1
|
Prajapati SK, Pathak A, Samaiya PK. Alzheimer's disease: from early pathogenesis to novel therapeutic approaches. Metab Brain Dis 2024; 39:1231-1254. [PMID: 39046584 DOI: 10.1007/s11011-024-01389-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 07/15/2024] [Indexed: 07/25/2024]
Abstract
The mainstay behind Alzheimer's disease (AD) remains unknown due to the elusive pathophysiology of the disease. Beta-amyloid and phosphorylated Tau is still widely incorporated in various research studies while studying AD. However, they are not sufficient. Therefore, many scientists and researchers have dug into AD studies to deliver many innovations in this field. Many novel biomarkers, such as phosphoglycerate-dehydrogenase, clusterin, microRNA, and a new peptide ratio (Aβ37/Aβ42) in cerebral-spinal fluid, plasma glial-fibrillary-acidic-protein, and lipid peroxidation biomarkers, are mushrooming. They are helping scientists find breakthroughs and substantiating their research on the early detection of AD. Neurovascular unit dysfunction in AD is a significant discovery that can help us understand the relationship between neuronal activity and cerebral blood flow. These new biomarkers are promising and can take these AD studies to another level. There have also been big steps forward in diagnosing and finding AD. One example is self-administered-gerocognitive-examination, which is less expensive and better at finding AD early on than mini-mental-state-examination. Quantum brain sensors and electrochemical biosensors are innovations in the detection field that must be explored and incorporated into the studies. Finally, novel innovations in AD studies like nanotheranostics are the future of AD treatment, which can not only diagnose and detect AD but also offer treatment. Non-pharmacological strategies to treat AD have also yielded interesting results. Our literature review spans from 1957 to 2022, capturing research and trends in the field over six decades. This review article is an update not only on the recent advances in the search for credible biomarkers but also on the newer detection techniques and therapeutic approaches targeting AD.
Collapse
Affiliation(s)
- Santosh Kumar Prajapati
- Bhavdiya Institute of Pharmaceutical Sciences and Research, Ayodhya, UP, India
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL, 33613, USA
| | - Arjit Pathak
- Department of Pharmacy Shri G.S. Institute of Technology and Science, Indore, 452003, Madhya Pradesh, India
| | - Puneet K Samaiya
- Department of Pharmacy Shri G.S. Institute of Technology and Science, Indore, 452003, Madhya Pradesh, India.
| |
Collapse
|
2
|
Brito LM, Ribeiro-dos-Santos Â, Vidal AF, de Araújo GS. Differential Expression and miRNA-Gene Interactions in Early and Late Mild Cognitive Impairment. BIOLOGY 2020; 9:biology9090251. [PMID: 32872134 PMCID: PMC7565463 DOI: 10.3390/biology9090251] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/21/2020] [Accepted: 06/24/2020] [Indexed: 12/19/2022]
Abstract
Mild cognitive impairment (MCI) and Alzheimer's Disease (AD) are complex diseases with their molecular architecture not elucidated. APOE, Amyloid Beta Precursor Protein (APP), and Presenilin-1 (PSEN1) are well-known genes associated with both MCI and AD. Recently, epigenetic alterations and dysregulated regulatory elements, such as microRNAs (miRNAs), have been reported associated with neurodegeneration. In this study, differential expression analysis (DEA) was performed for genes and miRNAs based on microarray and RNA-Seq data. Global gene profile of healthy individuals, early and late mild cognitive impairment (EMCI and LMCI, respectively), and AD was obtained from ADNI Cohort. miRNA global profile of healthy individuals and AD patients was extracted from public RNA-Seq data. DEA performed with limma package on ADNI Cohort data highlighted eight differential expressed (DE) genes (AGER, LINC00483, MMP19, CATSPER1, ARFGAP1, GPER1, PHLPP2, TRPM2) (false discovery rate (FDR) p-value < 0.05) between EMCI and LMCI patients. Previous molecular studies showed associations between these genes with dementia and neurological-related pathways. Five dysregulated miRNAs were identified by DEA performed with RNA-Seq data and edgeR (FDR p-value < 0.002). All reported miRNAs in AD interact with the aforementioned genes. Our integrative transcriptomic analysis was able to identify a set of miRNA-gene interactions that may be involved in cognitive and neurodegeneration processes.
Collapse
Affiliation(s)
- Leonardo Miranda Brito
- Laboratório de Genética Humana e Médica, Instituto de Ciêncas Biológicas, Universidade Federal do Pará, Belém 66075-110, Brazil; (L.M.B.); (Â.R.-d.-S.); (A.F.V.)
- Programa de Pós-Graduação em Genética e Biologia Molecular, Instituto de Ciêncas Biológicas, Universidade Federal do Pará, Belém 66075-110, Brazil
| | - Ândrea Ribeiro-dos-Santos
- Laboratório de Genética Humana e Médica, Instituto de Ciêncas Biológicas, Universidade Federal do Pará, Belém 66075-110, Brazil; (L.M.B.); (Â.R.-d.-S.); (A.F.V.)
- Programa de Pós-Graduação em Genética e Biologia Molecular, Instituto de Ciêncas Biológicas, Universidade Federal do Pará, Belém 66075-110, Brazil
| | - Amanda Ferreira Vidal
- Laboratório de Genética Humana e Médica, Instituto de Ciêncas Biológicas, Universidade Federal do Pará, Belém 66075-110, Brazil; (L.M.B.); (Â.R.-d.-S.); (A.F.V.)
- Programa de Pós-Graduação em Genética e Biologia Molecular, Instituto de Ciêncas Biológicas, Universidade Federal do Pará, Belém 66075-110, Brazil
| | - Gilderlanio Santana de Araújo
- Laboratório de Genética Humana e Médica, Instituto de Ciêncas Biológicas, Universidade Federal do Pará, Belém 66075-110, Brazil; (L.M.B.); (Â.R.-d.-S.); (A.F.V.)
- Programa de Pós-Graduação em Genética e Biologia Molecular, Instituto de Ciêncas Biológicas, Universidade Federal do Pará, Belém 66075-110, Brazil
- Correspondence:
| |
Collapse
|
3
|
Li L, Cavuoto M, Biddiscombe K, Pike KE. Diabetes Mellitus Increases Risk of Incident Dementia in APOE ɛ4 Carriers: A Meta-Analysis. J Alzheimers Dis 2020; 74:1295-1308. [DOI: 10.3233/jad-191068] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Lily Li
- School of Psychology & Public Health, La Trobe University, Melbourne, Victoria, Australia
| | - Marina Cavuoto
- School of Psychology & Public Health, La Trobe University, Melbourne, Victoria, Australia
| | - Karen Biddiscombe
- School of Psychology & Public Health, La Trobe University, Melbourne, Victoria, Australia
| | - Kerryn E. Pike
- School of Psychology & Public Health, La Trobe University, Melbourne, Victoria, Australia
| |
Collapse
|
4
|
Kok EH, Karppinen TT, Luoto T, Alafuzoff I, Karhunen PJ. Beer Drinking Associates with Lower Burden of Amyloid Beta Aggregation in the Brain: Helsinki Sudden Death Series. Alcohol Clin Exp Res 2016; 40:1473-8. [PMID: 27218874 DOI: 10.1111/acer.13102] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 04/12/2016] [Indexed: 12/21/2022]
Abstract
BACKGROUND Controversy surrounds the effect of alcohol consumption on the development of dementia and cognitive impairment. We investigated the association between consumption of different alcoholic beverages and β-amyloid (Aβ) aggregation in the brain, 1 of the neuropathological lesions of Alzheimer's disease. METHODS In total, 125 males of the Helsinki Sudden Death autopsy Series were included with an age range at death 35 to 70 years. The consumption of alcohol, Aβ aggregation in the brain, and Apolipoprotein E (APOE) genotype were assessed. Relatives answered a questionnaire to gather alcohol consumption history, and Aβ was visualized by implementing immunohistochemical staining of brain sections. Aβ immunoreactivity (IR) was assessed in a dichotomized (yes/no) fashion and as a stained area fraction (%). APOE genotype was assessed in DNA extracted from paraffin-embedded cardiac muscle samples. RESULTS Increased age (p = 0.001; odds ratio [OR] = 1.09, confidence interval [CI] = 1.04 to 1.15) was associated with higher prevalence of Aβ-IR. Beer drinking decreased (p = 0.024; OR = 0.35, CI = 0.14 to 0.87) the prevalence of Aβ-IR and was associated with a significantly lower extent of Aβ-IR (p = 0.022). The amount of alcohol consumed was not linked with Aβ aggregation and neither was spirit nor wine consumption. CONCLUSIONS Beer consumption may protect against Aβ aggregation in brain. Further studies are necessary to fully understand the effects of alcohol on Aβ pathology seen in brain tissue.
Collapse
Affiliation(s)
- Eloise H Kok
- Department of Forensic Medicine, University of Tampere, Tampere, Finland
| | - Toni T Karppinen
- Department of Forensic Medicine, University of Tampere, Tampere, Finland
| | - Teemu Luoto
- Department of Neurosciences and Rehabilitation, Tampere University Hospital, Tampere, Finland
| | - Irina Alafuzoff
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden.,Department of Pathology, Uppsala University Hospital, Uppsala, Sweden.,Unit of Neurology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Pekka J Karhunen
- Department of Forensic Medicine, University of Tampere, Tampere, Finland
| |
Collapse
|
5
|
Suski M, Olszanecki R, Chmura Ł, Stachowicz A, Madej J, Okoń K, Adamek D, Korbut R. Influence of metformin on mitochondrial subproteome in the brain of apoE knockout mice. Eur J Pharmacol 2016; 772:99-107. [DOI: 10.1016/j.ejphar.2015.12.036] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 12/17/2015] [Accepted: 12/18/2015] [Indexed: 01/08/2023]
|
6
|
Yi L, Wu T, Luo W, Zhou W, Wu J. A non-invasive, rapid method to genotype late-onset Alzheimer's disease-related apolipoprotein E gene polymorphisms. Neural Regen Res 2014; 9:69-75. [PMID: 25206745 PMCID: PMC4146311 DOI: 10.4103/1673-5374.125332] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2013] [Indexed: 12/21/2022] Open
Abstract
The apolipoprotein E gene ε4 allele is considered a negative factor for neural regeneration in late-onset Alzheimer's disease cases. The aim of this study was to establish a non-invasive, rapid method to genotype apolipoprotein E gene polymorphisms. Genomic DNA from mouth swab specimens was extracted using magnetic nanoparticles, and genotyping was performed by real-time PCR using TaqMan-BHQ probes. Genotyping accuracy was validated by DNA sequencing. Our results demonstrate 100% correlation to DNA sequencing, indicating reliability of our protocol. Thus, the method we have developed for apolipoprotein E genotyping is accurate and reliable, and also suitable for genotyping large samples, which may help determine the role of the apolipoprotein E ε4 allele in neural regeneration in late-onset Alzheimer's disease cases.
Collapse
Affiliation(s)
- Li Yi
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen, Guangdong Province, China
| | - Ting Wu
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen, Guangdong Province, China
| | - Wenyuan Luo
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen, Guangdong Province, China
| | - Wen Zhou
- Department of Radiology, Peking University Shenzhen Hospital, Shenzhen, Guangdong Province, China
| | - Jun Wu
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen, Guangdong Province, China
| |
Collapse
|
7
|
Nava-Mesa MO, Jiménez-Díaz L, Yajeya J, Navarro-Lopez JD. GABAergic neurotransmission and new strategies of neuromodulation to compensate synaptic dysfunction in early stages of Alzheimer's disease. Front Cell Neurosci 2014; 8:167. [PMID: 24987334 PMCID: PMC4070063 DOI: 10.3389/fncel.2014.00167] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 06/02/2014] [Indexed: 01/06/2023] Open
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disease characterized by cognitive decline, brain atrophy due to neuronal and synapse loss, and formation of two pathological lesions: extracellular amyloid plaques, composed largely of amyloid-beta peptide (Aβ), and neurofibrillary tangles formed by intracellular aggregates of hyperphosphorylated tau protein. Lesions mainly accumulate in brain regions that modulate cognitive functions such as the hippocampus, septum or amygdala. These brain structures have dense reciprocal glutamatergic, cholinergic, and GABAergic connections and their relationships directly affect learning and memory processes, so they have been proposed as highly susceptible regions to suffer damage by Aβ during AD course. Last findings support the emerging concept that soluble Aβ peptides, inducing an initial stage of synaptic dysfunction which probably starts 20–30 years before the clinical onset of AD, can perturb the excitatory–inhibitory balance of neural circuitries. In turn, neurotransmission imbalance will result in altered network activity that might be responsible of cognitive deficits in AD. Therefore, Aβ interactions on neurotransmission systems in memory-related brain regions such as amygdaloid complex, medial septum or hippocampus are critical in cognitive functions and appear as a pivotal target for drug design to improve learning and dysfunctions that manifest with age. Since treatments based on glutamatergic and cholinergic pharmacology in AD have shown limited success, therapies combining modulators of different neurotransmission systems including recent findings regarding the GABAergic system, emerge as a more useful tool for the treatment, and overall prevention, of this dementia. In this review, focused on inhibitory systems, we will analyze pharmacological strategies to compensate neurotransmission imbalance that might be considered as potential therapeutic interventions in AD.
Collapse
Affiliation(s)
| | - Lydia Jiménez-Díaz
- Neurophysiology and Behavior Lab, Centro Regional de Investigaciones Biomédicas, School of Medicine of Ciudad Real, University of Castilla-La Mancha Ciudad Real, Spain
| | - Javier Yajeya
- Department of Physiology and Pharmacology, University of Salamanca Salamanca, Spain
| | - Juan D Navarro-Lopez
- Neurophysiology and Behavior Lab, Centro Regional de Investigaciones Biomédicas, School of Medicine of Ciudad Real, University of Castilla-La Mancha Ciudad Real, Spain
| |
Collapse
|
8
|
Sabbagh MN, Malek-Ahmadi M, Dugger BN, Lee K, Sue LI, Serrano G, Walker DG, Davis K, Jacobson SA, Beach TG. The influence of Apolipoprotein E genotype on regional pathology in Alzheimer's disease. BMC Neurol 2013; 13:44. [PMID: 23663404 PMCID: PMC3654892 DOI: 10.1186/1471-2377-13-44] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Accepted: 05/03/2013] [Indexed: 01/29/2023] Open
Abstract
Background Carriers of the ApoE ϵ4 allele are at a greater risk for developing Alzheimer’s disease (AD) and those who do develop AD tend to have a much greater neuropathological disease burden. Although several studies have shown significant differences in AD pathology among ϵ4 carriers and non-carriers, few have characterized these differences in terms of brain region and neuropathological score frequency. Methods 566 pathologically-confirmed AD cases who were followed prospectively with antemortem dementia diagnoses (312 ApoE ϵ4 carriers and 254 ApoE ϵ4 non-carriers) were compared on the frequencies of neuropathological frequency scores (none, sparse, moderate, frequent) among several different brain regions (frontal, temporal, parietal, hippocampal, and entorhinal) using the CERAD scoring system. Pathology score frequencies were analyzed by carrier status (ϵ4 carrier vs. ϵ4 non-carrier) and by genotype (2/3, 3/3, 2/4, 3/4, 4/4). Both analyses investigated pathology score frequencies among different brain regions (frontal, temporal, parietal, hippocampal, and entorhinal). Results ϵ4 carriers had a significantly lower age at death (p <0.001) and significantly higher Braak scores (p <0.001) than ϵ4 non-carriers. Genotype comparison revealed that plaque and tangle pathologies increased in the following pattern, 2/3<3/3<2/4<3/4<4/4, for several brain regions. When stratified by age and ApoE ϵ4 carrier status, ϵ4 carriers tended to have significantly more frequent scores across most cortical areas. However, non-carriers age 90 and older tended to have greater plaque pathology than carriers. For tangle pathology, ϵ4 carriers tended to have significantly more “frequent” scores than non-carriers, except for the hippocampal and entorhinal areas in individuals age 90 and older. Conclusions ApoE ϵ4 carriers had a significantly higher percentage of “frequent” scores for plaques and tangles when compared to ApoE ϵ4 non-carriers for several brain regions. However, ϵ4 non-carriers age 90 and older tended to have less plaque and tangle pathology in certain brain regions. These results demonstrate that AD pathology may manifest itself differently based on ApoE genotype and suggest that ApoE carriers and non-carriers may have different patterns of AD neuropathology location and density.
Collapse
Affiliation(s)
- Marwan N Sabbagh
- The Cleo Robert Center for Clinical Research, Banner Sun Health Research Institute, Sun City, AZ, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Kheirandish-Gozal L, Gozal D. Genotype-phenotype interactions in pediatric obstructive sleep apnea. Respir Physiol Neurobiol 2013; 189:338-43. [PMID: 23563156 DOI: 10.1016/j.resp.2013.03.016] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 03/27/2013] [Accepted: 03/27/2013] [Indexed: 02/05/2023]
Abstract
Pediatric sleep disordered breathing (PSDB) is not only a very frequent condition affecting 2-4% of all children, but is also associated with an increased risk for a variety of manifestations underlying end-organ injury and dysfunction that impose both immediate and potentially long-term morbidities and corresponding inherent elevations in healthcare costs. One of the major problems with the creation of valid algorithms aiming to stratify diagnostic and treatment prioritization lies in our current inability to predict and identify those children who are most at-risk for PSDB-induced adverse consequences. Thus, improved our understanding of the mechanisms governing phenotype variance in PSDB is essential. Here, we examine some of the potential underpinnings of phenotypic variability in PSDB, and further propose a conceptual framework aimed at facilitating the process of advancing knowledge in this frequent disorder.
Collapse
Affiliation(s)
- Leila Kheirandish-Gozal
- Sections of Pediatric Sleep Medicine and Pediatric Pulmonology, Department of Pediatrics, Comer Children's Hospital, Pritzker School of Medicine, The University of Chicago, Chicago, IL, United States.
| | | |
Collapse
|
10
|
Vagelatos NT, Eslick GD. Type 2 diabetes as a risk factor for Alzheimer's disease: the confounders, interactions, and neuropathology associated with this relationship. Epidemiol Rev 2013; 35:152-60. [PMID: 23314404 DOI: 10.1093/epirev/mxs012] [Citation(s) in RCA: 237] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2013] [Indexed: 12/24/2022] Open
Abstract
We performed a systematic review and meta-analysis to explore whether type 2 diabetes mellitus (T2DM) increases the risk of Alzheimer's disease (AD). We also reviewed interactions with smoking, hypertension, and apolipoprotein E ɛ4. Using a series of databases (MEDLINE, EMBASE, PubMed, Current Contents Connect, and Google Scholar), we identified a total of 15 epidemiologic studies. Fourteen studies reported positive associations, of which 9 were statistically significant. Risk estimates ranged from 0.83 to 2.45. The pooled adjusted risk ratio was 1.57 (95% confidence interval: 1.41, 1.75), with a population-attributable risk of 8%. Smoking and hypertension, when comorbid with T2DM, had odds of 14 and 3, respectively. Of the 5 studies that investigated the interaction between T2DM and apolipoprotein E ɛ4, 4 showed positive associations, of which 3 were significant, with odds ranging from 2.4 to 4.99. The pooled adjusted risk ratio was 2.91 (95% confidence interval: 1.51, 5.61). Risk estimates were presented in the context of a key confounder-cerebral infarcts-which are more common in those with T2DM and might contribute to the manifestation of clinical AD. We provide evidence from clinico-neuropathologic studies that demonstrates the following: First, cerebral infarcts are more common than AD-type pathology in those with T2DM and dementia. Second, those with dementia at postmortem are more likely to have both AD-type and cerebrovascular pathologies. Finally, cerebral infarcts reduce the number of AD lesions required for the manifestation of clinical dementia, but they do not appear to interact synergistically with AD-type pathology. Therefore, the increased risk of clinically diagnosed AD seems to be mediated through cerebrovascular pathology.
Collapse
|
11
|
Kaushal N, Ramesh V, Gozal D. Human apolipoprotein E4 targeted replacement in mice reveals increased susceptibility to sleep disruption and intermittent hypoxia. Am J Physiol Regul Integr Comp Physiol 2012; 303:R19-29. [PMID: 22573105 DOI: 10.1152/ajpregu.00025.2012] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Intermittent hypoxia (IH) and sleep fragmentation (SF) are major manifestations of sleep apnea, a frequent condition in aging humans. Sleep perturbations are frequent in Alzheimer's disease (AD) and may underlie the progression of disease. We hypothesized that acute short-term IH, SF, and their combination (IH+SF) may reveal unique susceptibility in sleep integrity in a murine model of AD. The effects of acute IH, SF, and IH+SF on sleep architecture, delta power, sleep latency, and core body temperature were assessed in adult male human ApoE4-targeted replacement mice (hApoE4) and wild-type (WT) controls. Slow wave sleep (SWS) was significantly reduced, and rapid eye movement (REM) sleep was almost abolished during acute exposure to IH alone and IH+SF for 6 h in hApoE4, with milder effects in WT controls. Decreased delta power during SWS did not show postexposure rebound in hApoE4 unlike WT controls. IH and IH+SF induced hypothermia, which was more prominent in hApoE4 than WT controls. Mice subjected to SF also showed sleep deficits but without hypothermia. hApoE4 mice, unlike WT controls, exhibited increased sleep propensity, especially following IH and IH+SF, suggesting limited ability for sleep recovery in hApoE4 mice. These findings substantiate the potential impact of IH and SF in modulating sleep architecture and sleep homeostasis including maintenance of body temperature. Furthermore, the increased susceptibility and limited recovery ability of hApoE4 mice to sleep apnea suggests that early recognition and treatment of the latter in AD patients may restrict the progression and clinical manifestations of this frequent neurodegenerative disorder.
Collapse
Affiliation(s)
- Navita Kaushal
- Department of Pediatrics, Section of Pediatric Sleep Medicine, The University of Chicago, Chicago, IL 60637, USA
| | | | | |
Collapse
|
12
|
Rodrigues R, Smith MA, Wang X, Perry G, Lee HG, Zhu X, Petersen RB. Molecular neuropathogenesis of Alzheimer's disease: an interaction model stressing the central role of oxidative stress. FUTURE NEUROLOGY 2012; 7:287-305. [PMID: 23086377 DOI: 10.2217/fnl.12.27] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Alzheimer's disease (AD) exhibits a complex etiology that simultaneously manifests as a complex cellular, neurobiological, molecular, anatomic-physiological and clinical entity. Other significant psychiatric conditions, such as depression and schizophrenia, may also present with complex and concurrent clinical and/or molecular phenotypes. These neuropsychiatric pathologies also originate from both environmental and genetic factors. We analyzed the molecular phenotypes of AD and discuss them with respect to the classical theories, which we integrated into mechanisms that share molecular and/or anatomical connections. Based on these mechanisms, we propose an interaction model and discuss the model in light of studies that refute or support it. Given the spectrum of AD phenotypes, we limit the scope of our discussion to a few, which facilitates concrete analysis. In addition, the study of specific, individual pathogenic phenotypes may be critical to defining the complex mechanisms leading to AD, thereby improving strategies for developing novel therapies.
Collapse
Affiliation(s)
- Roberto Rodrigues
- Ave. Icaraí Cristal 74 (Clinic), 90.810-000 Porto Alegre, Rio Grande do Sul (RS), Brazil
| | | | | | | | | | | | | |
Collapse
|
13
|
Fennema-Notestine C, Panizzon MS, Thompson WR, Chen CH, Eyler LT, Fischl B, Franz CE, Grant MD, Jak AJ, Jernigan TL, Lyons MJ, Neale MC, Seidman LJ, Tsuang MT, Xian H, Dale AM, Kremen WS. Presence of ApoE ε4 allele associated with thinner frontal cortex in middle age. J Alzheimers Dis 2012; 26 Suppl 3:49-60. [PMID: 21971450 DOI: 10.3233/jad-2011-0002] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The presence of an ApoE ε4 allele (ε4+) increases the risk of developing Alzheimer's disease (AD). Previous studies support an adverse relationship between ε4+ status and brain structure and function in mild cognitive impairment and AD; in contrast, the presence of an ε2 allele may be protective. Whether these findings reflect disease-related effects or pre-existing endophenotypes, however, remains unclear. The present study examined the influence of ApoE allele status on brain structure solely during middle-age in a large, national sample. Participants were 482 men, ages 51-59, from the Vietnam Era Twin Study of Aging (VETSA). T1-weighted images were used in volumetric segmentation and cortical surface reconstruction methods to measure regional volume and thickness. Primary linear mixed effects models predicted structural measures with ApoE status (ε3/3, ε2/3, ε3/4) and control variables for effects of site, non-independence of twin data, age, and average cranial vault or cortical thickness. Relative to the ε3/3 group, the ε3/4 group demonstrated significantly thinner cortex in superior frontal and left rostral and right caudal midfrontal regions; there were no significant effects of ε4 status on any temporal lobe measures. The ε2/3 group demonstrated significantly thicker right parahippocampal cortex relative to the ε3/3 group. The ApoE ε4 allele may influence cortical thickness in frontal areas, which are later developing regions thought to be more susceptible to the natural aging process. Previous conflicting findings for mesial temporal regions may be driven by the inclusion of older individuals, who may evidence preclinical manifestations of disease, and by unexamined moderators of ε4-related effects. The presence of the ε2 allele was related to thicker cortex, supporting a protective role. Ongoing follow-up of the VETSA sample may shed light on the potential for age- and disease-related mediation of the influence of ApoE allele status.
Collapse
|
14
|
Wang ZY, Miki T, Ding Y, Wang SJ, Gao YH, Wang XL, Wang YH, Yokoyama T, Warita K, Ohta KI, Suzuki S, Ohnishi T, Obama T, Bedi KS, Takeuchi Y, Shan BE. A high cholesterol diet given to apolipoprotein E-knockout mice has a differential effect on the various neurotrophin systems in the hippocampus. Metab Brain Dis 2011; 26:185-94. [PMID: 21826472 DOI: 10.1007/s11011-011-9252-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Accepted: 07/12/2011] [Indexed: 12/12/2022]
Abstract
Apolipoprotein E (apoE) is one of the major transporters of cholesterol in the body and is essential for maintaining various neural functions in the brain. Given that hypercholesterolemia is a risk factor in Alzheimer's disease (AD), it has been suggested that altered cholesterol metabolism may be involved in the development of the pathogenesis, including neural degeneration, commonly observed in AD patients. Neurotrophic factors and their receptors, which are known to regulate various neural functions, are also known to be altered in various neurodegenerative diseases. We therefore hypothesized that cholesterol metabolism may itself influence the neurotrophin system within the brain. We decided to investigate this possibility by modulating the amount of dietary cholesterol given to apoE-knockout (apoE-KO) and wild-type (WT) mice, and examining the mRNA expression of various neurotrophin ligands and receptors in their hippocampal formations. Groups of eight-week-old apoE-KO and WT mice were fed a diet containing either "high" (HCD) or "normal" (ND) levels of cholesterol for a period of 12 weeks. We found that high dietary cholesterol intake elevated BDNF mRNA expression in both apoE-KO and WT mice and TrkB mRNA expression in apoE-KO animals. On the other hand, NGF and TrkA mRNA levels remained unchanged irrespective of both diet and mouse type. These findings indicate that altered cholesterol metabolism induced by HCD ingestion combined with apoE deficiency can elicit a differential response in the various neurotrophin ligand/receptor systems in the mouse hippocampus. Whether such changes can lead to neural degeneration, and the mechanisms that may be involved in this, awaits further research.
Collapse
Affiliation(s)
- Zhi-Yu Wang
- Scientific Research Centre, Hebei Medical University Fourth Hospital, Shijiazhuang, Hebei 050011, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
APOE, MTHFR, LDLR and ACE Polymorphisms Among Angami and Lotha Naga Populations of Nagaland, India. J Community Health 2011; 36:975-85. [DOI: 10.1007/s10900-011-9397-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
16
|
Grimm S, Hoehn A, Davies KJ, Grune T. Protein oxidative modifications in the ageing brain: consequence for the onset of neurodegenerative disease. Free Radic Res 2010; 45:73-88. [PMID: 20815785 DOI: 10.3109/10715762.2010.512040] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The free radical theory of ageing proposes the accumulation of altered, less active and toxic molecules of DNA, RNA, proteins and lipids caused by reactive oxygen species and reactive nitrogen species. Neurodegenerative disorders are characterized by an abnormal accumulation of oxidatively damaged macromolecules inside cells and in the extracellular space. Proteins involved in the formation of aggregates are β-amyloid, tau, α-synuclein, parkin, prion proteins and proteins containing polyglutamine. These abnormal aggregated proteins influence normal cellular metabolism. Additionally, deposition of abnormal proteins induces oxidative stress and proteasomal as well as mitochondrial dysfunction that ultimately lead to neuronal cell death. This review focuses on the impact of oxidative and nitrative stress in the ageing brain and, consequently, on the generation of modified proteins, as these post-translational modifications are assumed to play an important role in the development of neurodegenerative diseases.
Collapse
Affiliation(s)
- Stefanie Grimm
- Institute of Nutrition, Friedrich Schiller University Jena, Dornburger Straße 24, 07743 Jena, Germany
| | | | | | | |
Collapse
|
17
|
Hao J, Zhang W, Zhang P, Liu R, Liu L, Lei G, Su C, Miao J, Li Z. Abeta20-29 peptide blocking apoE/Abeta interaction reduces full-length Abeta42/40 fibril formation and cytotoxicity in vitro. Neuropeptides 2010; 44:305-13. [PMID: 20363024 DOI: 10.1016/j.npep.2010.03.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Revised: 02/10/2010] [Accepted: 03/01/2010] [Indexed: 10/19/2022]
Abstract
A key event in the pathogenesis of Alzheimer's disease (AD) is the conversion of the peptide beta-amyloid (Abeta) from its soluble monomeric form into various aggregated morphologies in the brain. Apolipoprotein E (apoE) is known to act as a pathological chaperone of Abeta in this process, promoting its fibril formation from soluble Abeta by binding interaction between carboxy-terminal domain of apoE and residues 12-28 of full-length Abeta. Therefore, blocking apoE/Abeta interaction is being actively pursued as a primary therapeutic strategy for AD. Abeta20-29, a short peptide, contains the residues to competitively bind to apoE and may potentially block the interaction between apoE and full-length Abeta. However, little is known whether Abeta20-29 could block apoE/Abeta interaction to play an effective role in reducing full-length Abeta fibrillization and cytotoxicity. Utilizing fluorescence spectroscopic analysis with thioflavin T and electron microscopic study, we show here that Abeta20-29 alone was non-fibrillogenic, and had no direct effects on Abeta1-42 or Abeta1-40 aggregation. Moreover, apoE can directly promote both Abeta1-42 and Abeta1-40 aggregation and fibril formation, while this promoting effect was inhibited when adding Abeta20-29, with a dose-dependent manner. In the series of cell culture experiments, Abeta20-29 alone shows no cytotoxicity to PC12 cells as demonstrated by MTT assay, while co-incubation apoE isoforms and Abeta1-42 or Abeta1-40 shows stronger cytotoxicity as compared to Abeta1-42 or Abeta1-40 alone. When incubated with Abeta20-29, whereas such strong cytotoxic effect was concentration-dependently reduced. Taken together, we demonstrate for the first time that Abeta20-29 has no direct effect on full-length Abeta aggregation, and may competitively block the binding of full-length Abeta to apoE, resulting in an inhibitory effect on apoE's promoting full-length Abeta fibrillogenesis and Abeta-induced cytotoxicity. Our results raise the possibility that Abeta20-29 peptide blocking the interaction between full-length Abeta and apoE isoforms may be effective as a therapeutic agent for AD.
Collapse
Affiliation(s)
- Jian Hao
- Department of Neurology, Tangdu Hospital, Fourth Military Medical University, Xi'an City, Shaanxi Province, China
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Crutcher KA, Lilley HN, Anthony SR, Zhou W, Narayanaswami V. Full-length apolipoprotein E protects against the neurotoxicity of an apoE-related peptide. Brain Res 2009; 1306:106-15. [PMID: 19836363 DOI: 10.1016/j.brainres.2009.10.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Revised: 10/06/2009] [Accepted: 10/08/2009] [Indexed: 11/26/2022]
Abstract
Apolipoprotein E was found to protect against the neurotoxic effects of a dimeric peptide derived from the receptor-binding region of this protein (residues 141-149). Both apoE3 and apoE4 conferred protection but the major N-terminal fragment of each isoform did not. Nor was significant protection provided by bovine serum albumin or apoA-I. Full-length apoE3 and apoE4 also inhibited the uptake of a fluorescent-labeled derivative of the peptide, suggesting that the mechanism of inhibition might involve competition for cell surface receptors/proteoglycans that mediate endocytosis and/or signaling pathways. These results might bear on the question of the role of apoE in neuronal degeneration, such as occurs in Alzheimer's disease where apoE4 confers a significantly greater risk of pathology.
Collapse
Affiliation(s)
- K A Crutcher
- Department of Neurosurgery, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| | | | | | | | | |
Collapse
|
19
|
Kok E, Haikonen S, Luoto T, Huhtala H, Goebeler S, Haapasalo H, Karhunen PJ. Apolipoprotein E-dependent accumulation of Alzheimer disease-related lesions begins in middle age. Ann Neurol 2009; 65:650-7. [PMID: 19557866 DOI: 10.1002/ana.21696] [Citation(s) in RCA: 220] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
OBJECTIVE To study the prevalence and age dependency of senile plaques (SP) and neurofibrillary tangles (NFT), the brain changes characteristic of Alzheimer disease (AD), and their association with apolipoprotein E (APOE) genotypes in a community-dwelling normal population. METHODS This neuropathological study used both silver staining and A beta immunohistochemistry in brain tissue microarrays, including SP coverage and NFT counts from frontal cortex and hippocampus, and APOE genotyping, and was performed on a consecutive prospective series of 603 subjects (aged between 0 and 97 years) of an unselected population living outside of institutions. Cases were subjected to autopsy following sudden or unexpected out-of-hospital death, covering 22.1% of the mortality of Tampere, Finland and its surroundings. None died of AD, although 22 (3.7%) were demented and 10 (1.7%) had memory problems. RESULTS Of the series, 30.8% had SP, and 42.1% had NFT; these occurred more commonly among females and showed a strong relationship with age. Both changes had already appeared at around 30 years of age, reaching an occurrence of almost 100% in the oldest. SP were more frequent in APOE epsilon 4-carriers compared with noncarriers in every age group except the oldest (>90 years). The difference was most evident during the ages 50 to 59 years, where 40.7% of epsilon 4-carriers had SP, compared with 8.2% in noncarriers (odds ratio, 8.39; 95% confidence interval, 2.55-27.62). The difference in NFT prevalence between APOE genotypes was not statistically significant in any age group. INTERPRETATION The brain changes associated with AD may already begin developing early in middle age, especially among APOE epsilon 4 carriers.
Collapse
Affiliation(s)
- Eloise Kok
- Department of Forensic Medicine, Medical School, University of Tampere, Tampere, Finland.
| | | | | | | | | | | | | |
Collapse
|
20
|
Su KL, Wen TH, Chou CY, Chang GG, Liu GY, Hung HC. Structural variation manipulates the differential oxidative susceptibility and conformational stability of apolipoprotein E isoforms. Proteins 2007; 68:363-74. [PMID: 17410580 DOI: 10.1002/prot.21443] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
A growing amount of evidence implicates the involvement of apolipoprotein E (apoE) in the development of late-onset and sporadic forms of Alzheimer's disease (AD). It is now generally believed that the epsilon4 allele is associated with AD and the oxidative stress is more pronounced in AD. However, only limited data are available on apoE isoform-specificity and its relationship to both the oxidative susceptibility and conformational stability of apoE. In this article, we use site-directed mutagenesis to investigate the structural role of amino acid residue 112, which is the only differing residue between apoE3 and E4. We examine the structural variation manipulating the oxidative susceptibility and conformational stability of apolipoprotein E isoforms. Arg112 in apoE4 was changed to Ala and Glu. Previous research has reported that apoE4 is more susceptible to free radicals than apoE3. In protein oxidation experiments, apoE4-R112A becomes more resistant to free radicals to the same extent as apoE3. In contrast, apoE4-R112E becomes the most susceptible protein to free radicals among all the apoE proteins. We also examine the conformational stability and the quaternary structural change by fluorescence spectroscopy and analytical ultracentrifugation, respectively. ApoE3 and E4 show apparent three- and two-state unfolding patterns, respectively. ApoE4-R112A, similar to apoE3, demonstrates a biphasic denaturation with an intermediate that appears. The denaturation curve for apoE4-R112E, however, also displays a biphasic profile but with a slight shoulder at approximately 1.5M GdmCl, implying that an unstable intermediate existed in the denaturation equilibrium. The size distribution of apoE isoforms display similar patterns. ApoE4-R112E, however, has a greater tendency to dissociate from high-molecular-weight species to tetramers. These experimental data suggest that the amino acid residue 112 governs the differences in salt-bridges between these two isoforms and thus has a significant impact on the free radical susceptibility and structural variation of the apoE isoforms.
Collapse
Affiliation(s)
- Kuo-Liang Su
- Department of Life Sciences, National Chung-Hsing University, Taichung, Taiwan, Republic of China
| | | | | | | | | | | |
Collapse
|
21
|
Abstract
Tremendous progress has been made in understanding the processes of the Alzheimer's disease (AD) cascade, laying the groundwork for improvements in diagnosis and treatment. Advancement has been made in understanding the genetic basis of AD, with identification of causative genes for early-onset familial AD, and the role of the polymorphism of the APOE gene in the late-onset form of the disease. Understanding cerebral degeneration and accumulation of beta-amyloid has generated hopes for discovery of disease-modifying treatments. Progress is needed in understanding the mechanisms that link beta-amyloid accumulation and neuronal death. The next 5 years will be crucial in this respect.
Collapse
Affiliation(s)
- Bruno P Imbimbo
- Research and Development Department, Chiesi Farmaceutici, Parma, Italy
| | | | | |
Collapse
|
22
|
Lambert JC, Coyle N, Lendon C. The allelic modulation of apolipoprotein E expression by oestrogen: potential relevance for Alzheimer's disease. J Med Genet 2004; 41:104-12. [PMID: 14757857 PMCID: PMC1735679 DOI: 10.1136/jmg.2003.005033] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND The epsilon4 allele of the apolipoprotein E (APOE) gene is a major genetic risk factor for Alzheimer's disease but appears to be associated with greater risk in women than in men. Some studies suggest that the level of APOE may of its own modulate the risk for Alzheimer's disease. Sex differences and an apparent benefit of oestrogen therapy suggest a role for oestrogen. APOE expression is influenced by oestrogen and oestrogen therapy may not benefit women bearing an APOE epsilon4 allele. These findings suggest an interaction between oestrogen and APOE in the Alzheimer's disease process. AIM To explore the hypothesis that APOE expression is regulated by a genomic mechanism and is modified by the polymorphisms in APOE associated with risk for Alzheimer's disease. METHODS In vitro binding studies were undertaken between oestrogen receptors and fragments of the human APOE gene. APOE gene expression was studied to investigate a possible functional interaction. RESULTS APOE epsilon2/epsilon3/epsilon4 coding and -219 G/T promoter polymorphisms influenced binding to the oestrogen receptor and altered transcriptional activity in response to oestrogen. CONCLUSIONS An allele dependent modulation of oestrogen induced regulation of APOE might be involved in the increased risk for Alzheimer's disease in women bearing an epsilon4 allele.
Collapse
Affiliation(s)
- J-C Lambert
- Molecular Psychiatry, Division of Neuroscience, Queen Elizabeth Psychiatric Hospital, Birmingham, UK
| | | | | |
Collapse
|
23
|
Wozniak MA, Shipley SJ, Combrinck M, Wilcock GK, Itzhaki RF. Productive herpes simplex virus in brain of elderly normal subjects and Alzheimer's disease patients. J Med Virol 2004; 75:300-6. [PMID: 15602731 DOI: 10.1002/jmv.20271] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
It was previously shown that herpes simplex virus type 1 (HSV1) DNA resides latently in a high proportion of aged brains and that in carriers of the type 4 allele of the apolipoprotein E gene (APOE-epsilon4), it confers a strong risk of Alzheimer's disease. It was suggested that initial entry of brain by HSV1 and any subsequent reactivation(s) would cause a type of limited encephalitis, the resulting damage being more harmful in APOE-epsilon4 carriers. Reactivation(s) would induce synthesis of intrathecal antibodies; these are long-lived after herpes simplex encephalitis so they were sought in cerebrospinal fluid (CSF) of Alzheimer's disease patients and age-matched normal subjects. Intrathecal antibodies to human herpesvirus 6 (HHV6) were also sought as DNA of this virus has been detected previously in a high proportion of Alzheimer's disease brains. Antibody indices for HSV and HHV6 were measured using indirect ELISA for IgG antibody, and single radial immunodiffusion was used for albumin, in serum and CSF. A raised antibody index (>1.5) indicative of virus-specific intrathecal HSV1 IgG synthesis was found in 14/27 (52%) Alzheimer's disease patients and 9/13 (69%) age-matched normals (difference non-significant). A raised antibody index to HHV6 was detected in 22% of the Alzheimer's disease patients and in no normals, so presumably this virus either did not reactivate in brain or it elicited only short-lived intrathecal antibodies. The HSV1 results confirm the original PCR findings that show the presence of HSV1 DNA sequences in many elderly brains, and indicate also that the whole functional HSV1 genome is present, and that the virus has replicated.
Collapse
Affiliation(s)
- Matthew A Wozniak
- Molecular Neurobiology Laboratory, Faculty of Life Sciences, The University of Manchester, Manchester, United Kingdom
| | | | | | | | | |
Collapse
|
24
|
Ling Y, Morgan K, Kalsheker N. Amyloid precursor protein (APP) and the biology of proteolytic processing: relevance to Alzheimer's disease. Int J Biochem Cell Biol 2003; 35:1505-35. [PMID: 12824062 DOI: 10.1016/s1357-2725(03)00133-x] [Citation(s) in RCA: 133] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The processing of amyloid precursor protein (APP) generates amyloid-beta (Abeta) peptides 1-40 and 1-42. The latter is neurotoxic and its accumulation results in amyloid fibril formation and the generation of senile plaques, the hallmark of Alzheimer's disease (AD). Whilst there has been considerable progress made in understanding the generation of Abeta by alpha-, beta- and gamma-secretase activity on APP, recently enzymes involved in the degradation of Abeta have been identified including neprilysin and insulin-degrading enzyme (IDE). We review the pathways involved in proteolytic processing of APP and discuss the potential implications of aberrant proteolysis on neurodegeneration. It is conceivable that single nucleotide polymorphisms (SNPs) in the regulatory regions of genes in these proteolytic cascades, which alter their expression, could contribute to some of the age-related changes seen in AD.
Collapse
Affiliation(s)
- Yan Ling
- Division of Clinical Chemistry, Institute of Genetics, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK
| | | | | |
Collapse
|
25
|
Abstract
Genetically engineered animal models have been and will continue to be invaluable for exploring the basic mechanisms involved in the aging process as well as in extending our understanding of diseases found to be more prevalent in the older human population. Continued development of such in vivo systems will allow scientists to further dissect the role genetic and environmental factors play in aging and in age-related disease states and to enhance our understanding of these processes. In this article we discuss techniques involved in the development of such models and review some examples of laboratory mouse strains that have been used to study either normal aging or select diseases associated with aging.
Collapse
Affiliation(s)
- J K Andersen
- Buck Institute for Age Research, 8001 Redwood Boulevard, Novato, CA 94945, USA.
| |
Collapse
|