Department of Immunology and Hubei Province Key Laboratory of Allergy and Immune-Related Diseases, Wuhan University School of Medicine, Wuhan 430071, People's Republic of China, Department of Microbiology, Second Military Medical University, Shanghai 200433, People's Republic of China, The Unit of Viral Hepatitis, Institut Pasteur of Shanghai, Shanghai 200025, People's Republic of China, Jianghan University, College of Life Science, Department of Biotechnology, Wuhan 430056, People's Republic of China
| | - Fengling Luo
- State Key Laboratory of Virology and Department of Immunology and Hubei Province Key Laboratory of Allergy and Immune-Related Diseases, Wuhan University School of Medicine, Wuhan 430071, People's Republic of China, Department of Microbiology, Second Military Medical University, Shanghai 200433, People's Republic of China, The Unit of Viral Hepatitis, Institut Pasteur of Shanghai, Shanghai 200025, People's Republic of China, Jianghan University, College of Life Science, Department of Biotechnology, Wuhan 430056, People's Republic of China
| | - Jin Zhong
- State Key Laboratory of Virology and Department of Immunology and Hubei Province Key Laboratory of Allergy and Immune-Related Diseases, Wuhan University School of Medicine, Wuhan 430071, People's Republic of China, Department of Microbiology, Second Military Medical University, Shanghai 200433, People's Republic of China, The Unit of Viral Hepatitis, Institut Pasteur of Shanghai, Shanghai 200025, People's Republic of China, Jianghan University, College of Life Science, Department of Biotechnology, Wuhan 430056, People's Republic of China
| | - Yidan Zhou
- State Key Laboratory of Virology and Department of Immunology and Hubei Province Key Laboratory of Allergy and Immune-Related Diseases, Wuhan University School of Medicine, Wuhan 430071, People's Republic of China, Department of Microbiology, Second Military Medical University, Shanghai 200433, People's Republic of China, The Unit of Viral Hepatitis, Institut Pasteur of Shanghai, Shanghai 200025, People's Republic of China, Jianghan University, College of Life Science, Department of Biotechnology, Wuhan 430056, People's Republic of China
| | - Zhongtian Qi
- State Key Laboratory of Virology and Department of Immunology and Hubei Province Key Laboratory of Allergy and Immune-Related Diseases, Wuhan University School of Medicine, Wuhan 430071, People's Republic of China, Department of Microbiology, Second Military Medical University, Shanghai 200433, People's Republic of China, The Unit of Viral Hepatitis, Institut Pasteur of Shanghai, Shanghai 200025, People's Republic of China, Jianghan University, College of Life Science, Department of Biotechnology, Wuhan 430056, People's Republic of China
| | - Xiao-Lian Zhang
- State Key Laboratory of Virology and Department of Immunology and Hubei Province Key Laboratory of Allergy and Immune-Related Diseases, Wuhan University School of Medicine, Wuhan 430071, People's Republic of China, Department of Microbiology, Second Military Medical University, Shanghai 200433, People's Republic of China, The Unit of Viral Hepatitis, Institut Pasteur of Shanghai, Shanghai 200025, People's Republic of China, Jianghan University, College of Life Science, Department of Biotechnology, Wuhan 430056, People's Republic of China
| |
Collapse
|