1
|
Grossman AS, Gell DA, Wu DG, Carper DL, Hettich RL, Goodrich-Blair H. Bacterial hemophilin homologs and their specific type eleven secretor proteins have conserved roles in heme capture and are diversifying as a family. J Bacteriol 2024; 206:e0044423. [PMID: 38506530 PMCID: PMC11332152 DOI: 10.1128/jb.00444-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 02/18/2024] [Indexed: 03/21/2024] Open
Abstract
Cellular life relies on enzymes that require metals, which must be acquired from extracellular sources. Bacteria utilize surface and secreted proteins to acquire such valuable nutrients from their environment. These include the cargo proteins of the type eleven secretion system (T11SS), which have been connected to host specificity, metal homeostasis, and nutritional immunity evasion. This Sec-dependent, Gram-negative secretion system is encoded by organisms throughout the phylum Proteobacteria, including human pathogens Neisseria meningitidis, Proteus mirabilis, Acinetobacter baumannii, and Haemophilus influenzae. Experimentally verified T11SS-dependent cargo include transferrin-binding protein B (TbpB), the hemophilin homologs heme receptor protein C (HrpC), hemophilin A (HphA), the immune evasion protein factor-H binding protein (fHbp), and the host symbiosis factor nematode intestinal localization protein C (NilC). Here, we examined the specificity of T11SS systems for their cognate cargo proteins using taxonomically distributed homolog pairs of T11SS and hemophilin cargo and explored the ligand binding ability of those hemophilin cargo homologs. In vivo expression in Escherichia coli of hemophilin homologs revealed that each is secreted in a specific manner by its cognate T11SS protein. Sequence analysis and structural modeling suggest that all hemophilin homologs share an N-terminal ligand-binding domain with the same topology as the ligand-binding domains of the Haemophilus haemolyticus heme binding protein (Hpl) and HphA. We term this signature feature of this group of proteins the hemophilin ligand-binding domain. Network analysis of hemophilin homologs revealed five subclusters and representatives from four of these showed variable heme-binding activities, which, combined with sequence-structure variation, suggests that hemophilins are diversifying in function.IMPORTANCEThe secreted protein hemophilin and its homologs contribute to the survival of several bacterial symbionts within their respective host environments. Here, we compared taxonomically diverse hemophilin homologs and their paired Type 11 secretion systems (T11SS) to determine if heme binding and T11SS secretion are conserved characteristics of this family. We establish the existence of divergent hemophilin sub-families and describe structural features that contribute to distinct ligand-binding behaviors. Furthermore, we demonstrate that T11SS are specific for their cognate hemophilin family cargo proteins. Our work establishes that hemophilin homolog-T11SS pairs are diverging from each other, potentially evolving into novel ligand acquisition systems that provide competitive benefits in host niches.
Collapse
Affiliation(s)
- Alex S. Grossman
- Department of Microbiology, University of Tennessee Knoxville, Knoxville, Tennessee, USA
| | - David A. Gell
- School of Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | - Derek G. Wu
- Department of Microbiology, University of Tennessee Knoxville, Knoxville, Tennessee, USA
- Department of Plant and Soil Sciences, University of Delaware, Newark, Delaware, USA
| | - Dana L. Carper
- Bioscience Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Robert L. Hettich
- Bioscience Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Heidi Goodrich-Blair
- Department of Microbiology, University of Tennessee Knoxville, Knoxville, Tennessee, USA
| |
Collapse
|
2
|
Abstract
TonB-dependent transporters (TBDTs) are present in all gram-negative bacteria and mediate energy-dependent uptake of molecules that are too scarce or large to be taken up efficiently by outer membrane (OM) diffusion channels. This process requires energy that is derived from the proton motive force and delivered to TBDTs by the TonB-ExbBD motor complex in the inner membrane. Together with the need to preserve the OM permeability barrier, this has led to an extremely complex and fascinating transport mechanism for which the fundamentals, despite decades of research, are still unclear. In this review, we describe our current understanding of the transport mechanism of TBDTs, their potential role in the delivery of novel antibiotics, and the important contributions made by TBDT-associated (lipo)proteins.
Collapse
Affiliation(s)
- Augustinas Silale
- Biosciences Institute, The Medical School, Newcastle University, Newcastle upon Tyne, United Kingdom; ,
| | - Bert van den Berg
- Biosciences Institute, The Medical School, Newcastle University, Newcastle upon Tyne, United Kingdom; ,
| |
Collapse
|
3
|
Lemon CM. Diversifying the functions of heme proteins with non-porphyrin cofactors. J Inorg Biochem 2023; 246:112282. [PMID: 37320889 DOI: 10.1016/j.jinorgbio.2023.112282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/09/2023] [Accepted: 05/30/2023] [Indexed: 06/17/2023]
Abstract
Heme proteins perform diverse biochemical functions using a single iron porphyrin cofactor. This versatility makes them attractive platforms for the development of new functional proteins. While directed evolution and metal substitution have expanded the properties, reactivity, and applications of heme proteins, the incorporation of porphyrin analogs remains an underexplored approach. This review discusses the replacement of heme with non-porphyrin cofactors, such as porphycene, corrole, tetradehydrocorrin, phthalocyanine, and salophen, and the attendant properties of these conjugates. While structurally similar, each ligand exhibits distinct optical and redox properties, as well as unique chemical reactivity. These hybrids serve as model systems to elucidate the effects of the protein environment on the electronic structure, redox potentials, optical properties, or other features of the porphyrin analog. Protein encapsulation can confer distinct chemical reactivity or selectivity of artificial metalloenzymes that cannot be achieved with the small molecule catalyst alone. Additionally, these conjugates can interfere with heme acquisition and uptake in pathogenic bacteria, providing an inroad to innovative antibiotic strategies. Together, these examples illustrate the diverse functionality that can be achieved by cofactor substitution. The further expansion of this approach will access unexplored chemical space, enabling the development of superior catalysts and the creation of heme proteins with emergent properties.
Collapse
Affiliation(s)
- Christopher M Lemon
- Department of Chemistry and Biochemistry, Montana State University, PO Box 173400, Bozeman, MT 59717, United States.
| |
Collapse
|
4
|
Shisaka Y, Shoji O. Bridging the gap: Unveiling novel functions of a bacterial haem-acquisition protein capturing diverse synthetic porphyrinoids. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
5
|
Tiessler-Sala L, Sciortino G, Alonso-Cotchico L, Masgrau L, Lledós A, Maréchal JD. Getting Deeper into the Molecular Events of Heme Binding Mechanisms: A Comparative Multi-level Computational Study of HasAsm and HasAyp Hemophores. Inorg Chem 2022; 61:17068-17079. [PMID: 36250592 PMCID: PMC9627568 DOI: 10.1021/acs.inorgchem.2c02193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Many biological systems obtain their activity by the
inclusion
of metalloporphyrins into one or several binding pockets. However,
decoding the molecular mechanism under which these compounds bind
to their receptors is something that has not been widely explored
and is a field with open questions. In the present work, we apply
computational techniques to unravel and compare the mechanisms of
two heme-binding systems, concretely the HasA hemophores from Gram
negative bacteria Serratiamarcescens (HasAsm) and Yersinia pestis (HasAyp). Despite the high sequence identity between both systems,
the comparison between the X-ray structures of their apo and holo
forms suggests different heme-binding mechanisms. HasAyp has extremely
similar structures for heme-free and heme-bound forms, while HasAsm
presents a very large displacement of a loop that ultimately leads
to an additional coordination to the metal with respect to HasAyp.
We combined Gaussian accelerated molecular dynamics simulations (GaMDs)
in explicit solvent and protein–ligand docking optimized for
metalloligands. GaMDs were first carried out on heme-free forms of
both hemophores. Then, protein–ligand dockings of the heme
were performed on cluster representatives of these simulations and
the best poses were then subjected to a new series of GaMDs. A series
of analyses reveal the following: (1) HasAyp has a conformational
landscape extremely similar between heme-bound and unbound states
with no to limited impact on the binding of the cofactor, (2) HasAsm
presents as a slightly broader conformational landscape in its apo
state but can only visit conformations similar to the X-ray of the
holo form when the heme has been bound. Such behavior results from
a complex cascade of changes in interactions that spread from the
heme-binding pocket to the flexible loop previously mentioned. This
study sheds light on the diversity of molecular mechanisms of heme-binding
and discusses the weight between the pre-organization of the receptor
as well as the induced motions resulting in association. Heme-containing enzymes and proteins
are important for many
biological and biotechnological processes. However, very little is
known about heme-binding mechanisms. To shed light on this, we report
a multi-level approach combining Gaussian accelerated molecular dynamics
and protein−ligand dockings optimized for metallic moieties.
The protocol unveils the difference in heme recruitment between HasAsm
and HasAyp hemophores and shows its possible applicability to other
heme-binding proteins.
Collapse
Affiliation(s)
- Laura Tiessler-Sala
- Insilichem, Departament de Química, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Giuseppe Sciortino
- Insilichem, Departament de Química, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.,Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, 43007 Tarragona, Spain
| | - Lur Alonso-Cotchico
- Insilichem, Departament de Química, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.,Zymvol Biomodeling, Carrer Roc Boronat 117, 08018 Barcelona, Spain
| | - Laura Masgrau
- Insilichem, Departament de Química, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.,Zymvol Biomodeling, Carrer Roc Boronat 117, 08018 Barcelona, Spain
| | - Agustí Lledós
- Insilichem, Departament de Química, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Jean-Didier Maréchal
- Insilichem, Departament de Química, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| |
Collapse
|
6
|
Lemon CM, Marletta MA. Designer Heme Proteins: Achieving Novel Function with Abiological Heme Analogues. Acc Chem Res 2021; 54:4565-4575. [PMID: 34890183 PMCID: PMC8754152 DOI: 10.1021/acs.accounts.1c00588] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Heme proteins have proven to be a convenient platform for the development of designer proteins with novel functionalities. This is achieved by substituting the native iron porphyrin cofactor with a heme analogue that possesses the desired properties. Replacing the iron center of the porphyrin with another metal provides one inroad to novel protein function. A less explored approach is substitution of the porphyrin cofactor with an alternative tetrapyrrole macrocycle or a related ligand. In general, these ligands exhibit chemical properties and reactivity that are distinct from those of porphyrins. While these techniques have most prominently been utilized to develop artificial metalloenzymes, there are many other applications of this methodology to problems in biochemistry, health, and medicine. Incorporation of synthetic cofactors into protein environments represents a facile way to impart water solubility and biocompatibility. It circumvents the laborious synthesis of water-soluble cofactors, which often introduces substantial charge that leads to undesired bioaccumulation. To this end, the incorporation of unnatural cofactors in heme proteins has enabled the development of designer proteins as optical oxygen sensors, MRI contrast agents, spectroscopic probes, tools to interrogate protein function, antibiotics, and fluorescent proteins.Incorporation of an artificial cofactor is frequently accomplished by denaturing the holoprotein with removal of the heme; the refolded apoprotein is then reconstituted with the artificial cofactor. This process often results in substantial protein loss and does not necessarily guarantee that the refolded protein adopts the native structure. To circumvent these issues, our laboratory has pioneered the use of the RP523 strain of E. coli to incorporate artificial cofactors into heme proteins using expression-based methods. This strain lacks the ability to biosynthesize heme, and the bacterial cell wall is permeable to heme and related molecules. In this way, heme analogues supplemented in the growth medium are incorporated into heme proteins. This approach can also be leveraged for the direct expression of the apoprotein for subsequent reconstitution.These methodologies have been exploited to incorporate non-native cofactors into heme proteins that are resistant to harsh environmental conditions: the heme nitric oxide/oxygen binding protein (H-NOX) from Caldanaerobacter subterraneus (Cs) and the heme acquisition system protein A (HasA) from Pseudomonas aeruginosa (Pa). The exceptional stability of these proteins makes them ideal scaffolds for biomedical applications. Optical oxygen sensing has been accomplished using a phosphorescent ruthenium porphyrin as the artificial heme cofactor. Paramagnetic manganese and gadolinium porphyrins yield high-relaxivity, protein-based MRI contrast agents. A fluorescent phosphorus corrole serves as a heme analogue to produce fluorescent proteins. Iron complexes of nonporphyrin cofactors bound to HasA inhibit the growth of pathogenic bacteria. Moreover, HasA can deliver a gallium phthalocyanine into the bacterial cytosol to serve as a sensitizer for photochemical sterilization. Together, these examples illustrate the potential for designer heme proteins to address burgeoning problems in the areas of health and medicine. The concepts and methodologies presented in this Account can be extended to the development of next-generation biomedical sensing and imaging agents to identify and quantify clinically relevant metabolites and other key disease biomarkers.
Collapse
|
7
|
Abstract
The field of de novo protein design has met with considerable success over the past few decades. Heme, a cofactor, has often been introduced to impart a diverse array of functions to a protein, ranging from electron transport to respiration. In nature, heme is found to occur predominantly in α-helical structures over β-sheets, which has resulted in significant designs of heme proteins utilizing coiled-coil helices. By contrast, there are only a few known β-sheet proteins that bind heme and designs of β-sheets frequently result in amyloid-like aggregates. This review reflects on our success in designing a series of multistranded β-sheet heme binding peptides that are well folded in both aqueous and membrane-like environments. Initially, we designed a β-hairpin peptide that self-assembles to bind heme and performs peroxidase activity in membrane. The β-hairpin was optimized further to accommodate a heme binding pocket within multistranded β-sheets for catalysis and electron transfer in membranes. Furthermore, we de novo designed and characterized β-sheet peptides and miniproteins that are soluble in an aqueous environment capable of binding single and multiple hemes with high affinity and stability. Collectively, these studies highlight the substantial progress made toward the design of functional β-sheets.
Collapse
Affiliation(s)
- Areetha D'Souza
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | - Surajit Bhattacharjya
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| |
Collapse
|
8
|
Ciambellotti S, Turano P. Structural Biology of Iron‐Binding Proteins by NMR Spectroscopy. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201801261] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Silvia Ciambellotti
- Resonance Magnetic Center (CERM) University of Florence via Luigi Sacconi 6 50019 Sesto Fiorentino Italy
- Department of Chemistry University of Florence via della Lastruccia 3 50019 Sesto Fiorentino, Italy
| | - Paola Turano
- Resonance Magnetic Center (CERM) University of Florence via Luigi Sacconi 6 50019 Sesto Fiorentino Italy
- Department of Chemistry University of Florence via della Lastruccia 3 50019 Sesto Fiorentino, Italy
| |
Collapse
|
9
|
Kanai Y, Harada A, Shibata T, Nishimura R, Namiki K, Watanabe M, Nakamura S, Yumoto F, Senda T, Suzuki A, Neya S, Yamamoto Y. Characterization of Heme Orientational Disorder in a Myoglobin Reconstituted with a Trifluoromethyl-Group-Substituted Heme Cofactor. Biochemistry 2017; 56:4500-4508. [DOI: 10.1021/acs.biochem.7b00457] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yuki Kanai
- Department
of Chemistry, University of Tsukuba, Tsukuba 305-8571, Japan
| | - Ayaka Harada
- Structural
Biology Research Center, Institute of Materials Structure Science, KEK/High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
| | - Tomokazu Shibata
- Department
of Chemistry, University of Tsukuba, Tsukuba 305-8571, Japan
| | - Ryu Nishimura
- Department
of Chemistry, University of Tsukuba, Tsukuba 305-8571, Japan
| | - Kosuke Namiki
- Department
of Chemistry, University of Tsukuba, Tsukuba 305-8571, Japan
| | - Miho Watanabe
- Department
of Chemistry, University of Tsukuba, Tsukuba 305-8571, Japan
| | - Shunpei Nakamura
- Department
of Chemistry, University of Tsukuba, Tsukuba 305-8571, Japan
| | - Fumiaki Yumoto
- Structural
Biology Research Center, Institute of Materials Structure Science, KEK/High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
| | - Toshiya Senda
- Structural
Biology Research Center, Institute of Materials Structure Science, KEK/High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
| | - Akihiro Suzuki
- Department
of Materials Engineering, National Institute of Technology, Nagaoka College, Nagaoka 940-8532, Japan
| | - Saburo Neya
- Department
of Physical Chemistry, Graduate School of Pharmaceutical Sciences, Chiba University, Chuoh-Inohana, Chiba 260-8675, Japan
| | - Yasuhiko Yamamoto
- Department
of Chemistry, University of Tsukuba, Tsukuba 305-8571, Japan
- Life
Science Center of Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba 305-8577, Japan
| |
Collapse
|
10
|
Brewitz HH, Hagelueken G, Imhof D. Structural and functional diversity of transient heme binding to bacterial proteins. Biochim Biophys Acta Gen Subj 2017; 1861:683-697. [DOI: 10.1016/j.bbagen.2016.12.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 12/15/2016] [Accepted: 12/20/2016] [Indexed: 11/27/2022]
|
11
|
Ascenzi P, di Masi A, Leboffe L, Frangipani E, Nardini M, Verde C, Visca P. Structural Biology of Bacterial Haemophores. Adv Microb Physiol 2015; 67:127-76. [PMID: 26616517 DOI: 10.1016/bs.ampbs.2015.09.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Iron plays a key role in a wide range of metabolic and signalling functions representing an essential nutrient for almost all forms of life. However, the ferric form is hardly soluble, whereas the ferrous form is highly toxic. Thus, in biological fluids, most of the iron is sequestered in iron- or haem-binding proteins and the level of free iron is low, making haem and iron acquisition a challenge for pathogenic bacteria during infections. Although toxic to the host, free haem is a major and readily available source of iron for several pathogenic microorganisms. Both Gram-positive and Gram-negative bacteria have developed several strategies to acquire free haem-Fe and protein-bound haem-Fe. Haemophores are a class of secreted and cell surface-exposed proteins promoting free-haem uptake, haem extraction from host haem proteins, and haem presentation to specific outer-membrane receptors that internalize the metal-porphyrins. Here, structural biology of bacterial haemophores is reviewed focusing on haem acquisition, haem internalization, and haem-degrading systems.
Collapse
Affiliation(s)
- Paolo Ascenzi
- Laboratorio Interdipartimentale di Microscopia Elettronica, Università Roma Tre, Roma, Italy; Istituto di Bioscienze e BioRisorse, Consiglio Nazionale delle Ricerche, Napoli, Italy.
| | | | - Loris Leboffe
- Dipartimento di Scienze, Università Roma Tre, Roma, Italy
| | | | - Marco Nardini
- Dipartimento di Bioscienze, Università di Milano, Milano, Italy
| | - Cinzia Verde
- Istituto di Bioscienze e BioRisorse, Consiglio Nazionale delle Ricerche, Napoli, Italy; Dipartimento di Scienze, Università Roma Tre, Roma, Italy
| | - Paolo Visca
- Dipartimento di Scienze, Università Roma Tre, Roma, Italy
| |
Collapse
|
12
|
Lobo SA, Lawrence AD, Romão CV, Warren MJ, Teixeira M, Saraiva LM. Characterisation of Desulfovibrio vulgaris haem b synthase, a radical SAM family member. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:1238-47. [DOI: 10.1016/j.bbapap.2014.03.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 03/28/2014] [Accepted: 03/31/2014] [Indexed: 11/27/2022]
|
13
|
Mokry DZ, Nadia-Albete A, Johnson MK, Lukat-Rodgers GS, Rodgers KR, Lanzilotta WN. Spectroscopic evidence for a 5-coordinate oxygenic ligated high spin ferric heme moiety in the Neisseria meningitidis hemoglobin binding receptor. Biochim Biophys Acta Gen Subj 2014; 1840:3058-66. [PMID: 24968987 DOI: 10.1016/j.bbagen.2014.06.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 06/13/2014] [Accepted: 06/16/2014] [Indexed: 01/04/2023]
Abstract
BACKGROUND For many pathogenic microorganisms, iron acquisition represents a significant stress during the colonization of a mammalian host. Heme is the single most abundant source of soluble iron in this environment. While the importance of iron assimilation for nearly all organisms is clear, the mechanisms by which heme is acquired and utilized by many bacterial pathogens, even those most commonly found at sites of infection, remain poorly understood. METHODS An alternative protocol for the production and purification of the outer membrane hemoglobin receptor (HmbR) from the pathogen Neisseria meningitidis has facilitated a biophysical characterization of this outer membrane transporter by electronic absorption, circular dichroism, electron paramagnetic resonance, and resonance Raman techniques. RESULTS HmbR co-purifies with 5-coordinate high spin ferric heme bound. The heme binding site accommodates exogenous imidazole as a sixth ligand, which results in a 6-coordinate, low-spin ferric species. Both the 5- and 6-coordinate complexes are reduced by sodium hydrosulfite. Four HmbR variants with a modest decrease in binding efficiency for heme have been identified (H87C, H280A, Y282A, and Y456C). These findings are consistent with an emerging paradigm wherein the ferric iron center of bound heme is coordinated by a tyrosine ligand. CONCLUSION In summary, this study provides the first spectroscopic characterization for any heme or iron transporter in Neisseria meningitidis, and suggests a coordination environment heretofore unobserved in a TonB-dependent hemin transporter. GENERAL SIGNIFICANCE A detailed understanding of the nutrient acquisition pathways in common pathogens such as N. meningitidis provides a foundation for new antimicrobial strategies.
Collapse
Affiliation(s)
- David Z Mokry
- Department of Biochemistry & Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | | | - Michael K Johnson
- Department of Chemistry, University of Georgia, Athens, GA 30602, USA
| | - Gudrun S Lukat-Rodgers
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND 58108-6050, USA
| | - Kenton R Rodgers
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND 58108-6050, USA
| | - William N Lanzilotta
- Department of Biochemistry & Molecular Biology, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
14
|
Caza M, Kronstad JW. Shared and distinct mechanisms of iron acquisition by bacterial and fungal pathogens of humans. Front Cell Infect Microbiol 2013; 3:80. [PMID: 24312900 PMCID: PMC3832793 DOI: 10.3389/fcimb.2013.00080] [Citation(s) in RCA: 181] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2013] [Accepted: 10/30/2013] [Indexed: 12/12/2022] Open
Abstract
Iron is the most abundant transition metal in the human body and its bioavailability is stringently controlled. In particular, iron is tightly bound to host proteins such as transferrin to maintain homeostasis, to limit potential damage caused by iron toxicity under physiological conditions and to restrict access by pathogens. Therefore, iron acquisition during infection of a human host is a challenge that must be surmounted by every successful pathogenic microorganism. Iron is essential for bacterial and fungal physiological processes such as DNA replication, transcription, metabolism, and energy generation via respiration. Hence, pathogenic bacteria and fungi have developed sophisticated strategies to gain access to iron from host sources. Indeed, siderophore production and transport, iron acquisition from heme and host iron-containing proteins such as hemoglobin and transferrin, and reduction of ferric to ferrous iron with subsequent transport are all strategies found in bacterial and fungal pathogens of humans. This review focuses on a comparison of these strategies between bacterial and fungal pathogens in the context of virulence and the iron limitation that occurs in the human body as a mechanism of innate nutritional defense.
Collapse
Affiliation(s)
| | - James W. Kronstad
- The Michael Smith Laboratories, Department of Microbiology and Immunology, University of British ColumbiaVancouver, BC, Canada
| |
Collapse
|
15
|
Grinter R, Milner J, Walker D. Beware of proteins bearing gifts: protein antibiotics that use iron as a Trojan horse. FEMS Microbiol Lett 2012; 338:1-9. [PMID: 22998625 DOI: 10.1111/1574-6968.12011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Accepted: 09/19/2012] [Indexed: 02/05/2023] Open
Abstract
Multicellular organisms limit the availability of free iron to prevent the utilization of this essential nutrient by microbial pathogens. As such, bacterial pathogens possess a variety of mechanisms for obtaining iron from their hosts, including a number of examples of vertebrate pathogens that obtain iron directly from host proteins. Recently, two novel members of the colicin M bacteriocin family were discovered in Pectobacterium that suggest that this phytopathogen possesses such a system. These bacteriocins (pectocin M1 and M2) consist of a cytotoxic domain homologous to that of colicin M fused to a horizontally acquired plant-like ferredoxin. This ferredoxin domain substitutes the portion of colicin M required for receptor binding and translocation, presumably fulfilling this role by parasitizing an existing ferredoxin-based iron acquisition pathway. The ability of susceptible strains of Pectobacterium to utilize plant ferredoxin as an iron source was also demonstrated, providing additional evidence for the existence of such a system. If this hypothesis is correct, it represents the first example of iron piracy directly from a host protein by a phytopathogen and serves as a testament of the flexibility of evolution in creating new bacteriocin specificities.
Collapse
Affiliation(s)
- Rhys Grinter
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | | | | |
Collapse
|
16
|
Caillet-Saguy C, Piccioli M, Turano P, Lukat-Rodgers G, Wolff N, Rodgers KR, Izadi-Pruneyre N, Delepierre M, Lecroisey A. Role of the iron axial ligands of heme carrier HasA in heme uptake and release. J Biol Chem 2012; 287:26932-43. [PMID: 22700962 DOI: 10.1074/jbc.m112.366385] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The hemophore protein HasA from Serratia marcescens cycles between two states as follows: the heme-bound holoprotein, which functions as a carrier of the metal cofactor toward the membrane receptor HasR, and the heme-free apoprotein fishing for new porphyrin to be taken up after the heme has been delivered to HasR. Holo- and apo-forms differ for the conformation of the two loops L1 and L2, which provide the axial ligands of the iron through His(32) and Tyr(75), respectively. In the apo-form, loop L1 protrudes toward the solvent far away from loop L2; in the holoprotein, closing of the loops on the heme occurs upon establishment of the two axial coordination bonds. We have established that the two variants obtained via single point mutations of either axial ligand (namely H32A and Y75A) are both in the closed conformation. The presence of the heme and one out of two axial ligands is sufficient to establish a link between L1 and L2, thanks to the presence of coordinating solvent molecules. The latter are stabilized in the iron coordination environment by H-bond interactions with surrounding protein residues. The presence of such a water molecule in both variants is revealed here through a set of different spectroscopic techniques. Previous studies had shown that heme release and uptake processes occur via intermediate states characterized by a Tyr(75)-iron-bound form with open conformation of loop L1. Here, we demonstrate that these states do not naturally occur in the free protein but can only be driven by the interaction with the partner proteins.
Collapse
Affiliation(s)
- Célia Caillet-Saguy
- Unité de RMN des Biomolecules (CNRS URA 2185), Institut Pasteur, 28 Rue du Docteur Roux, 75015 Paris, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Yukl ET, Jepkorir G, Alontaga AY, Pautsch L, Rodriguez JC, Rivera M, Moënne-Loccoz P. Kinetic and spectroscopic studies of hemin acquisition in the hemophore HasAp from Pseudomonas aeruginosa. Biochemistry 2010; 49:6646-54. [PMID: 20586423 DOI: 10.1021/bi100692f] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The extreme limitation of free iron has driven various pathogens to acquire iron from the host in the form of heme. Specifically, several Gram-negative pathogens secrete a heme binding protein known as HasA to scavenge heme from the extracellular environment and to transfer it to the receptor protein HasR for import into the bacterial cell. Structures of heme-bound and apo-HasA homologues show that the heme iron(III) ligands, His32 and Tyr75, reside on loops extending from the core of the protein and that a significant conformational change must occur at the His32 loop upon heme binding. Here, we investigate the kinetics of heme acquisition by HasA from Pseudomonas aeruginosa (HasAp). The rate of heme acquisition from human met-hemoglobin (met-Hb) closely matches that of heme dissociation which suggests a passive mode of heme uptake from this source. The binding of free hemin is characterized by an initial rapid phase forming an intermediate before further conversion to the final complex. Analysis of this same reaction using an H32A variant lacking the His heme ligand shows only the rapid phase to form a heme-protein complex spectroscopically equivalent to that of the wild-type intermediate. Further characterization of these reactions using electron paramagnetic resonance and resonance Raman spectroscopy of rapid freeze quench samples provides support for a model in which heme is initially bound by the Tyr75 to form a high-spin heme-protein complex before slower coordination of the His32 ligand upon closing of the His loop over the heme. The slow rate of this loop closure implies that the induced-fit mechanism of heme uptake in HasAp is not based on a rapid sampling of the H32 loop between open and closed configurations but, rather, that the H32 loop motions are triggered by the formation of the high-spin heme-HasAp intermediate complex.
Collapse
Affiliation(s)
- Erik T Yukl
- Department of Science and Engineering, School of Medicine, Oregon Health and Science University, 20000 Northwest Walker Road, Beaverton, Oregon 97006-8921, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Overcoming the heme paradox: heme toxicity and tolerance in bacterial pathogens. Infect Immun 2010; 78:4977-89. [PMID: 20679437 DOI: 10.1128/iai.00613-10] [Citation(s) in RCA: 217] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Virtually all bacterial pathogens require iron to infect vertebrates. The most abundant source of iron within vertebrates is in the form of heme as a cofactor of hemoproteins. Many bacterial pathogens have elegant systems dedicated to the acquisition of heme from host hemoproteins. Once internalized, heme is either degraded to release free iron or used intact as a cofactor in catalases, cytochromes, and other bacterial hemoproteins. Paradoxically, the high redox potential of heme makes it a liability, as heme is toxic at high concentrations. Although a variety of mechanisms have been proposed to explain heme toxicity, the mechanisms by which heme kills bacteria are not well understood. Nonetheless, bacteria employ various strategies to protect against and eliminate heme toxicity. Factors involved in heme acquisition and detoxification have been found to contribute to virulence, underscoring the physiological relevance of heme stress during pathogenesis. Herein we describe the current understanding of the mechanisms of heme toxicity and how bacterial pathogens overcome the heme paradox during infection.
Collapse
|
19
|
Jepkorir G, Rodríguez JC, Rui H, Im W, Lovell S, Battaile KP, Alontaga AY, Yukl ET, Moënne-Loccoz P, Rivera M. Structural, NMR spectroscopic, and computational investigation of hemin loading in the hemophore HasAp from Pseudomonas aeruginosa. J Am Chem Soc 2010; 132:9857-72. [PMID: 20572666 PMCID: PMC2948407 DOI: 10.1021/ja103498z] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
When challenged by low-iron conditions several Gram-negative pathogens secrete a hemophore (HasA) to scavenge hemin from its host and deliver it to a receptor (HasR) on their outer membrane for internalization. Here we report results from studies aimed at probing the structural and dynamic processes at play in the loading of the apo-hemophore secreted by P. aeruginosa (apo-HasAp) with hemin. The structure of apo-HasAp shows a large conformational change in the loop harboring axial ligand His32 relative to the structure of holo-HasAp, whereas the loop bearing the other axial ligand, Tyr75, remains intact. To investigate the role played by the axial ligand-bearing loops in the process of hemin capture we investigated the H32A mutant, which was found to exist as a monomer in its apo-form and as a mixture of monomers and dimers in its holo-form. We obtained an X-ray structure of dimeric H32A holo-HasAp, which revealed that the two subunits are linked by cofacial interactions of two hemin molecules and that the conformation of the Ala32 loop in the dimer is identical to that exhibited by the His32 loop in wild type apo-HasAp. Additional data suggest that the conformation of the Ala32 loop in the dimer is mainly a consequence of dimerization. Hence, to investigate the effect of hemin loading on the topology of the His32 loop we also obtained the crystal structure of monomeric H32A holo-HasAp coordinated by imidazole (H32A-imidazole) and investigated the monomeric H32A HasAp and H32A-imidazole species in solution by NMR spectroscopy. The structure of H32A-imidazole revealed that the Ala32 loop attains a "closed" conformation nearly identical to that observed in wild type holo-HasAp, and the NMR investigations indicated that this conformation is maintained in solution. The NMR studies also highlighted conformational heterogeneity at the H32 loop hinges and in other key sections of the structure. Targeted molecular dynamics simulations allowed us to propose a possible path for the closing of the His32 loop upon hemin binding and identified molecular motions that are likely important in transmitting the presence of hemin in the Tyr75 loop to the His32 loop to initiate its closing. Importantly, residues implicated as undergoing motions in the computations are also observed as being dynamic by NMR. Taken together, these observations provide direct experimental evidence indicating that hemin loads onto the Tyr75 loop of apo-HasAp, which triggers the closing of the His32 loop.
Collapse
Affiliation(s)
- Grace Jepkorir
- Department of Chemistry, University of Kansas, Multidisciplinary Research Building, 2030 Becker Dr., room 220 E, Lawrence
| | - Juan Carlos Rodríguez
- Department of Chemistry, University of Kansas, Multidisciplinary Research Building, 2030 Becker Dr., room 220 E, Lawrence
| | - Huan Rui
- Department of Molecular Biosciences and Center for Bioinformatics, The University of Kansas, Lawrence, Kansas 66047
| | - Wonpil Im
- Department of Molecular Biosciences and Center for Bioinformatics, The University of Kansas, Lawrence, Kansas 66047
| | - Scott Lovell
- Del Shankel Structural Biology Center, University of Kansas, 2034 Becker Dr., Lawrence, KS 66047
| | - Kevin P. Battaile
- IMCA-CAT, Hauptman-Woodward Medical Research Institute, 9700 South Cass Avenue, Building 435A, Argonne, Il 60439
| | - Aileen Y. Alontaga
- Department of Chemistry, University of Kansas, Multidisciplinary Research Building, 2030 Becker Dr., room 220 E, Lawrence
| | - Erik T. Yukl
- Department of Science and Engineering, Oregon Health & Science University, Beaverton, Oregon 97006
| | - Pierre Moënne-Loccoz
- Department of Science and Engineering, Oregon Health & Science University, Beaverton, Oregon 97006
| | - Mario Rivera
- Department of Chemistry, University of Kansas, Multidisciplinary Research Building, 2030 Becker Dr., room 220 E, Lawrence
| |
Collapse
|
20
|
Alontaga AY, Rodriguez JC, Schönbrunn E, Becker A, Funke T, Yukl ET, Hayashi T, Stobaugh J, Moënne-Loccoz P, Rivera M. Structural characterization of the hemophore HasAp from Pseudomonas aeruginosa: NMR spectroscopy reveals protein-protein interactions between Holo-HasAp and hemoglobin. Biochemistry 2009; 48:96-109. [PMID: 19072037 DOI: 10.1021/bi801860g] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Pseudomonas aeruginosa secretes a 205 residue long hemophore (full-length HasAp) that is subsequently cleaved at the C'-terminal domain to produce mainly a 184 residue long truncated HasAp that scavenges heme [Letoffé, S., Redeker, V., and Wandersman, C. (1998) Mol. Microbiol. 28, 1223-1234]. HasAp has been characterized by X-ray crystallography and in solution by NMR spectroscopy. The X-ray crystal structure of truncated HasAp revealed a polypeptide alphabeta fold and a ferriheme coordinated axially by His32 and Tyr75, with the side chain of His83 poised to accept a hydrogen bond from the Tyr75 phenolic acid group. NMR investigations conducted with full-length HasAp showed that the carboxyl-terminal tail (21 residues) is disordered and conformationally flexible. NMR spectroscopic investigations aimed at studying a complex between apo-HasAp and human methemoglobin were stymied by the rapid heme capture by the hemophore. In an effort to circumvent this problem NMR spectroscopy was used to monitor the titration of 15N-labeled holo-HasAp with hemoglobin. These studies allowed identification of a specific area on the surface of truncated HasAp, encompassing the axial ligand His32 loop that serves as a transient site of interaction with hemoglobin. These findings are discussed in the context of a putative encounter complex between apo-HasAp and hemoglobin that leads to efficient hemoglobin-heme capture by the hemophore. Similar experiments conducted with full-length 15N-labeled HasAp and hemoglobin revealed a transient interaction site in full-length HasAp similar to that observed in the truncated hemophore. The spectral perturbations observed while investigating these interactions, however, are weaker than those observed for the interactions between hemoglobin and truncated HasAp, suggesting that the disordered tail in the full-length HasAp must be proteolyzed in the extracellular milieu to make HasAp a more efficient hemophore.
Collapse
Affiliation(s)
- Aileen Y Alontaga
- Ralph N. Adams Institute for Bioanalytical Chemistry and Department of Chemistry, University of Kansas, Lawrence, Kansas 66047, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Tong Y, Guo M. Bacterial heme-transport proteins and their heme-coordination modes. Arch Biochem Biophys 2008; 481:1-15. [PMID: 18977196 DOI: 10.1016/j.abb.2008.10.013] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2008] [Revised: 10/07/2008] [Accepted: 10/07/2008] [Indexed: 12/11/2022]
Abstract
Efficient iron acquisition is critical for an invading microbe's survival and virulence. Most of the iron in mammals is incorporated into heme, which can be plundered by certain bacterial pathogens as a nutritional iron source. Utilization of exogenous heme by bacteria involves the binding of heme or hemoproteins to the cell surface receptors, followed by the transport of heme into cells. Once taken into the cytosol, heme is presented to heme oxygenases where the tetrapyrrole ring is cleaved in order to release the iron. Some Gram-negative bacteria also secrete extracellular heme-binding proteins called hemophores, which function to sequester heme from the environment. The heme-transport genes are often genetically linked as gene clusters under Fur (ferric uptake regulator) regulation. This review discusses the gene clusters and proteins involved in bacterial heme acquisition, transport and processing processes, with special focus on the heme-coordination, protein structures and mechanisms underlying heme-transport.
Collapse
Affiliation(s)
- Yong Tong
- Department of Chemistry and Biochemistry, University of Massachusetts, 285 Old Westport Road, Dartmouth, MA 02747-2300, USA
| | | |
Collapse
|
22
|
Caillet-Saguy C, Turano P, Piccioli M, Lukat-Rodgers GS, Czjzek M, Guigliarelli B, Izadi-Pruneyre N, Rodgers KR, Delepierre M, Lecroisey A. Deciphering the Structural Role of Histidine 83 for Heme Binding in Hemophore HasA. J Biol Chem 2008; 283:5960-70. [DOI: 10.1074/jbc.m703795200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
23
|
Krewulak KD, Vogel HJ. Structural biology of bacterial iron uptake. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2007; 1778:1781-804. [PMID: 17916327 DOI: 10.1016/j.bbamem.2007.07.026] [Citation(s) in RCA: 339] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2007] [Revised: 07/20/2007] [Accepted: 07/24/2007] [Indexed: 11/19/2022]
Abstract
To fulfill their nutritional requirement for iron, bacteria utilize various iron sources which include the host proteins transferrin and lactoferrin, heme, and low molecular weight iron chelators termed siderophores. The iron sources are transported into the Gram-negative bacterial cell via specific uptake pathways which include an outer membrane receptor, a periplasmic binding protein (PBP), and an inner membrane ATP-binding cassette (ABC) transporter. Over the past two decades, structures for the proteins involved in bacterial iron uptake have not only been solved, but their functions have begun to be understood at the molecular level. However, the elucidation of the three dimensional structures of all components of the iron uptake pathways is currently limited. Despite the low sequence homology between different bacterial species, the available three-dimensional structures of homologous proteins are strikingly similar. Examination of the current three-dimensional structures of the outer membrane receptors, PBPs, and ABC transporters provides an overview of the structural biology of iron uptake in bacteria.
Collapse
Affiliation(s)
- Karla D Krewulak
- Structural Biology Research Group, Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada T2N 1N4
| | | |
Collapse
|
24
|
Wilks A, Burkhard KA. Heme and virulence: how bacterial pathogens regulate, transport and utilize heme. Nat Prod Rep 2007; 24:511-22. [PMID: 17534527 DOI: 10.1039/b604193k] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Angela Wilks
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, 20 Penn Street, Baltimore, MD 21201, USA
| | | |
Collapse
|
25
|
Czjzek M, Létoffé S, Wandersman C, Delepierre M, Lecroisey A, Izadi-Pruneyre N. The crystal structure of the secreted dimeric form of the hemophore HasA reveals a domain swapping with an exchanged heme ligand. J Mol Biol 2006; 365:1176-86. [PMID: 17113104 DOI: 10.1016/j.jmb.2006.10.063] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2006] [Revised: 10/16/2006] [Indexed: 10/24/2022]
Abstract
To satisfy their iron needs, several Gram-negative bacteria use a heme uptake system involving an extracellular heme-binding protein called hemophore. The function of the hemophore is to acquire free or hemoprotein-bound heme and to transfer it to HasR, its specific outer membrane receptor, by protein-protein interaction. The hemophore HasA secreted by Serratia marcescens, an opportunistic pathogen, was the first to be identified and is now very well characterized. HasA is a monomer that binds one b heme with strong affinity. The heme in HasA is highly exposed to solvent and coordinated by an unusual pair of ligands, a histidine and a tyrosine. Here, we report the identification, the characterization and the X-ray structure of a dimeric form of HasA from S. marcescens: DHasA. We show that both monomeric and dimeric forms are secreted in iron deficient conditions by S. marcescens. The crystal structure of DHasA reveals that it is a domain swapped dimer. The overall structure of each monomeric subunit of DHasA is very similar to that of HasA but formed by parts coming from the two different polypeptide chains, involving one of the heme ligands. Consequently DHasA binds two heme molecules by residues coming from both polypeptide chains. We show here that, while DHasA can bind two heme molecules, it is not able to deliver them to the receptor HasR. However, DHasA can efficiently transfer its heme to the monomeric form that, in turn, delivers it to HasR. We assume that DHasA can function as a heme reservoir in the hemophore system.
Collapse
Affiliation(s)
- Mirjam Czjzek
- CNRS, Université Pierre et Marie Curie-Paris 6, Laboratoire International Associé-Dispersal and Adaptation in Marine Species, Unité Mixte de Recherche 7139, Station Biologique, F-29682 Roscoff Cedex, France
| | | | | | | | | | | |
Collapse
|
26
|
Arnesano F, Banci L, Bertini I, Capozzi F, Ciofi-Baffoni S, Ciurli S, Luchinat C, Mangani S, Rosato A, Turano P, Viezzoli MS. An Italian contribution to structural genomics: Understanding metalloproteins. Coord Chem Rev 2006. [DOI: 10.1016/j.ccr.2006.01.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
27
|
Caillet-Saguy C, Delepierre M, Lecroisey A, Bertini I, Piccioli M, Turano P. Direct-detected 13C NMR to investigate the iron(III) hemophore HasA. J Am Chem Soc 2006; 128:150-8. [PMID: 16390142 DOI: 10.1021/ja054902h] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Hemophore HasA is a 19 kDa iron(III) hemoprotein that participates in the shuttling of heme to a specific membrane receptor. In HasA, heme iron has an original coordination environment with a His/Tyr pair as axial ligands. Recently developed two-dimensional protonless (13)C-detected experiments provide the sequence-specific assignment of all but three protein residues in the close proximity of the paramagnetic center, thus overcoming limitations due to the short relaxation times induced by the presence of the iron(III) center. Mono-dimensional (13)C and (15)N experiments tailored for the detection of paramagnetic signals allow the identification of resonances of the axial ligands. These experiments are used to characterize the conformational features and the electronic structure of the heme iron(III) environment. The good complementarity among (1)H-, (13)C-, and (15)N-detected experiments is highlighted. A thermal high-spin/low-spin equilibrium is observed and is related to a modulation of the strength of the coordination bond between the iron and the Tyr74 axial ligand. The key role of a neighboring residue, His82, for the stability of the axial coordination and its involvement in the heme delivery to the receptor is discussed.
Collapse
Affiliation(s)
- Célia Caillet-Saguy
- Unité de RMN des Biomolécules (CNRS URA 2185), Institut Pasteur, 28 rue du Docteur Roux, 75015 Paris cedex 05, France
| | | | | | | | | | | |
Collapse
|
28
|
Schneider S, Paoli M. Crystallization and preliminary X-ray diffraction analysis of the haem-binding protein HemS from Yersinia enterocolitica. Acta Crystallogr Sect F Struct Biol Cryst Commun 2005; 61:802-5. [PMID: 16511163 PMCID: PMC1952356 DOI: 10.1107/s1744309105023523] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2005] [Accepted: 07/22/2005] [Indexed: 11/10/2022]
Abstract
Bacteria have evolved strategies to acquire iron from their environment. Pathogenic microbes rely on specialized proteins to ;steal' haem from their host and use it as an iron source. HemS is the ultimate recipient of a molecular-relay system for haem uptake in Gram-negative species, functioning as the cytosolic carrier of haem. Soluble expression and high-quality diffraction crystals were obtained for HemS from Yersinia enterocolitica. Crystals belong to the orthorhombic space group I222, with unit-cell parameters a = 74.86, b = 77.45, c = 114.09 A, and diffract X-rays to 2.6 A spacing in-house. Determination of the structure of the haem-HemS complex will reveal the molecular basis of haem binding.
Collapse
Affiliation(s)
- Sabine Schneider
- School of Pharmacy and Centre for Biomolecular Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, England
| | - Massimo Paoli
- School of Pharmacy and Centre for Biomolecular Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, England
- Correspondence e-mail:
| |
Collapse
|
29
|
Wolff N, Deniau C, Létoffé S, Simenel C, Kumar V, Stojiljkovic I, Wandersman C, Delepierre M, Lecroisey A. Histidine pK(a) shifts and changes of tautomeric states induced by the binding of gallium-protoporphyrin IX in the hemophore HasA(SM). Protein Sci 2002; 11:757-65. [PMID: 11910020 PMCID: PMC2373534 DOI: 10.1110/ps.3630102] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The HasA(SM) hemophore, secreted by Serratia marcescens, binds free or hemoprotein bound heme with high affinity and delivers it to a specific outer membrane receptor, HasR. In HasA(SM), heme is held by two loops and coordinated to iron by two residues, His 32 and Tyr 75. A third residue His 83 was shown recently to play a crucial role in heme ligation. To address the mechanistic issues of the heme capture and release processes, the histidine protonation states were studied in both apo- and holo-forms of HasA(SM) in solution. Holo-HasA(SM) was formed with gallium-protoporphyrin IX (GaPPIX), giving rise to a diamagnetic protein. By use of heteronuclear correlation NMR spectroscopy, the imidazole side-chain (15)N and (1)H resonances of the six HasA(SM) histidines were assigned and their pKa values and predominant tautomeric states according to pH were determined. We show that protonation states of the heme pocket histidines can modulate the nucleophilic character of the two axial ligands and, consequently, control the heme binding. In particular, the essential role of the His 83 is emphasized according to its direct interaction with Tyr 75.
Collapse
Affiliation(s)
- Nicolas Wolff
- Unité de Résonance Magnétique Nucléaire des Biomolécules, CNRS URA 2185, Institut Pasteur, Paris, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Scott DJ, Grossmann JG, Tame JRH, Byron O, Wilson KS, Otto BR. Low resolution solution structure of the Apo form of Escherichia coli haemoglobin protease Hbp. J Mol Biol 2002; 315:1179-87. [PMID: 11827485 DOI: 10.1006/jmbi.2001.5306] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have studied the solution properties of the apo form of the haemoglobin protease or "haemoglobinase", Hbp, a principal component of an important iron acquisition system in pathogenic Escherichia coli. Experimental determination of secondary structure content from circular dichroism (CD) spectroscopy, obtained using synchrotron light, showed that the protein contains predominately beta-sheets in agreement with secondary structure prediction from the primary sequence. Next, the size and shape of the protein were probed using analytical ultracentrifugation (AUC) and small angle X-ray scattering (SAXS). These showed that Hbp is a monomer, with an extended conformation. Using ab initio reconstruction methods we have produced a model of Hbp, which shows that the protein adopts an extended crescent-shaped conformation. Analysis of the resulting model gives hydrodynamic parameters in good agreement with those observed experimentally. Thus we are able to construct a hydrodynamically rigorous model of apo-Hbp in solution, not only giving a greater level of confidence to the results of the SAXS reconstruction methods, but providing the first three-dimensional view of this intriguing molecule.
Collapse
Affiliation(s)
- David J Scott
- York Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, YO10 5DD, UK.
| | | | | | | | | | | |
Collapse
|