1
|
Silindir-Gunay M, Ozolmez N. Adverse reactions to therapeutic radiopharmaceuticals. Appl Radiat Isot 2024; 214:111527. [PMID: 39332267 DOI: 10.1016/j.apradiso.2024.111527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 09/29/2024]
Abstract
Radiopharmaceuticals are drugs used in treatment or diagnosis that contain a radioactive part, usually a pharmaceutical part in their structure. Adverse drug reactions are harmful and unexpected responses that occur when administered at normal doses. Although radiopharmaceuticals are regarded as safe medical products, adverse reactions should not be ignored. More serious adverse reactions such as myelosuppression, pleural effusion, and death may develop in therapeutic radiopharmaceuticals due to their use at higher doses than those used in diagnosis. Therefore, monitoring adverse reactions and reporting them to health authorities is important. This review aims to provide information about adverse reactions that may be related to radiopharmaceuticals used in treatment.
Collapse
Affiliation(s)
- Mine Silindir-Gunay
- Department of Radiopharmacy, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey.
| | - Nur Ozolmez
- Department of Radiopharmacy, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey.
| |
Collapse
|
2
|
Fiz F, Piticchio T, Bottoni G, Sorrentino S, Fragola M, Livellara V, Trimboli P, Piccardo A. Incidence of subclinical and overt hypothyroidism in children treated with [131I]mIBG: a systematic review and meta-analysis. THE QUARTERLY JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING : OFFICIAL PUBLICATION OF THE ITALIAN ASSOCIATION OF NUCLEAR MEDICINE (AIMN) [AND] THE INTERNATIONAL ASSOCIATION OF RADIOPHARMACOLOGY (IAR), [AND] SECTION OF THE SOCIETY OF... 2024; 68:40-47. [PMID: 38319674 DOI: 10.23736/s1824-4785.24.03552-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
INTRODUCTION Treatment with [131I]mIBG is commonly used in pediatric metastatic neuroblastoma (NB); however, unbound [131I]I might be taken up by the thyroid, causing hypothyroidism. To prevent this occurrence, thyroid blockade with iodine salts is commonly used; despite this precaution, thyroid dysfunction still occurs. This review and meta-analysis aim to clarify the mean frequency of hypothyroidism in children with NB treated with [131I]mIBG and to investigate the possible causes. EVIDENCE ACQUISITION The literature was searched for English-language scientific manuscripts describing the incidence of TSH elevation and overt hypothyroidism in children with NB treated with [131I]mIBG. Preclinical studies, small-case series, and reviews were excluded. A proportion meta-analysis was conducted to test the influence of potentially relevant factors (type and duration of thyroid blockade, year of the study, sample size) on the incidence of TSH elevation/overt hypothyroidism. EVIDENCE SYNTHESIS Eleven studies were included. The pooled percentage of TSH elevation was 0.41 (95% CI: 0.27-0.55); the duration of the thyroid blockade (P=0.004) was inversely correlated with the incidence of TSH elevation. Moreover, a TSH increase was more common in patients treated with potassium iodide (KI) alone than in those managed with a multi-drug thyroid blockade (P<0.001). The pooled percentage of children requiring hormone replacement therapy was 0.33 (95% CI: 0.16-0.49). As in the case of TSH elevation, a longer duration of the thyroid blockade (P=0.006) and a multi-pronged approach (P<0.001) were associated with a lower incidence of overt hypothyroidism. CONCLUSIONS Hypothyroidism appears to occur frequently in children treated with [131I]mIBG, which should be monitored closely after the radionuclide treatment to start hormone replacement therapy as soon as needed. The duration, as well as the type of thyroid blockade, seem to influence the incidence of hypothyroidism; however, more data from prospective evaluations are needed.
Collapse
Affiliation(s)
- Francesco Fiz
- Department of Nuclear Medicine, E.O. Ospedali Galliera, Genoa, Italy
- Department of Nuclear Medicine and Clinical Molecular Imaging, Tübingen University Hospital, Tübingen, Germany
| | - Tommaso Piticchio
- Section of Endocrinology, Department of Clinical and Experimental Medicine, Garibaldi Nesima Hospital, University of Catania, Catania, Italy
| | - Gianluca Bottoni
- Department of Nuclear Medicine, E.O. Ospedali Galliera, Genoa, Italy
| | | | - Martina Fragola
- Biostatistics Unit, Scientific Directorate, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | | | - Pierpaolo Trimboli
- Clinic of Endocrinology and Diabetology, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
- Faculty of Biomedical Sciences, University of Italian Switzerland (USI), Lugano, Switzerland
| | - Arnoldo Piccardo
- Department of Nuclear Medicine, E.O. Ospedali Galliera, Genoa, Italy -
| |
Collapse
|
3
|
Pharmacological protection of the thyroid gland against radiation damage from radioactive iodine labeled compounds in children: a systematic review. Clin Transl Imaging 2022. [DOI: 10.1007/s40336-022-00529-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Abstract
Purpose
There is currently no consensus on which protective strategy is most effective to prevent I-131 uptake in the thyroid during medical interventions in children. We aimed to collect the best available evidence to determine which pharmacological intervention is most effective in protecting the thyroid gland from damage by radioactive iodine (RAI).
Methods
Literature searches were performed using PubMed, Embase, OLDMEDLINE, and the Cochrane Central Register of Controlled Trials. Only original studies were included (1950–2022). Studies comparing pharmacological prevention of the thyroid against RAI uptake or occurrence of hypothyroidism, thyroid nodule or thyroid cancer were included. Included studies were graded according to the Grading of Recommendations Assessment, Development and Evaluation considerations. Pharmacological interventions were compared for effectiveness on reduction of thyroidal intake or relevant clinical thyroidal outcomes.
Results
Forty studies were included. Quality of included studies was low and many different outcome variables were used, making meta-analysis impossible. In 81% of studies, the pharmacological intervention could not prevent RAI uptake or thyroid damage. The administration of potassium iodide (KI) 1 h before exposure to RAI seemed most effective to reduce thyroidal uptake, however, hypothyroidism was reported in up to 64% as well as several cases of thyroid carcinoma. The combination of KI, thyroxine and thiamazole reduced RAI uptake and occurrence of hypothyroidism; yet, after follow-up of 9 years, still 50% of patients developed hypothyroidism. KI with potassium perchlorate showed hypothyroidism to occur in up to 12% of patients after short follow-up time.
Conclusions
The lack of well-designed studies impairs making strong recommendations on the optimal way to prevent thyroid damage when using radioactive coupled ligands for medical interventions. To improve the protection of the thyroid against radiation damage by I-131, well-designed randomized clinical trials with sufficient follow-up time, comparing new protective strategies’ effects on valid and well-defined thyroid outcomes are needed.
Collapse
|
4
|
Dijkstra S, Kraal KCJM, Tytgat GAM, van Noesel MM, Wijnen MHWA, Hoogerbrugge PM. Use of quality indicators in neuroblastoma treatment: A feasibility assessment. Pediatr Blood Cancer 2021; 68:e28301. [PMID: 32735384 DOI: 10.1002/pbc.28301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 03/15/2020] [Accepted: 03/16/2020] [Indexed: 11/08/2022]
Abstract
BACKGROUND Quality indicators (QIs) may be used to monitor the quality of neuroblastoma (NBL) care during treatment, in addition to survival and treatment toxicity, which can only be evaluated in the years after treatment. The present study aimed to assess the feasibility of a new set of indicators for the quality of NBL therapy. PROCEDURE Seven QIs have been proposed based on literature and consensus of experts: (a) duration of complete diagnostic work-up, (b) prescription of thyroid prophylaxis before metaiodobenzylguanidine imaging, (c) treatment intensity, (d) use of tumor board meetings, (e) number of outpatient visits and sedation procedures during follow-up, (f) protocolled follow-up, and (g) required apheresis sessions. A retrospective data analysis from October 2014 to November 2017 including all patients with NBL in the centralized Princess Máxima Center in the Netherlands was performed to assess these parameters and determine practicality of measurement. RESULTS A total number of 72 patients (aged between 2 weeks and 15 years) were analyzed. Adherence to all QIs could be determined for all eligible patients using their electronic medical records. Three indicators were compared over time, and an increase in adherence was observed. CONCLUSIONS Assessment of QIs in neuroblastoma treatment is feasible. Seven new QIs were found to be feasible to measure and showed improvement over time for three indicators. Monitoring of these QIs during treatment may provide tools for quality improvement activities and comparisons of treatment quality over time or between centers. Further study is required to investigate their association with long-term outcomes.
Collapse
Affiliation(s)
- Suzan Dijkstra
- Department of Pediatric Oncology, Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Kathelijne C J M Kraal
- Department of Pediatric Oncology, Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Godelieve A M Tytgat
- Department of Pediatric Oncology, Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Max M van Noesel
- Department of Pediatric Oncology, Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Marc H W A Wijnen
- Department of Pediatric Oncology, Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Peter M Hoogerbrugge
- Department of Pediatric Oncology, Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| |
Collapse
|
5
|
Lee Y, Shin J, Choi Y, Kim H, Koh KN, Im HJ, Yoo HW, Choi JH. Endocrine Complications in Children and Adolescents With Non-Central Nervous System Solid Tumors. Front Endocrinol (Lausanne) 2021; 12:610730. [PMID: 33815276 PMCID: PMC8011158 DOI: 10.3389/fendo.2021.610730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 03/03/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Due to remarkable progress in cancer treatment, endocrine complications are now the major medical issues facing childhood cancer survivors. Although non-central nervous system solid tumors (NCSTs) account for approximately 40% of all pediatric cancers, there have been few studies on endocrine complications associated with NCSTs. This study investigated endocrinopathies following the treatment of pediatric NCSTs. DESIGN AND SETTING Retrospective study in a single academic center. METHODS This study analyzed 253 survivors of childhood NCSTs who were diagnosed between January of 2000 and December of 2018. The medical charts were reviewed regarding the frequency of endocrinopathies and treatment modalities. The hazard ratios were assessed by multivariable Cox regression analysis. The final height-SDS were analyzed by multivariable linear regression analysis. RESULTS There were 76 patients (30%) that developed at least one endocrine complication. Forty-four patients (17.4%) experienced endocrine complications within five years of their cancer diagnosis. The most common endocrine complication was growth failure (n = 35), followed by obesity (n = 18), and primary gonadal failure (n = 16). High cumulative doses of alkylating agents increased the risk of developing at least one endocrine complication. Hematopoietic stem cell transplantation was an important risk factor for primary gonadal failure. CONCLUSIONS This study described the comprehensive endocrine outcomes, including growth failure, obesity, primary gonadal failure, primary hypothyroidism, dyslipidemia, and osteoporosis, following the treatment of childhood NCSTs. As endocrinopathies occurred within five years of primary tumor diagnosis, surveillance for endocrine dysfunction is required for early intervention and management.
Collapse
|
6
|
Bhattacharya S, Goyal A, Kaur P, Singh R, Kalra S. Anticancer Drug-induced Thyroid Dysfunction. EUROPEAN ENDOCRINOLOGY 2020; 16:32-39. [PMID: 32595767 DOI: 10.17925/ee.2020.16.1.32] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 11/08/2019] [Indexed: 12/15/2022]
Abstract
Cancer immunotherapy and targeted therapy, though less toxic than conventional chemotherapy, can increase the risk of thyroid dysfunction. Immune checkpoint inhibitors render the cancer cells susceptible to immune destruction, but also predispose to autoimmune disorders like primary hypothyroidism as well as central hypothyroidism secondary to hypophysitis. Tyrosine kinase inhibitors act by blocking vascular endothelial growth factor receptors and their downstream targets. Disruption of the vascular supply from the inhibition of endothelial proliferation damages not only cancer cells but also organs with high vascularity like the thyroid. Interferon-α, interleukin-2 and thalidomide analogues can cause thyroid dysfunction by immune modulation. Alemtuzumab, a monoclonal antibody directed against the cell surface glycoprotein CD52 causes Graves' disease during immune reconstitution. Metaiodobenzylguanidine, combined with 131-iodine, administered as a radiotherapeutic agent for tumours derived from neural crest cells, can cause primary hypothyroidism. Bexarotene can produce transient central hypothyroidism by altering the feedback effect of thyroid hormone on the pituitary gland. Thyroid dysfunction can be managed in the usual manner without a requirement for dose reduction or discontinuation of the implicated agent. This review aims to highlight the effect of various anticancer agents on thyroid function. Early recognition and appropriate management of thyroid disorders during cancer therapy will help to improve treatment outcomes.
Collapse
Affiliation(s)
| | - Alpesh Goyal
- All Indian Institute of Medical Sciences, New Delhi, India
| | | | | | | |
Collapse
|
7
|
Waguespack SG. Thyroid Sequelae of Pediatric Cancer Therapy. Horm Res Paediatr 2019; 91:104-117. [PMID: 30541010 DOI: 10.1159/000495040] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Accepted: 10/31/2018] [Indexed: 11/19/2022] Open
Abstract
The hypothalamic-pituitary-thyroid axis is a common site of unintended, acquired disease either during or after the treatment of cancer. Children treated with external radiation therapy are at the highest risk for developing a thyroid-related late effect, but thyroid dysfunction and second primary thyroid neoplasms can also occur after treatment with radiopharmaceutical agents such as 131I-metaiodobenzylguanidine. Increasingly recognized is the development of early thyroid dysfunction as an off-target consequence of the more novel cancer therapeutics such as the tyrosine kinase inhibitors and immune checkpoint inhibitors. Thyroid sequelae resulting from irradiation may manifest only after years to decades of follow-up, and their resultant clinical symptoms may be indolent and non-specific. Therefore, lifelong monitoring of the childhood cancer survivor at risk for thyroid disease is paramount. In this comprehensive review, the myriad thyroid adverse effects resulting from pediatric cancer treatment are discussed and an overview of screening and treatment of these thyroid sequelae provided.
Collapse
Affiliation(s)
- Steven G Waguespack
- Department of Endocrine Neoplasia and Hormonal Disorders and the Department of Pediatrics-Patient Care, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA,
| |
Collapse
|
8
|
Gebauer J, Higham C, Langer T, Denzer C, Brabant G. Long-Term Endocrine and Metabolic Consequences of Cancer Treatment: A Systematic Review. Endocr Rev 2019; 40:711-767. [PMID: 30476004 DOI: 10.1210/er.2018-00092] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 06/21/2018] [Indexed: 02/08/2023]
Abstract
The number of patients surviving ≥5 years after initial cancer diagnosis has significantly increased during the last decades due to considerable improvements in the treatment of many cancer entities. A negative consequence of this is that the emergence of long-term sequelae and endocrine disorders account for a high proportion of these. These late effects can occur decades after cancer treatment and affect up to 50% of childhood cancer survivors. Multiple predisposing factors for endocrine late effects have been identified, including radiation, sex, and age at the time of diagnosis. A systematic literature search has been conducted using the PubMed database to offer a detailed overview of the spectrum of late endocrine disorders following oncological treatment. Most data are based on late effects of treatment in former childhood cancer patients for whom specific guidelines and recommendations already exist, whereas current knowledge concerning late effects in adult-onset cancer survivors is much less clear. Endocrine sequelae of cancer therapy include functional alterations in hypothalamic-pituitary, thyroid, parathyroid, adrenal, and gonadal regulation as well as bone and metabolic complications. Surgery, radiotherapy, chemotherapy, and immunotherapy all contribute to these sequelae. Following irradiation, endocrine organs such as the thyroid are also at risk for subsequent malignancies. Although diagnosis and management of functional and neoplastic long-term consequences of cancer therapy are comparable to other causes of endocrine disorders, cancer survivors need individually structured follow-up care in specialized surveillance centers to improve care for this rapidly growing group of patients.
Collapse
Affiliation(s)
- Judith Gebauer
- Experimental and Clinical Endocrinology, University Hospital of Schleswig-Holstein, Campus Luebeck, Luebeck, Germany
| | - Claire Higham
- Department of Endocrinology, Christie Hospital NHS Foundation Trust, Manchester, United Kingdom.,Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Thorsten Langer
- Division of Pediatric Hematology and Oncology, University Hospital of Schleswig-Holstein, Campus Luebeck, Luebeck, Germany
| | - Christian Denzer
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Endocrinology and Diabetes, Ulm University Medical Center, Ulm, Germany
| | - Georg Brabant
- Experimental and Clinical Endocrinology, University Hospital of Schleswig-Holstein, Campus Luebeck, Luebeck, Germany.,Department of Endocrinology, Christie Hospital NHS Foundation Trust, Manchester, United Kingdom
| |
Collapse
|
9
|
Kraal KCJM, van Dalen EC, Tytgat GAM, Van Eck‐Smit BLF. Iodine-131-meta-iodobenzylguanidine therapy for patients with newly diagnosed high-risk neuroblastoma. Cochrane Database Syst Rev 2017; 4:CD010349. [PMID: 28429876 PMCID: PMC6478145 DOI: 10.1002/14651858.cd010349.pub2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND Patients with newly diagnosed high-risk (HR) neuroblastoma (NBL) still have a poor outcome, despite multi-modality intensive therapy. This poor outcome necessitates the search for new therapies, such as treatment with 131I-meta-iodobenzylguanidine (131I-MIBG). OBJECTIVES To assess the efficacy and adverse effects of 131I-MIBG therapy in patients with newly diagnosed HR NBL. SEARCH METHODS We searched the following electronic databases: the Cochrane Central Register of Controlled Trials (CENTRAL; the Cochrane Library 2016, Issue 3), MEDLINE (PubMed) (1945 to 25 April 2016) and Embase (Ovid) (1980 to 25 April 2016). In addition, we handsearched reference lists of relevant articles and reviews. We also assessed the conference proceedings of the International Society for Paediatric Oncology, Advances in Neuroblastoma Research and the American Society of Clinical Oncology; all from 2010 up to and including 2015. We scanned the International Standard Randomized Controlled Trial Number (ISRCTN) Register (www.isrctn.com) and the National Institutes of Health Register for ongoing trials (www.clinicaltrials.gov) on 13 April 2016. SELECTION CRITERIA Randomised controlled trials (RCTs), controlled clinical trials (CCTs), non-randomised single-arm trials with historical controls and cohort studies examining the efficacy of 131I-MIBG therapy in 10 or more patients with newly diagnosed HR NBL. DATA COLLECTION AND ANALYSIS Two review authors independently performed the study selection, risk of bias assessment and data extraction. MAIN RESULTS We identified two eligible cohort studies including 60 children with newly diagnosed HR NBL. All studies had methodological limitations, with regard to both internal (risk of bias) and external validity. As the studies were not comparable with regard to prognostic factors and treatment (and often used different outcome definitions), pooling of results was not possible. In one study, the objective response rate (ORR) was 73% after surgery; the median overall survival was 15 months (95% confidence interval (CI) 7 to 23); five-year overall survival was 14.6%; median event-free survival was 10 months (95% CI 7 to 13); and five-year event-free survival was 12.2%. In the other study, the ORR was 56% after myeloablative therapy and autologous stem cell transplantation; 10-year overall survival was 6.25%; and event-free survival was not reported. With regard to short-term adverse effects, one study showed a prevalence of 2% (95% CI 0% to 13%; best-case scenario) for death due to myelosuppression. After the first cycle of 131I-MIBG therapy in one study, platelet toxicity occurred in 38% (95% CI 18% to 61%), neutrophil toxicity in 50% (95% CI 28% to 72%) and haemoglobin toxicity in 69% (95% CI 44% to 86%); after the second cycle this was 60% (95% CI 36% to 80%) for platelets and neutrophils and 53% (95% CI 30% to 75%) for haemoglobin. In one study, the prevalence of hepatic toxicity during or within four weeks after last the MIBG treatment was 0% (95% CI 0% to 9%; best-case scenario). Neither study reported cardiovascular toxicity and sialoadenitis. One study assessed long-term adverse events in some of the children: there was elevated plasma thyroid-stimulating hormone in 45% (95% CI 27% to 65%) of children; in all children, free T4 was within the age-related normal range (0%, 95% CI 0% to 15%). There were no secondary malignancies observed (0%, 95% CI 0% to 9%), but only five children survived more than four years. AUTHORS' CONCLUSIONS We identified no RCTs or CCTs comparing the effectiveness of treatment including 131I-MIBG therapy versus treatment not including 131I-MIBG therapy in patients with newly diagnosed HR NBL. We found two small observational studies including chilren. They had high risk of bias, and not all relevant outcome results were available. Based on the currently available evidence, we cannot make recommendations for the use of 131I-MIBG therapy in patients with newly diagnosed HR NBL in clinical practice. More high-quality research is needed.
Collapse
Affiliation(s)
- Kathelijne CJM Kraal
- Emma Children's Hospital/Academic Medical CenterDepartment of Paediatric OncologyPO Box 22660AmsterdamNetherlands1100 DD
- Princess Maxima Center for Pediatric OncologyPostbus 85090Room KE 01.129.2UtrechtNetherlands3508 AB
| | - Elvira C van Dalen
- Emma Children's Hospital/Academic Medical CenterDepartment of Paediatric OncologyPO Box 22660AmsterdamNetherlands1100 DD
| | - Godelieve AM Tytgat
- Emma Children's Hospital/Academic Medical CenterDepartment of Paediatric OncologyPO Box 22660AmsterdamNetherlands1100 DD
| | | | | |
Collapse
|
10
|
Parisi MT, Eslamy H, Park JR, Shulkin BL, Yanik GA. 131I-Metaiodobenzylguanidine Theranostics in Neuroblastoma: Historical Perspectives; Practical Applications. Semin Nucl Med 2016; 46:184-202. [DOI: 10.1053/j.semnuclmed.2016.02.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
11
|
Long-term efficacy of current thyroid prophylaxis and future perspectives on thyroid protection during 131I-metaiodobenzylguanidine treatment in children with neuroblastoma. Eur J Nucl Med Mol Imaging 2014; 42:706-15. [DOI: 10.1007/s00259-014-2967-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 11/28/2014] [Indexed: 11/25/2022]
|
12
|
Clement SC, van Eck-Smit BLF, van Trotsenburg ASP, Kremer LCM, Tytgat GAM, van Santen HM. Long-term follow-up of the thyroid gland after treatment with 131I-Metaiodobenzylguanidine in children with neuroblastoma: importance of continuous surveillance. Pediatr Blood Cancer 2013; 60:1833-8. [PMID: 23832530 DOI: 10.1002/pbc.24681] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 06/11/2013] [Indexed: 01/25/2023]
Abstract
BACKGROUND Thyroid dysfunction has been reported in up to 52% of patients 1.4 years after treatment with (131) I-Metaiodobenzylguanidine (MIBG) in children with neuroblastoma (NBL), despite the use of potassium-iodide (KI). Our aim was to investigate if the incidence and severity of thyroid damage increases in time. MATERIALS AND METHODS All long-term survivors of childhood NBL treated with (131) I-MIBG in the period 1989-1999 in our center (n = 16 of 43) were evaluated. During exposure to (131) I-MIBG, patients received 100 mg KI per day as thyroid protection. All MIBG images were evaluated for thyroid uptake of radio-iodine. Thyroid dysfunction was defined as a plasma thyrotropin concentration above the institutional age-related reference ranges (thyrotropin elevation, TE) or using thyroxine at last moment of follow-up. In all, ultrasound investigation of the thyroid was performed. RESULTS Fifteen years after treatment with (131) I-MIBG, in 81% (n = 13) thyroid disorders were diagnosed. Eight survivors (50%) were treated with thyroxine. Thyroid nodules were found in nine survivors, of which two were diagnosed with papillary thyroid carcinoma. In 28% of (131) I-MIBG-images radio-iodine uptake in the thyroid gland was seen, but no correlation was found between thyroidal radio-iodine uptake and thyroid disorders. CONCLUSIONS Despite protection with KI during exposure to (131) I-MIBG in childhood, the occurrence of thyroid disorders is high and increases in time. Continuous screening for thyroid dysfunction and nodules in these survivors is recommended. Other ways to protect the thyroid gland should be further evaluated.
Collapse
Affiliation(s)
- S C Clement
- Department of Pediatric Endocrinology, Emma Children's Hospital, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
13
|
Sisson JC, Yanik GA. Theranostics: evolution of the radiopharmaceutical meta-iodobenzylguanidine in endocrine tumors. Semin Nucl Med 2012; 42:171-84. [PMID: 22475426 DOI: 10.1053/j.semnuclmed.2011.11.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Since 1981, meta-iodobenzylguanidine (MIBG), labeled with (131)I and later (123)I, has become a valuable agent in the diagnosis and therapy of a number of endocrine tumors. Initially, the agent located pheochromocytomas and paragangliomas (PGLs), both sporadic and familial, in multiple anatomic sites; surgeons were thereby guided to excisional therapies, which were previously difficult and sometimes impossible. The specificity in diagnosis has remained above 95%, but sensitivity has varied with the nature of the tumor: close to 90% for intra-adrenal pheochromocytomas but 70% or less for PGLs. For patients with neuroblastoma, carcinoid tumors, and medullary thyroid carcinoma, imaging with radiolabeled MIBG portrays important diagnostic evidence, but for these neoplasms, use has been primarily as an adjunct to therapy. Although diagnosis by radiolabeled MIBG has been supplemented and sometimes surpassed by newer scintigraphic agents, searches by this radiopharmaceutical remain indispensable for optimal care of some patients. The radiation imparted by concentrations of (131)I-MIBG in malignant pheochromocytomas, PGLs, carcinoid tumors, and medullary thyroid carcinoma has reduced tumor volumes and lessened excretions of symptom-inflicting hormones, but its value as a therapeutic agent is being fulfilled primarily in attacks on neuroblastomas, which are scourges of children. Much promise has been found in tumor disappearance and prolonged survival of treated patients. The experiences with therapeutic (131)I-MIBG have led to development of new tactics and strategies and to well-founded hopes for elimination of cancers. Radiolabeled MIBG is an exemplar of theranostics and remains a worthy agent for both diagnosis and therapy of endocrine tumors.
Collapse
Affiliation(s)
- James C Sisson
- Division of Nuclear Medicine, Department of Radiology, University of Michigan Health System, Ann Arbor, MI 48103-5028, USA.
| | | |
Collapse
|
14
|
Owens C, Irwin M. Neuroblastoma: the impact of biology and cooperation leading to personalized treatments. Crit Rev Clin Lab Sci 2012; 49:85-115. [PMID: 22646747 DOI: 10.3109/10408363.2012.683483] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Neuroblastoma is the most common extra-cranial solid tumor in children. It is a heterogeneous disease, consisting of neural crest-derived tumors with remarkably different clinical behaviors. It can present in a wide variety of ways, including lesions which have the potential to spontaneously regress, or as an extremely aggressive form of metastatic cancer which is resistant to all forms of modern therapy. They can arise anywhere along the sympathetic nervous system. The median age of presentation is approximately 18 months of age. Urinary catecholamines (HVA and VMA) are extremely sensitive and specific tumor markers and are used in diagnosis, treatment response assessment and post-treatment surveillance. The largest national treatment groups from North America, Europe and Japan have formed the International Neuroblastoma Risk Group Task Force (INRG) to identify prognostic factors, to understand the mechanisms of tumorigenesis in this rare disease and to develop multi-modality therapies to improve outcomes and decrease treatment-related toxicities. This international cooperation has resulted in a significant leap in our understanding of the molecular pathogenesis of neuroblastoma. Lower staged disease can be cured if the lesion is resectable. Treatment of unresectable disease (loco-regional and metastatic) is stratified depending on clinical features (age at presentation, staging investigations) and specific tumor biological markers that include histopathological analyses, chromosomal abnormalities and the quantification of expression of an oncogene (MYCN). Modern treatment of high-risk neuroblastoma is the paradigm for the evolution of therapy in pediatric oncology. Outcomes have improved substantially with multi-modality therapy, including chemotherapy, surgery, radiation therapy, myeloablative therapy with stem cell transplant, immunotherapy and differentiation therapy; these comprise the standard of care worldwide. In addition, newer targeted therapies are being tested in phase I/II trials. If successful these agents will be incorporated into mainstream treatment programs.
Collapse
Affiliation(s)
- Cormac Owens
- Division of Haematology/Oncology, Department of Pediatrics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | | |
Collapse
|
15
|
Quach A, Ji L, Mishra V, Sznewajs A, Veatch J, Huberty J, Franc B, Sposto R, Groshen S, Wei D, Fitzgerald P, Maris JM, Yanik G, Hawkins RA, Villablanca JG, Matthay KK. Thyroid and hepatic function after high-dose 131 I-metaiodobenzylguanidine (131 I-MIBG) therapy for neuroblastoma. Pediatr Blood Cancer 2011; 56:191-201. [PMID: 20830775 PMCID: PMC3006009 DOI: 10.1002/pbc.22767] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Accepted: 07/01/2010] [Indexed: 11/10/2022]
Abstract
BACKGROUND (131) I-Metaiodobenzylguanidine ((131) I-MIBG) provides targeted radiotherapy for children with neuroblastoma, a malignancy of the sympathetic nervous system. Dissociated radioactive iodide may concentrate in the thyroid, and (131) I-MIBG is concentrated in the liver after (131) I-MIBG therapy. The aim of our study was to analyze the effects of (131) I-MIBG therapy on thyroid and liver function. PROCEDURE Pre- and post-therapy thyroid and liver functions were reviewed in a total of 194 neuroblastoma patients treated with (131) I-MIBG therapy. The cumulative incidence over time was estimated for both thyroid and liver toxicities. The relationship to cumulative dose/kg, number of treatments, time from treatment to follow-up, sex, and patient age was examined. RESULTS In patients who presented with Grade 0 or 1 thyroid toxicity at baseline, 12 ± 4% experienced onset of or worsening to Grade 2 hypothyroidism and one patient developed Grade 2 hyperthyroidism by 2 years after (131) I-MIBG therapy. At 2 years post-(131) I-MIBG therapy, 76 ± 4% patients experienced onset or worsening of hepatic toxicity to any grade, and 23 ± 5% experienced onset of or worsening to Grade 3 or 4 liver toxicity. Liver toxicity was usually transient asymptomatic transaminase elevation, frequently confounded by disease progression and other therapies. CONCLUSION The prophylactic regimen of potassium iodide and potassium perchlorate with (131) I-MIBG therapy resulted in a low rate of significant hypothyroidism. Liver abnormalities following (131) I-MIBG therapy were primarily reversible and did not result in late toxicity. (131) I-MIBG therapy is a promising treatment for children with relapsed neuroblastoma with a relatively low rate of symptomatic thyroid or hepatic dysfunction.
Collapse
Affiliation(s)
- Alekist Quach
- Department of Pediatrics, University of California San Francisco and UCSF Children’s Hospital, San Francisco, CA
| | - Lingyun Ji
- Children’s Center for Cancer and Blood Diseases, Childrens Hospital Los Angeles
| | - Vikash Mishra
- Department of Pediatrics, University of California San Francisco and UCSF Children’s Hospital, San Francisco, CA
| | - Aimee Sznewajs
- Department of Pediatrics, University of California San Francisco and UCSF Children’s Hospital, San Francisco, CA
| | - Janet Veatch
- Department of Pediatrics, University of California San Francisco and UCSF Children’s Hospital, San Francisco, CA
| | - John Huberty
- Department of Radiology, Nuclear Medicine Program, University of California San Francisco and UCSF Children’s Hospital, San Francisco, CA
| | - Benjamin Franc
- Department of Radiology, Nuclear Medicine Program, University of California San Francisco and UCSF Children’s Hospital, San Francisco, CA
| | - Richard Sposto
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California
,Children’s Center for Cancer and Blood Diseases, Childrens Hospital Los Angeles
| | - Susan Groshen
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California
| | - Denice Wei
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California
| | - Paul Fitzgerald
- Department of Pediatrics, University of California San Francisco and UCSF Children’s Hospital, San Francisco, CA
| | - John M. Maris
- Department of Pediatrics, Children’s Hospital of Philadelphia; University of Pennsylvania, Philadelphia, PA
| | - Gregory Yanik
- Department of Pediatrics, University of Michigan and Mott Children’s Hospital, Ann Arbor, MI
| | - Randall A. Hawkins
- Department of Radiology, Nuclear Medicine Program, University of California San Francisco and UCSF Children’s Hospital, San Francisco, CA
| | | | - Katherine K. Matthay
- Department of Pediatrics, University of California San Francisco and UCSF Children’s Hospital, San Francisco, CA
| |
Collapse
|
16
|
Bhandari S, Cheung NKV, Kushner BH, Kramer K, Modak S, Larson SM, Yeh S, Heller G, Sklar CA. Hypothyroidism after 131I-monoclonal antibody treatment of neuroblastoma. Pediatr Blood Cancer 2010; 55:76-80. [PMID: 20213847 DOI: 10.1002/pbc.22452] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND To determine the prevalence of and risk factors for primary hypothyroidism following treatment with a radiolabeled monoclonal antibody ((131)I-3F8) in children with neuroblastoma. PROCEDURE In the current study, we assessed thyroid function in 51 neuroblastoma patients who survived for > or =3 months after treatment with (131)I-3F8 (a murine IgG3 monoclonal antibody that reacts with the ganglioside GD2) at 4 mCi/kg/day x 5 days (total 20 mCi/kg). Prior therapy in all subjects included dose-intensive chemotherapy; 13 subjects also received external beam radiation to the neck. Oral iodide and liothyronine sodium (T3) were administered for protection of the thyroid gland. RESULTS Thirty-two of 51 subjects (63%) developed hormonal evidence of primary hypothyroidism. The median time to hypothyroidism after treatment with (131)I-3F8 was 6.4 months. The probability of developing hypothyroidism was 56% at 2 years following treatment with (131)I-3F8. There was evidence for an association between thyroidal uptake of (131)I and development of hypothyroidism (hazard ratio 1.83, 95% confidence interval 0.91-3.30; P = 0.09). CONCLUSIONS We conclude that hormonal evidence of primary hypothyroidism developed in a majority of subjects treated with (131)I-3F8, despite pretreatment with oral iodide plus liothyronine sodium. Alternative strategies for thyroid gland protection are needed.
Collapse
Affiliation(s)
- Sonal Bhandari
- Department of Pediatrics, New York Presbyterian-Weill Cornell Medical College, New York, New York, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
DuBois SG, Matthay KK. Radiolabeled metaiodobenzylguanidine for the treatment of neuroblastoma. Nucl Med Biol 2009; 35 Suppl 1:S35-48. [PMID: 18707633 DOI: 10.1016/j.nucmedbio.2008.05.002] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2008] [Revised: 05/01/2008] [Accepted: 05/06/2008] [Indexed: 01/03/2023]
Abstract
INTRODUCTION Neuroblastoma is the most common pediatric extracranial solid cancer. This tumor is characterized by metaiodobenzylguanidine (MIBG) avidity in 90% of cases, prompting the use of radiolabeled MIBG for targeted radiotherapy in these tumors. METHODS The available English language literature was reviewed for original research investigating in vitro, in vivo and clinical applications of radiolabeled MIBG for neuroblastoma. RESULTS MIBG is actively transported into neuroblastoma cells by the norepinephrine transporter. Preclinical studies demonstrate substantial activity of radiolabeled MIBG in neuroblastoma models, with (131)I-MIBG showing enhanced activity in larger tumors compared to (125)I-MIBG. Clinical studies of (131)I-MIBG in patients with relapsed or refractory neuroblastoma have identified myelosuppression as the main dose-limiting toxicity, necessitating stem cell reinfusion at higher doses. Most studies report a response rate of 30-40% with (131)I-MIBG in this population. More recent studies have focused on the use of (131)I-MIBG in combination with chemotherapy or myeloablative regimens. CONCLUSIONS (131)I-MIBG is an active agent for the treatment of patients with neuroblastoma. Future studies will need to define the optimal role of this targeted radiopharmaceutical in the therapy of this disease.
Collapse
Affiliation(s)
- Steven G DuBois
- Department of Pediatrics, UCSF School of Medicine, Box 0106, San Francisco, CA 94143-0106, USA
| | | |
Collapse
|
18
|
Radionuclide therapy. Clin Nucl Med 2006. [DOI: 10.1201/b13348-74] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
19
|
Laverdière C, Cheung NKV, Kushner BH, Kramer K, Modak S, LaQuaglia MP, Wolden S, Ness KK, Gurney JG, Sklar CA. Long-term complications in survivors of advanced stage neuroblastoma. Pediatr Blood Cancer 2005; 45:324-32. [PMID: 15714447 DOI: 10.1002/pbc.20331] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Few studies have assessed late effects in neuroblastoma (NB) survivors, particularly those with advanced stage disease. METHODS Retrospective analysis of a cohort of advanced stage NB survivors followed in a late effect clinic at a single institution. Screening tests to detect late effects were tailored depending on the individual's treatment exposures. RESULTS The study included 63 survivors (31 males). The median age at diagnosis was 3.0 years. The median follow-up from diagnosis was 7.06 years. All patients had surgery and received chemotherapy, 89% received radiation therapy (RT), 62% immunotherapy, and 56% autologous stem cell transplant. Late complications were detected in 95% of survivors and included: hearing loss (62%), primary hypothyroidism (24%), ovarian failure (41% of females), musculoskeletal (19%), and pulmonary (19%) abnormalities. The majority of complications were moderate, with only 4% being life-threatening. Survivors who received cisplatin were at greater risk to develop hearing loss compared to those not so treated (OR 9.74; 95% CI: 0.9-101.6). A total dose of cyclophosphamide greater than 7.4 g was associated with ovarian failure (P = 0.02). CONCLUSIONS Late complications occur frequently in survivors of advanced stage NB. The majority of these problems are of mild-moderate severity. Long-term follow-up (LFTU) and screening of this population is essential.
Collapse
Affiliation(s)
- Caroline Laverdière
- Department of Pediatrics, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10021, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
van Santen HM, de Kraker J, van Eck BLF, de Vijlder JJM, Vulsma T. Improved radiation protection of the thyroid gland with thyroxine, methimazole, and potassium iodide during diagnostic and therapeutic use of radiolabeled metaiodobenzylguanidine in children with neuroblastoma. Cancer 2003; 98:389-96. [PMID: 12872361 DOI: 10.1002/cncr.11523] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND During radiolabeled metaiodobenzylguanidine (MIBG) administration in children with neuroblastoma, the thyroid is protected from (123/131)I uptake by potassium iodide. Despite this protection, up to 64% of patients develop thyroid dysfunction. The authors introduce a new method of radiation protection for the thyroid gland. METHODS In a prospective cohort study, 34 children with neuroblastoma who received MIBG were given thyroxine, methimazole, and potassium iodide for protection of the thyroid gland. Protection started 1 day before the start of diagnostic 123I-MIBG and was continued until 4 weeks after the last therapeutic 131I-MIBG dose. Follow-up measurements were performed every 3 months after the protection was stopped. Visualization of the thyroid on MIBG images was reviewed by three nuclear medicine physicians. Results were compared with a historic control group of children who had received potassium iodide for thyroid protection during MIBG administration. RESULTS After a mean follow-up of 19 months, there were 23 evaluable patients. Thyroid function was normal in 86% of survivors compared with 44% of children in the historic control group (P=0.011; Pearson chi-square test). Scintigraphic visualization of the thyroid diminished substantially after the new protection (21.5% vs. 5.3%, respectively; P=0.000). CONCLUSIONS The results of the current study indicate that compared with potassium iodide alone, combined thyroxine, methimazole, and potassium iodide protect the thyroid more effectively against radiation damage from (123/131)I during diagnostic and therapeutic MIBG administration in children with neuroblastoma.
Collapse
Affiliation(s)
- Hanneke M van Santen
- Department of Pediatric Endocrinology, Emma Children's Hospital, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
21
|
Garaventa A, Gambini C, Villavecchia G, Di Cataldo A, Bertolazzi L, Pizzitola MR, De Bernardi B, Haupt R. Second malignancies in children with neuroblastoma after combined treatment with 131I-metaiodobenzylguanidine. Cancer 2003; 97:1332-8. [PMID: 12599242 DOI: 10.1002/cncr.11167] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND (131)I-metaiodobenzylguanidine ((131)I-MIBG) is selectively taken up by cells of neural crest origin, allowing targeted radiotherapy of tumors such as neuroblastoma (NB) and pheochromocytoma. Radiotherapy may provide additional benefits in the treatment of NB, with moderate side effects such as hematologic and thyroid toxicity. However, with longer follow-up, other complications might occur. We describe our experience with second cancers occurring in children treated with (131)I-MIBG and chemotherapy. METHODS The clinical records of 119 consecutive NB cases treated with (131)I-MIBG at a single institution between 1984 and 2001 were reviewed for the occurrence of a second malignant neoplasm (SMN). RESULTS Overall, five cases of SMN occurred in the study patients. In particular, two cases of myeloid leukemia, one of angiomatous fibrous histiocytoma, one of malignant schwannoma, and one case of rhabdomyosarcoma were detected. The schwannoma and the rhabdomyosarcoma developed within the residual neuroblastic mass after first-line therapy. CONCLUSIONS Should (131)I-MIBG treatment become more broadly employed in the therapeutic strategy for neuroblastoma, the risk of second cancer will have to be taken into consideration. The organization of an international registry of subjects treated with (131)I-MIBG might better define the frequency and features of second malignancies following this radiometabolic approach.
Collapse
Affiliation(s)
- Alberto Garaventa
- Department of Pediatric Hematology/Oncology, G. Gaslini Children's Hospital, Genova, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
van Santen HM, de Kraker J, van Eck BLF, de Vijlder JJM, Vulsma T. High incidence of thyroid dysfunction despite prophylaxis with potassium iodide during (131)I-meta-iodobenzylguanidine treatment in children with neuroblastoma. Cancer 2002; 94:2081-9. [PMID: 11932913 DOI: 10.1002/cncr.10447] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
BACKGROUND Treatment modalities like targeted radiotherapy with (131)I-meta-iodobenzylguanidine ((131)I-MIBG) improve survival rates after neuroblastoma (NB). Radiation to the thyroid gland can lead to hypothyroidism and even malignancy. Because hypothyroidism after (131)I-MIBG treatment was reported, the current KI prophylaxis against thyroidal radiation damage was evaluated. METHODS The incidence, pathogenesis, and consequences of thyroid dysfunction among 42 NB patients treated with (131)I-MIBG were evaluated retrospectively. Efficacy of KI prophylaxis was established by measuring thyroidal radioiodide uptake. Thyroid damage was expressed as thyrotropin elevation (TE, plasma concentration of thyroid stimulating hormone > or = 4.5 mU/L). RESULTS The mean followup was 2.3 years (range, 0.1-8.5). The mean number of treatments with (131)I-MIBG was 3.3. Of 428 scintigrams, uptake of (131)I in the thyroid was visible in 92 (21.0%). Twenty two patients (52.4 %) presented TE after a mean period of 1.4 years (range, 0.1-5.8). Clinical signs of hypothyroidism were not observed. Eight patients received suppletion therapy with thyroxine. Thyrotropin elevation was transient in four patients. Of 25 survivors, with a mean followup of 3.5 years, 16 (64%) developed TE. No correlation was found between TE and thyroid visualization after (131)I-MIBG administration or the number of treatments. No abnormalities were seen by ultrasound imaging of the thyroid. CONCLUSIONS Occurrence of thyroid dysfunction after treatment with (131)I-MIBG for NB is high, in spite of KI prophylaxis. Close followup of thyroid function and structure is required in patients treated with (131)I-MIBG. New ways of protecting the thyroid during exposure to radioiodine should be developed.
Collapse
Affiliation(s)
- Hanneke M van Santen
- Department of Pediatric Endocrinology, Emma Children's Hospital, Academic Medical Center G8-205, University of Amsterdam, 1100 DE Amsterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
23
|
Brans B, Monsieurs M, Laureys G, Kaufman JM, Thierens H, Dierckx RA. Thyroidal uptake and radiation dose after repetitive I-131-MIBG treatments: influence of potassium iodide for thyroid blocking. MEDICAL AND PEDIATRIC ONCOLOGY 2002; 38:41-6. [PMID: 11835235 DOI: 10.1002/mpo.1261] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND In I-131-MIBG therapy, I-131-iodide can be released from the I-131-MIBG molecule. Hypothyroidism might result from the undesirable irradiation of the thyroid gland. To prevent this, stable iodide such as potassium iodide (KI) is given to oversaturate the thyroid before I-131-MIBG is administered. PROCEDURE In the present study, the incidence of hypothyroidism (elevated TSH) was correlated with the thyroidal uptake of I-131 and dose (MIRD dosimetry) after 35 individual treatments in ten patients. Iodine-131-MIBG therapy was performed using a modified dosage of 1.9-11.1 GBq (50-300 mCi) IV. Premedication with KI was done as recommended with a dose of 100 mg KI orally from 2 days before until 4 weeks after I-131-MIBG. RESULTS The absorbed thyroidal dose amounted to a very variable range of 0.2 (patient # 1) up to 30.0 (patient 3) Gy with 7.1 +/- 7.9 Gy per treatment and 24.1+/- 19.2 Gy per patient (mean+/- SD), despite the same and compliantly taken KI premedication protocol. Up to now, 4/10 or 40% of patients have developed hypothyroidism after a mean follow-up period of 11 months and a mean total administered dose of 18.7 GBq (505 mCi). A trend towards higher thyroidal doses was seen in the hypothyroid patients. CONCLUSIONS This study observes a general high inter- and intra-individual variability in radio-iodide uptake in the thyroid after I-131-MIBG therapy despite KI premedication, as well as possible occurrence of hypothyroidism. A dose-response relationship needs confirmation on a larger cohort of patients to reach statistical value. An alternative thyroid cytoprotection strategy for possible long-term survivors may be considered.
Collapse
Affiliation(s)
- Boudewija Brans
- Division of Nuclear Medicine, Ghent University Hospital, Belgium.
| | | | | | | | | | | |
Collapse
|
24
|
Dahllöf G, Borgström P, Lundell G, Jacobsson H, Kogner P. Severe oral mucositis after therapeutic administration of [131I]MIBG in a child with neuroblastoma. ORAL SURGERY, ORAL MEDICINE, ORAL PATHOLOGY, ORAL RADIOLOGY, AND ENDODONTICS 2001; 92:420-3. [PMID: 11598577 DOI: 10.1067/moe.2001.101804] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
OBJECTIVE The purpose of this report is to document a newly encountered oral side effect of targeted radiotherapy with iodine 131-metaiodobenzylguanidine ([(131)I]MIBG) in the treatment of neuroblastoma. STUDY DESIGN A 14-month-old girl was diagnosed with stage 4 neuroblastoma. After completion of chemotherapy, the tumor showed no signs of regression; treatment with 3700 MBq [(131)I]MIBG was therefore decided on, 8 months after diagnosis. RESULTS Fourteen days after infusion of MIBG, severe oral mucositis was diagnosed, with a generalized erythema involving the mucous membranes of the hard and soft palate, buccal mucosa, and upper and lower lips. The gingiva exhibited a general linear erythema. CONCLUSIONS Visualization of the salivary glands on [(123)I]MIBG images suggests that accumulation of radiolabeled MIBG in the salivary glands may be related to sympathetic innervation.
Collapse
Affiliation(s)
- G Dahllöf
- Department of Pediatric Dentistry, School of Dentistry, Karolinska Institutet, Huddinge, Sweden
| | | | | | | | | |
Collapse
|
25
|
Abstract
Advances in surgical techniques, radiotherapy and chemotherapy have led to improved survival for children with solid tumours and leukaemia. However, the treatment has also resulted in increased side effects both in the short and long term. This article outlines the complications which may arise as a result of treatment under the headings of surgery; chemotherapy; radiotherapy; organ specific complications; infection and graft-v-host disease.
Collapse
Affiliation(s)
- J R MacKenzie
- Royal Hospital for Sick Children, Yorkhill, Glasgow G3 8SJ, UK
| |
Collapse
|
26
|
Tepmongkol S, Heyman S. 131I MIBG therapy in neuroblastoma: mechanisms, rationale, and current status. MEDICAL AND PEDIATRIC ONCOLOGY 1999; 32:427-31; discussion 432. [PMID: 10358701 DOI: 10.1002/(sici)1096-911x(199906)32:6<427::aid-mpo6>3.0.co;2-t] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
131I MIBG has been used as palliative treatment of neuroblastoma patients with recurrent or persistent disease who failed other modalities of treatment. Since the results were promising, the concept arose of using it in conjunction with other modalities, either as an up-front treatment or as combination therapy. This article reviews the principle of 131I MIBG treatment, in conjunction with other modalities currently used for the treatment of neuroblastoma, in an attempt to improve the final outcome.
Collapse
Affiliation(s)
- S Tepmongkol
- Department of Radiology, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn's Memorial Hospital, Bangkok, Thailand.
| | | |
Collapse
|
27
|
Abstract
The impact of recently intensified and novel therapies for the treatment of childhood cancer has been an increased number of survivors and an increase in the number of treatment complications among survivors. Thus, it is important for the primary care practitioner to be aware of not only acute but chronic complications of therapy, including the possibility of second malignancies. Long-term follow-up is essential, and continuous education of patients and health care personnel is an important aspect for the complete success of treatment. Primary care practitioners also need to incorporate other subspecialties in the management of these patients to ensure that they receive complete evaluation and treatment.
Collapse
Affiliation(s)
- M Grossi
- School of Medicine and Biomedical Sciences, State University of New York at Buffalo, USA.
| |
Collapse
|
28
|
|
29
|
Affiliation(s)
- S Meller
- Children's Department, Royal Marsden NHS Trust, Surrey
| |
Collapse
|