1
|
Andrieu C, Loiseau L, Vergnes A, Gagnot S, Barré R, Aussel L, Collet JF, Ezraty B. Salmonella Typhimurium uses the Cpx stress response to detect N-chlorotaurine and promote the repair of oxidized proteins. Proc Natl Acad Sci U S A 2023; 120:e2215997120. [PMID: 36976766 PMCID: PMC10083560 DOI: 10.1073/pnas.2215997120] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 03/01/2023] [Indexed: 03/29/2023] Open
Abstract
The cell envelope of gram-negative bacteria constitutes the first protective barrier between a cell and its environment. During host infection, the bacterial envelope is subjected to several stresses, including those induced by reactive oxygen species (ROS) and reactive chlorine species (RCS) produced by immune cells. Among RCS, N-chlorotaurine (N-ChT), which results from the reaction between hypochlorous acid and taurine, is a powerful and less diffusible oxidant. Here, using a genetic approach, we demonstrate that Salmonella Typhimurium uses the CpxRA two-component system to detect N-ChT oxidative stress. Moreover, we show that periplasmic methionine sulfoxide reductase (MsrP) is part of the Cpx regulon. Our findings demonstrate that MsrP is required to cope with N-ChT stress by repairing N-ChT-oxidized proteins in the bacterial envelope. By characterizing the molecular signal that induces Cpx when S. Typhimurium is exposed to N-ChT, we show that N-ChT triggers Cpx in an NlpE-dependent manner. Thus, our work establishes a direct link between N-ChT oxidative stress and the envelope stress response.
Collapse
Affiliation(s)
- Camille Andrieu
- Aix-Marseille University, CNRS, Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée, 13402Marseille, France
| | - Laurent Loiseau
- Aix-Marseille University, CNRS, Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée, 13402Marseille, France
| | - Alexandra Vergnes
- Aix-Marseille University, CNRS, Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée, 13402Marseille, France
| | - Séverine Gagnot
- Aix-Marseille University, CNRS, Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée, 13402Marseille, France
| | - Romain Barré
- Institut de Microbiologie de la Méditerranée, Plate-forme Transcriptomique, 13402Marseille, France
| | - Laurent Aussel
- Aix-Marseille University, CNRS, Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée, 13402Marseille, France
| | | | - Benjamin Ezraty
- Aix-Marseille University, CNRS, Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée, 13402Marseille, France
| |
Collapse
|
2
|
Park J, Kim J, Hwang S, Oh D, Du YE, Nam SJ, Park HG, Lee MJ, Oh DC. Sadopeptins A and B, Sulfoxide- and Piperidone-Containing Cyclic Heptapeptides with Proteasome Inhibitory Activity from a Streptomyces sp. JOURNAL OF NATURAL PRODUCTS 2023; 86:612-620. [PMID: 36921317 DOI: 10.1021/acs.jnatprod.2c00978] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
New sulfur-bearing natural products, sadopeptins A and B (1 and 2), were discovered from Streptomyces sp. YNK18 based on a targeted search using the characteristic isotopic signature of sulfur in mass spectrometry analysis. Compounds 1 and 2 were determined to be new cyclic heptapeptides, bearing methionine sulfoxide [Met(O)] and 3-amino-6-hydroxy-2-piperidone (Ahp), based on 1D and 2D NMR spectroscopy along with IR, UV, and MS. The configurations of sadopeptins A and B (1 and 2) were established via the analysis of the ROESY NMR correlation, oxidation, Marfey's method, and circular dichroism (CD) spectroscopy. The bioinformatics analysis of the full Streptomyces sp. YNK18 genome identified a nonribosomal peptide synthetase (NRPS) biosynthetic gene cluster (BGC), and a putative biosynthetic pathway is proposed. Sadopeptins A and B displayed proteasome-inhibitory activity without affecting cellular autophagic flux.
Collapse
Affiliation(s)
- Jiyoon Park
- Natural Products Research Institute, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Jiseong Kim
- Department of Biomedical Sciences, College of Medicine, Seoul National University, 103 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea
| | - Sunghoon Hwang
- Natural Products Research Institute, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Daehyun Oh
- Research Institute of Pharmaceutical Sciences and College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Young Eun Du
- Natural Products Research Institute, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Sang-Jip Nam
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Hyeung-Geun Park
- Research Institute of Pharmaceutical Sciences and College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Min Jae Lee
- Department of Biomedical Sciences, College of Medicine, Seoul National University, 103 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea
| | - Dong-Chan Oh
- Natural Products Research Institute, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| |
Collapse
|
3
|
Hazra A, Varshney V, Verma P, Kamble NU, Ghosh S, Achary RK, Gautam S, Majee M. Methionine sulfoxide reductase B5 plays a key role in preserving seed vigor and longevity in rice (Oryza sativa). THE NEW PHYTOLOGIST 2022; 236:1042-1060. [PMID: 35909309 DOI: 10.1111/nph.18412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
Oxidation of methionine leads to the formation of methionine S-sulfoxide and methionine R-sulfoxide, which can be reverted by two types of methionine sulfoxide reductase (MSR): MSRA and MSRB. Though the role of MSR enzymes has been elucidated in various physiological processes, the regulation and role of MSR in seeds remains poorly understood. In this study, through molecular, biochemical, and genetic studies using seed-specific overexpression and RNAi lines of OsMSRB5 in Oryza sativa, we demonstrate the role of OsMSRB5 in maintaining seed vigor and longevity. We show that an age-induced reduction in the vigor and viability of seeds is correlated with reduced MSR activity and increased methionine sulfoxide (MetSO) formation. OsMSRB5 expression increases during seed maturation and is predominantly localized to the embryo. Further analyses on transgenic lines reveal the role of OsMSRB5 in modulating reactive oxygen species (ROS) homeostasis to preserve seed vigor and longevity. We show that ascorbate peroxidase and PROTEIN l-ISOASPARTYL METHYLTRANSFERASE undergo MetSO modification in seeds that affects their functional competence. OsMSRB5 physically interacts with these proteins and reverts this modification to facilitate their functions and preserve seed vigor and longevity. Our results thus illustrate the role of OsMSRB5 in preserving seed vigor and longevity by modulating ROS homeostasis in seeds.
Collapse
Affiliation(s)
- Abhijit Hazra
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Vishal Varshney
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Pooja Verma
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Nitin Uttam Kamble
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Shraboni Ghosh
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Rakesh Kumar Achary
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Shikha Gautam
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Manoj Majee
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| |
Collapse
|
4
|
Smythe P, Efthimiou G. In Silico Genomic and Metabolic Atlas of Limosilactobacillus reuteri DSM 20016: An Insight into Human Health. Microorganisms 2022; 10:microorganisms10071341. [PMID: 35889060 PMCID: PMC9320016 DOI: 10.3390/microorganisms10071341] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 11/23/2022] Open
Abstract
Probiotics are bacterial strains that are known to provide host health benefits. Limosilactobacillus reuteri is a well-documented lactic acid bacterium that has been cultured from numerous human sites. The strain investigated was L. reuteri DSM 20016, which has been found to produce useful metabolites. The strain was explored using genomic and proteomic tools, manual searches, and databases, including KEGG, STRING, BLAST Sequence Similarity Search, and UniProt. This study located over 200 key genes that were involved in human health benefit pathways. L. reuteri DSM 20016 has metabolic pathways to produce acetate, propionate, and lactate, and there is evidence of a pathway for butanoate production through a FASII mechanism. The bacterium produces histamine through the hdc operon, which may be able to suppress proinflammatory TNF, and the bacterium also has the ability to synthesize folate and riboflavin, although whether they are secreted is yet to be explored. The strain can bind to human Caco2 cells through srtA, mapA/cnb, msrB, and fbpA and can compete against enteric bacteria using reuterin, which is an antimicrobial that induces oxidative stress. The atlas could be used for designing metabolic engineering approaches to improve beneficial metabolite biosynthesis and better probiotic-based cures.
Collapse
Affiliation(s)
- Paisleigh Smythe
- Centre for Atherothrombosis and Metabolic Disease, Hull York Medical School, Castle Hill Hospital, Daisy Building, Hull HU16 5JQ, UK;
| | - Georgios Efthimiou
- Department of Biomedical and Forensic Sciences, University of Hull, Cottingham Road, Hardy Building, Hull HU6 7RX, UK
- Correspondence: ; Tel.: +44-(0)1482-465970
| |
Collapse
|
5
|
Pale S, Neteydji S, Taiwe GS, Kouemou Emegam N, Bum EN. Anticonvulsant effects of Cymbopogon giganteus extracts with possible effects on fully kindled seizures and anxiety in experimental rodent model of mesio-temporal epilepsy induced by pilocarpine. JOURNAL OF ETHNOPHARMACOLOGY 2022; 286:114863. [PMID: 34838617 DOI: 10.1016/j.jep.2021.114863] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/06/2021] [Accepted: 11/21/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Epilepsy is a neurological disorder of the brain characterized by periodic and unpredictable occurrence of a transient behavior alteration due to the rhythmic, synchronous and disordered firing of brain neuron. Worldwide, approximately 50 million people currently live with epilepsy and close to 80% of people with epilepsy live in poor countries. However, it was noticed in many countries worldwide that people with epilepsy and their families suffer from stigma and discrimination and that situation exposes them to high psychological conditions such as depression and anxiety as well as more physical problems including bruising and fractures from injuries related to seizures. However, several plants-based products used for epilepsy and anxiety treatments in different system of folk medicine have exhibited a significant anti-epileptic and antianxiety activities using animal models with fewer side effects. AIM OF THE STUDY The study aimed at evaluating the antiepileptic, status post-epilepticus and anxiolytic effects of Cymbopogon giganteus decoction in rat model induced by pilocarpine. MATERIALS AND METHODS A total of 90 rats were partitioned into 7 groups and treated as follow: animals of groups I (normal control) and II (considered the negative control) received distilled water (10 mL/kg); while groups III, IV, V, and VI were treated with the C. giganteus extract at 34, 85, 170 and 340 mg/kg p.o, respectively; and the group VII (considered positive control) received sodium valproate at 300 mg/kg, i.p. After 40 min post-treatment, a single dose of n-methyl-scopolamine (1 mg/kg, i.p) was administered to animals of groups (II, III, IV, V, VI, VII) followed by pilocarpine (360 mg/kg, i.p). Animal of group I (normal group) received distilled water. Rats were further observed for 6 h to evaluate the severity and the duration of the acute seizures of epilepsy according to Racine scale. Anxious behavior status post-epilepticus was also assessed in the same rats used above in the Elevated Plus Maze and number of entries into the open or closed arms and the time spent on either open or closed arms of the platform were recorded. Animals were also evaluated on Open Field Test and the number of rearing, crossing, grooming, defecation and center time were registered. RESULTS C. giganteus decoction significantly (P < 0.05) reduced the animal mortality, the number and duration of convulsions and effectively increased the latency of convulsions. The plant extract significantly (P < 0.05) improved GSH level and SOD activity, reduced MDA and CAT activity, increased GABA level and decreased GABA-t activity in hippocampus. The anxiety induced by pilocarpine was also significantly (P < 0.05) inhibited by the extract of the plant. CONCLUSIONS Thus, C. giganteus has demonstrated its antiepileptic and anxiolytic activities in rat model and may be used as preventive measure for patients suffering from epilepsy seizures and anxiety.
Collapse
Affiliation(s)
- Simon Pale
- Department of Zoology and Animal Physiology, Faculty of Science, University of Buea, Cameroon.
| | - Sidiki Neteydji
- Department of Biological Sciences, Faculty of Science, University of Ngaoundere, Cameroon
| | - Germain Sotoing Taiwe
- Department of Zoology and Animal Physiology, Faculty of Science, University of Buea, Cameroon
| | - Nadège Kouemou Emegam
- Department of Zoology and Animal Physiology, Faculty of Science, University of Buea, Cameroon
| | - Elisabeth Ngo Bum
- Department of Biological Sciences, Faculty of Science, University of Maroua, Cameroon
| |
Collapse
|
6
|
dos Santos CI, Campos CDL, Nunes-Neto WR, do Carmo MS, Nogueira FAB, Ferreira RM, Costa EPS, Gonzaga LF, Araújo JMM, Monteiro JM, Monteiro CRAV, Platner FS, Figueiredo IFS, Holanda RA, Monteiro SG, Fernandes ES, Monteiro AS, Monteiro-Neto V. Genomic Analysis of Limosilactobacillus fermentum ATCC 23271, a Potential Probiotic Strain with Anti- Candida Activity. J Fungi (Basel) 2021; 7:794. [PMID: 34682216 PMCID: PMC8537286 DOI: 10.3390/jof7100794] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 09/10/2021] [Accepted: 09/20/2021] [Indexed: 01/20/2023] Open
Abstract
Limosilactobacillus fermentum (ATCC 23271) was originally isolated from the human intestine and has displayed antimicrobial activity, primarily against Candida species. Complete genome sequencing and comparative analyses were performed to elucidate the genetic basis underlying its probiotic potential. The ATCC 23271 genome was found to contain 2,193,335 bp, with 2123 protein-coding sequences. Phylogenetic analysis revealed that the ATCC 23271 strain shares 941 gene clusters with six other probiotic strains of L. fermentum. Putative genes known to confer probiotic properties have been identified in the genome, including genes related to adhesion, tolerance to acidic pH and bile salts, tolerance to oxidative stress, and metabolism and transport of sugars and other compounds. A search for bacteriocin genes revealed a sequence 48% similar to that of enterolysin A, a protein from Enterococcus faecalis. However, in vitro assays confirmed that the strain has inhibitory activity on the growth of Candida species and also interferes with their adhesion to HeLa cells. In silico analyses demonstrated a high probability of the protein with antimicrobial activity. Our data reveal the genome features of L. fermentum ATCC 23271, which may provide insight into its future use given the functional benefits, especially against Candida infections.
Collapse
Affiliation(s)
- Camilla I. dos Santos
- Rede de Biodiversidade e Biotecnologia da Amazônia Legal, BIONORTE, São Luís 65055-310, MA, Brazil; (C.I.d.S.); (W.R.N.-N.); (E.P.S.C.)
| | - Carmem D. L. Campos
- Laboratório de Microbiologia Aplicada, Universidade CEUMA, São Luís 65075-120, MA, Brazil; (C.D.L.C.); (R.M.F.); (L.F.G.); (J.M.M.A.); (J.M.M.); (R.A.H.); (A.S.M.)
| | - Wallace R. Nunes-Neto
- Rede de Biodiversidade e Biotecnologia da Amazônia Legal, BIONORTE, São Luís 65055-310, MA, Brazil; (C.I.d.S.); (W.R.N.-N.); (E.P.S.C.)
| | - Monique S. do Carmo
- Centro de Ciências Biológicas e da Saúde, Universidade Federal do Maranhão, São Luís 65080-805, MA, Brazil; (M.S.d.C.); (F.A.B.N.); (C.R.A.V.M.); (S.G.M.)
| | - Flávio A. B. Nogueira
- Centro de Ciências Biológicas e da Saúde, Universidade Federal do Maranhão, São Luís 65080-805, MA, Brazil; (M.S.d.C.); (F.A.B.N.); (C.R.A.V.M.); (S.G.M.)
| | - Rômulo M. Ferreira
- Laboratório de Microbiologia Aplicada, Universidade CEUMA, São Luís 65075-120, MA, Brazil; (C.D.L.C.); (R.M.F.); (L.F.G.); (J.M.M.A.); (J.M.M.); (R.A.H.); (A.S.M.)
| | - Ennio P. S. Costa
- Rede de Biodiversidade e Biotecnologia da Amazônia Legal, BIONORTE, São Luís 65055-310, MA, Brazil; (C.I.d.S.); (W.R.N.-N.); (E.P.S.C.)
| | - Laoane F. Gonzaga
- Laboratório de Microbiologia Aplicada, Universidade CEUMA, São Luís 65075-120, MA, Brazil; (C.D.L.C.); (R.M.F.); (L.F.G.); (J.M.M.A.); (J.M.M.); (R.A.H.); (A.S.M.)
| | - Jéssica M. M. Araújo
- Laboratório de Microbiologia Aplicada, Universidade CEUMA, São Luís 65075-120, MA, Brazil; (C.D.L.C.); (R.M.F.); (L.F.G.); (J.M.M.A.); (J.M.M.); (R.A.H.); (A.S.M.)
| | - Joveliane M. Monteiro
- Laboratório de Microbiologia Aplicada, Universidade CEUMA, São Luís 65075-120, MA, Brazil; (C.D.L.C.); (R.M.F.); (L.F.G.); (J.M.M.A.); (J.M.M.); (R.A.H.); (A.S.M.)
| | - Cinara Regina A. V. Monteiro
- Centro de Ciências Biológicas e da Saúde, Universidade Federal do Maranhão, São Luís 65080-805, MA, Brazil; (M.S.d.C.); (F.A.B.N.); (C.R.A.V.M.); (S.G.M.)
| | - Fernanda S. Platner
- Faculdades Pequeno Príncipe, FPP, Curitiba 80230-020, PR, Brazil; (F.S.P.); (I.F.S.F.); (E.S.F.)
- Instituto de Pesquisa Pelé Pequeno Príncipe, IPPPP, Curitiba 80250-060, PR, Brazil
| | - Isabella F. S. Figueiredo
- Faculdades Pequeno Príncipe, FPP, Curitiba 80230-020, PR, Brazil; (F.S.P.); (I.F.S.F.); (E.S.F.)
- Instituto de Pesquisa Pelé Pequeno Príncipe, IPPPP, Curitiba 80250-060, PR, Brazil
| | - Rodrigo A. Holanda
- Laboratório de Microbiologia Aplicada, Universidade CEUMA, São Luís 65075-120, MA, Brazil; (C.D.L.C.); (R.M.F.); (L.F.G.); (J.M.M.A.); (J.M.M.); (R.A.H.); (A.S.M.)
| | - Silvio G. Monteiro
- Centro de Ciências Biológicas e da Saúde, Universidade Federal do Maranhão, São Luís 65080-805, MA, Brazil; (M.S.d.C.); (F.A.B.N.); (C.R.A.V.M.); (S.G.M.)
| | - Elizabeth S. Fernandes
- Faculdades Pequeno Príncipe, FPP, Curitiba 80230-020, PR, Brazil; (F.S.P.); (I.F.S.F.); (E.S.F.)
- Instituto de Pesquisa Pelé Pequeno Príncipe, IPPPP, Curitiba 80250-060, PR, Brazil
| | - Andrea S. Monteiro
- Laboratório de Microbiologia Aplicada, Universidade CEUMA, São Luís 65075-120, MA, Brazil; (C.D.L.C.); (R.M.F.); (L.F.G.); (J.M.M.A.); (J.M.M.); (R.A.H.); (A.S.M.)
| | - Valério Monteiro-Neto
- Rede de Biodiversidade e Biotecnologia da Amazônia Legal, BIONORTE, São Luís 65055-310, MA, Brazil; (C.I.d.S.); (W.R.N.-N.); (E.P.S.C.)
- Centro de Ciências Biológicas e da Saúde, Universidade Federal do Maranhão, São Luís 65080-805, MA, Brazil; (M.S.d.C.); (F.A.B.N.); (C.R.A.V.M.); (S.G.M.)
| |
Collapse
|
7
|
Peng T, Cheng X, Chen Y, Yang J. Sulfoxide Reductases and Applications in Biocatalytic Preparation of Chiral Sulfoxides: A Mini-Review. Front Chem 2021; 9:714899. [PMID: 34490206 PMCID: PMC8417374 DOI: 10.3389/fchem.2021.714899] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 07/15/2021] [Indexed: 11/27/2022] Open
Abstract
Chiral sulfoxides are valuable organosulfur compounds that have been widely used in medicinal and organic synthesis. Biocatalytic approaches for preparing chiral sulfoxides were developed in the past few years, mainly through asymmetric oxidation of prochiral sulfides. Recently, the application of sulfoxide reductase to prepare chiral sulfoxides through kinetic resolution has emerged as a new method, exhibiting extraordinary catalytic properties. This article reviews the chemical and biological functions of these sulfoxide reductases and highlights their applications in chiral sulfoxide preparation.
Collapse
Affiliation(s)
- Tao Peng
- Department of Biochemistry, Zunyi Medical University, Zunyi, China
| | - Xiaoling Cheng
- Department of Biochemistry, Zunyi Medical University, Zunyi, China
| | - Yongzheng Chen
- Key Laboratory of Biocatalysis and Chiral Drug Synthesis of Guizhou Province, Zunyi Medical University, Zunyi, China
| | - Jiawei Yang
- Department of Biochemistry, Zunyi Medical University, Zunyi, China.,Key Laboratory of Biocatalysis and Chiral Drug Synthesis of Guizhou Province, Zunyi Medical University, Zunyi, China
| |
Collapse
|
8
|
Karuppasamy P, Thiruppathi D, Sundar JV, Ganesan M, Rajendran T, Meena SS, Rajagopal S, Sivasubramanian VK, Rajapandian V. Insight into structural aspects and study of reaction kinetics of model [oxo(salen)iron(IV)] complexes with dipeptides. Polyhedron 2021. [DOI: 10.1016/j.poly.2020.114952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
9
|
Novel insights into plasma biomarker candidates in patients with chronic mountain sickness based on proteomics. Biosci Rep 2021; 41:227462. [PMID: 33393624 PMCID: PMC7816071 DOI: 10.1042/bsr20202219] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 12/22/2020] [Accepted: 12/24/2020] [Indexed: 12/16/2022] Open
Abstract
Chronic mountain sickness (CMS) is a progressive incapacitating syndrome induced by lifelong exposure to hypoxia. In the present study, proteomic analysis was used to identify the differentially expressed proteins (DEPs) and then evaluate the potential plasma biomarkers between CMS and non-CMS groups. A total of 145 DEPs were detected in CMS Han Chinese people who live in the plateau (CMS-HPu), among which 89 were significantly up-regulated and 56 were significantly down-regulated. GO enrichment analysis showed that various biological processes were enriched, including the hydrogen peroxide metabolic/catabolic process, reactive oxygen species (ROS) metabolic, and acute inflammatory response. Protein–protein interaction analysis showed that antioxidant activity, the hydrogen peroxide catabolic process and peroxidase activity were primarily mapped in interaction proteins. Nine modules showed significantly clustering based on WGCNA analysis, with two being the most significant, and GO analysis showed that proteins of both modules were primarily enriched in oxidative stress-related biological processes. Four DEPs increased in CMS patients were evaluated as the candidate biomarkers, and three showed significant AUC: hemoglobin β chain (HB-β), thioredoxin-1 (TRX1), and phosphoglycerate kinase 1 (PGK1). The present study provides insights into the pathogenesis of CMS and further evaluates the potentially biomarkers for its prevention and treatment of it.
Collapse
|
10
|
Liu YC, Lu JJ, Lin LC, Lin HC, Chen CJ. Protein Biomarker Discovery for Methicillin-Sensitive, Heterogeneous Vancomycin-Intermediate and Vancomycin-Intermediate Staphylococcus aureus Strains Using Label-Free Data-Independent Acquisition Proteomics. J Proteome Res 2020; 20:164-171. [PMID: 33058664 DOI: 10.1021/acs.jproteome.0c00134] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Rapid identification of methicillin-sensitive Staphylococcus aureus (MSSA), heterogeneous vancomycin-intermediate S. aureus (hVISA), and vancomycin-intermediate S. aureus (VISA) is important for accurate treatment, timely intervention, and prevention of outbreaks. Here, 90 S. aureus isolates were analyzed for protein biomarker discovery, including MSSA, vancomycin-susceptible S. aureus (VSSA), hVISA, and VISA strains. Label-free data-independent acquisition proteomics was used to identify protein biomarkers that allow for discrimination among MSSA, hVISA, and VISA strains. There were 8786 nonredundant peptides identified, corresponding to 418 different annotated nonredundant proteins. Two VISA protein biomarkers, two hVISA protein biomarkers, and one MSSA protein biomarker with high sensitivities and specificities were discovered and verified. Data are available via MassIVE with identifier MSV000085776.
Collapse
Affiliation(s)
- Yu-Ching Liu
- Graduate Institute of Integrated Medicine, China Medical University, 91, Hsueh-Shih Rd, Taichung 40402, Taiwan
| | - Jang-Jih Lu
- Department of Laboratory Medicine, Chang Gung Memorial Hospital, Linkou, Taoyuan 33305, Taiwan.,Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Lee-Chung Lin
- Department of Laboratory Medicine, Chang Gung Memorial Hospital, Linkou, Taoyuan 33305, Taiwan
| | - Hsiao-Chuan Lin
- School of Medicine, China Medical University, 91, Hsueh-Shih Rd, Taichung 40402, Taiwan.,Department of Pediatric Infectious Diseases, China Medical University Children's Hospital, Taichung 40447, Taiwan
| | - Chao-Jung Chen
- Graduate Institute of Integrated Medicine, China Medical University, 91, Hsueh-Shih Rd, Taichung 40402, Taiwan.,Proteomics Core Laboratory, Department of Medical Research, China Medical University Hospital, Taichung 404, Taiwan
| |
Collapse
|
11
|
Roman MG, Flores LC, Cunningham GM, Cheng C, Dube S, Allen C, Remmen HV, Bai Y, Hubbard GB, Saunders TL, Ikeno Y. Thioredoxin overexpression in mitochondria showed minimum effects on aging and age-related diseases in male C57BL/6 mice. ACTA ACUST UNITED AC 2020; 2:20-31. [PMID: 35356005 PMCID: PMC8963792 DOI: 10.31491/apt.2020.03.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Objective: In this study, the effects of overexpression of thioredoxin 2 (Trx2) on aging and age-related diseases were examined using Trx2 transgenic mice [Tg(TXN2]+/0]. Because our previous studies demonstrated that thioredoxin (Trx) overexpression in the cytosol (Trx1) did not extend maximum lifespan, this study was conducted to test if increased Trx2 expression in mitochondria shows beneficial effects on aging and age-related pathology. Methods: Trx2 transgenic mice were generated using a fragment of the human genome containing the TXN2 gene. Effects of Trx2 overexpression on survival, age-related pathology, oxidative stress, and redox-sensitive signaling pathways were examined in male Tg(TXN2)+/0 mice. Results: Trx2 levels were significantly higher (approximately 1.6- to 5-fold) in all of the tissues we examined in Tg(TXN2)+/0 mice compared to wild-type (WT) littermates, and the expression levels were maintained during aging (up to 22-24 months old). Trx2 overexpression did not alter the levels of Trx1, glutaredoxin, glutathione, or other major antioxidant enzymes. Overexpression of Trx2 was associated with reduced reactive oxygen species (ROS) production from mitochondria and lower isoprostane levels compared to WT mice. When we conducted the survival study, male Tg(TXN2)+/0 mice showed a slight extension (approximately 8-9%] of mean, median, and 10th percentile lifespans; however, the survival curve was not significantly different from WT mice. Cross-sectional pathological analysis (22-24 months old) showed that Tg(TXN2)+/0 mice had a slightly higher severity of lymphoma; however, tumor burden, disease burden, and severity of glomerulonephritis and inflammation were similar to WT mice. Trx2 overexpression was also associated with higher c-Jun and c-Fos levels; however, mTOR activity and levels of NFκB p65 and p50 were similar to WT littermates. Conclusions: Our findings suggest that the increased levels of Trx2 in mitochondria over the lifespan in Tg(TXN2)+/0 mice showed a slight life-extending effect, reduced ROS production from mitochondria and oxidative damage to lipids, but showed no significant effects on aging and age-related diseases.
Collapse
|
12
|
Discovery and application of methionine sulfoxide reductase B for preparation of (S)-sulfoxides through kinetic resolution. CATAL COMMUN 2020. [DOI: 10.1016/j.catcom.2019.105908] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
13
|
Roman MG, Flores LC, Cunningham GM, Cheng C, Allen C, Hubbard GB, Bai Y, Saunders TL, Ikeno Y. Thioredoxin and aging: What have we learned from the survival studies? AGING PATHOBIOLOGY AND THERAPEUTICS 2020; 2:126-133. [PMID: 35493763 DOI: 10.31491/apt.2020.09.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Our laboratory has conducted the first systematic survival studies to examine the biological effects of the antioxidant protein thioredoxin (Trx) on aging and age-related pathology. Our studies with C57BL/6 mice overexpressing Trx1 [Tg(act-TRX1)+/0 and Tg(TXN)+/0) demonstrated a slight extension in early lifespan compared to wild-type (WT) mice; however, no significant effects were observed in the later part of life. Overexpression of Trx2 in male C57BL/6 mice [Tg(TXN2)+/0] demonstrated a slightly extended lifespan compared to WT mice. The pathology results from two lines of Trx1 transgenic mice showed a slightly higher incidence of age-related neoplastic diseases compared to WT mice, and a slight increase in the severity of lymphoma, a major neoplastic disease, was observed in Trx2 transgenic mice. Together these studies indicate that Trx overexpression in one compartment of the cell (cytosol or mitochondria alone) has marginal beneficial effects on lifespan. On the other hand, down-regulation of Trx in either the cytosol (Trx1KO) or mitochondria (Trx2KO) showed no significant changes in lifespan compared to WT mice, despite several changes in pathophysiology of these knockout mice. When we examined the synergetic effects of overexpressing Trx1 and Trx2, TXNTg x TXN2Tg mice showed a significantly shorter lifespan with accelerated cancer development compared to WT mice. These results suggest that synergetic effects of Trx overexpression in both the cytosol and mitochondria on aging are deleterious and the development of age-related cancer is accelerated. On the other hand, we have recently found that down-regulation of Trx in both the cytosol and mitochondria in Trx1KO x Trx2KO mice has beneficial effects on aging. The results generated from our lab along with our ongoing study using Trx1KO x Trx2KO mice could elucidate the key pathways (i.e., apoptosis and autophagy) that prevent accumulation of damaged cells and genomic instability leading to reduced cancer formation.
Collapse
Affiliation(s)
- Madeline G Roman
- Barshop Institute for Longevity and Aging Studies,The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Lisa C Flores
- Barshop Institute for Longevity and Aging Studies,The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Geneva M Cunningham
- Barshop Institute for Longevity and Aging Studies,The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Christie Cheng
- Barshop Institute for Longevity and Aging Studies,The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Colton Allen
- Barshop Institute for Longevity and Aging Studies,The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Gene B Hubbard
- Barshop Institute for Longevity and Aging Studies,The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.,Department of Pathology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Yidong Bai
- Department of Cell Systems & Anatomy, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Thomas L Saunders
- Transgenic Animal Model Core, University of Michigan, Ann Arbor, MI, USA
| | - Yuji Ikeno
- Barshop Institute for Longevity and Aging Studies,The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.,Department of Pathology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.,Geriatric Research and Education Clinical Center, Audie L. Murphy VA Hospital, South Texas Veterans Health Care System, San Antonio, TX, USA
| |
Collapse
|
14
|
Matanza XM, Osorio CR. Transcriptome changes in response to temperature in the fish pathogen Photobacterium damselae subsp. damselae: Clues to understand the emergence of disease outbreaks at increased seawater temperatures. PLoS One 2018; 13:e0210118. [PMID: 30596794 PMCID: PMC6312309 DOI: 10.1371/journal.pone.0210118] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 12/17/2018] [Indexed: 01/22/2023] Open
Abstract
The marine bacterium Photobacterium damselae subsp. damselae (Pdd) is a generalist and facultative pathogen that causes disease in a wide range of marine animals including fish species of importance in aquaculture. Disease outbreaks in fish farms have been correlated with an increased water temperature during summer months. In this study, we have used RNA sequencing to analyze the transcriptome of Pdd RM-71 cultured at two different temperatures, which simulated temperature conditions experienced during free swimming lifestyle at mid latitudes in winter months (15°C) and during outbreaks in aquaculture in warm summer months (25°C). The enhanced bacterial growth of Pdd observed at 25°C in comparison to 15°C suggests that an elevated seawater temperature contributes to the build-up of a sufficient bacterial population to cause disease. In comparison to growth at 15°C, growth at 25°C resulted in the upregulation of genes involved in DNA synthesis, nutrient uptake, chemotaxis, flagellar motility, secretion systems and antimicrobial resistance. Plasmid-encoded virulence factors, which include a putative adhesin/invasin OmpU, a transferrin receptor and a serum resistance protein, were also upregulated. Transcription factor RpoS, genes involved in cold shock response, modulation of cell envelope and amino acid metabolism, as well as genes of yet unknown function were downregulated at 25°C. Notably, the gene encoding damselysin cytotoxin (Dly) was among the most highly transcribed genes at the two assayed temperatures, at levels comparable to the most highly expressed housekeeping genes. This study contributes to our understanding of the regulatory networks and biology of a generalist marine bacterial pathogen, and provides evidence that temperature regulates multiple physiological and virulence-related functions in Pdd.
Collapse
Affiliation(s)
- Xosé M. Matanza
- Departamento de Microbioloxía e Parasitoloxía, Instituto de Acuicultura, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Carlos R. Osorio
- Departamento de Microbioloxía e Parasitoloxía, Instituto de Acuicultura, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
15
|
Flores LC, Roman MG, Cunningham GM, Cheng C, Dube S, Allen C, Van Remmen H, Hubbard GB, Saunders TL, Ikeno Y. Continuous overexpression of thioredoxin 1 enhances cancer development and does not extend maximum lifespan in male C57BL/6 mice. PATHOBIOLOGY OF AGING & AGE RELATED DISEASES 2018; 8:1533754. [PMID: 30370017 PMCID: PMC6201794 DOI: 10.1080/20010001.2018.1533754] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 08/14/2018] [Accepted: 09/20/2018] [Indexed: 11/23/2022]
Abstract
We examined the effects of continuous overexpression of thioredoxin (Trx) 1 on aging in Trx1 transgenic mice [Tg(TXN)+/0]. This study was conducted to test whether increased thioredoxin expression over the lifespan in mice would alter aging and age-related pathology because our previous study demonstrated that Tg(act-TXN)+/0 mice had no significant maximum life extension, possibly due to the use of actin as a promoter, which may have resulted in loss of Trx1 overexpression during aging. To test this hypothesis, we generated new Trx1 transgenic mice using a fragment of the human genome containing the TXN gene with an endogenous promoter to ensure continuous overexpression of Trx1 throughout the lifespan. Universal overexpression of Trx1 was observed, and Trx1 overexpression was maintained during aging (up to 22–24 months old) in the Tg(TXN)+/0 mice. The levels of Trx1 are significantly higher (approximately 4 to 31 fold) in all of the tissues examined in the Tg(TXN)+/0 mice compared to the wild-type (WT) littermates. The overexpression of Trx1 did not cause any changes in the levels of Trx2, glutaredoxin, glutathione, or other major antioxidant enzymes. The survival study demonstrated that male Tg(TXN)+/0 mice slightly extended the earlier part of the lifespan compared to WT littermates, but no significant life extension was observed over the lifespan. The cross-sectional pathological analysis (22–25 months old) showed that Tg(TXN)+/0 mice had a significantly higher severity of lymphoma and more tumor burden than WT mice, which was associated with the suppression of the apoptosis signal-regulating kinase 1 (ASK1) pathway. Our findings suggest that the increased levels of Trx1 over the lifespan in Tg(TXN)+/0 mice showed some beneficial effects (slight extension of lifespan) in the earlier part of life but had no significant effects on median or maximum lifespans, and increased Trx1 levels enhanced tumor development in old mice.
Collapse
Affiliation(s)
- Lisa C Flores
- Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Madeline G Roman
- Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Geneva M Cunningham
- Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Christie Cheng
- Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Sara Dube
- Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Colton Allen
- Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Holly Van Remmen
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Gene B Hubbard
- Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.,Department of Pathology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Thomas L Saunders
- Transgenic Animal Model Core, University of Michigan, Ann Arbor, MI, USA
| | - Yuji Ikeno
- Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.,Department of Pathology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.,Geriatric Research Education and Clinical Center (GRECC), Audie L. Murphy VA Hospital, South Texas Veterans Health Care System, San Antonio, TX, USA
| |
Collapse
|
16
|
Singh VK, Singh K, Baum K. The Role of Methionine Sulfoxide Reductases in Oxidative Stress Tolerance and Virulence of Staphylococcus aureus and Other Bacteria. Antioxidants (Basel) 2018; 7:antiox7100128. [PMID: 30274148 PMCID: PMC6210949 DOI: 10.3390/antiox7100128] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 09/19/2018] [Accepted: 09/26/2018] [Indexed: 11/18/2022] Open
Abstract
Methionine sulfoxide reductases (MSRA1 and MSRB) are proteins overproduced in Staphylococcus aureus during exposure with cell wall-active antibiotics. Later studies identified the presence of two additional MSRA proteins (MSRA2 and MSRA3) in S. aureus. These MSR proteins have been characterized in many other bacteria as well. This review provides the current knowledge about the conditions and regulatory network that mimic the expression of these MSR encoding genes and their role in defense from oxidative stress and virulence.
Collapse
Affiliation(s)
- Vineet K Singh
- Department of Microbiology and Immunology, A.T. Still University of Health Sciences, Kirksville, MO 63501, USA.
| | | | - Kyle Baum
- Department of Microbiology and Immunology, A.T. Still University of Health Sciences, Kirksville, MO 63501, USA.
| |
Collapse
|
17
|
Thioredoxin overexpression in both the cytosol and mitochondria accelerates age-related disease and shortens lifespan in male C57BL/6 mice. GeroScience 2018; 40:453-468. [PMID: 30121784 DOI: 10.1007/s11357-018-0039-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 08/09/2018] [Indexed: 10/28/2022] Open
Abstract
To investigate the role of increased levels of thioredoxin (Trx) in both the cytosol (Trx1) and mitochondria (Trx2) on aging, we have conducted a study to examine survival and age-related diseases using male mice overexpressing Trx1 and Trx2 (TXNTg × TXN2Tg). Our study demonstrated that the upregulation of Trx in both the cytosol and mitochondria in male TXNTg × TXN2Tg C57BL/6 mice resulted in a significantly shorter lifespan compared to wild-type (WT) mice. Cross-sectional pathology data showed a slightly higher incidence of neoplastic diseases in TXNTg × TXN2Tg mice than WT mice. The incidence of lymphoma, a major neoplastic disease in C57BL/6 mice, was slightly higher in TXNTg × TXN2Tg mice than in WT mice, and more importantly, the severity of lymphoma was significantly higher in TXNTg × TXN2Tg mice compared to WT mice. Furthermore, the total number of histopathological changes in the whole body (disease burden) was significantly higher in TXNTg × TXN2Tg mice compared to WT mice. Therefore, our study suggests that overexpression of Trx in both the cytosol and mitochondria resulted in deleterious effects on aging and accelerated the development of age-related diseases, especially cancer, in male C57BL/6 mice.
Collapse
|
18
|
Molecular Mechanisms Responsible for Increased Vulnerability of the Ageing Oocyte to Oxidative Damage. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:4015874. [PMID: 29312475 PMCID: PMC5664291 DOI: 10.1155/2017/4015874] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 08/03/2017] [Indexed: 12/23/2022]
Abstract
In their midthirties, women experience a decline in fertility, coupled to a pronounced increase in the risk of aneuploidy, miscarriage, and birth defects. Although the aetiology of such pathologies are complex, a causative relationship between the age-related decline in oocyte quality and oxidative stress (OS) is now well established. What remains less certain are the molecular mechanisms governing the increased vulnerability of the aged oocyte to oxidative damage. In this review, we explore the reduced capacity of the ageing oocyte to mitigate macromolecular damage arising from oxidative insults and highlight the dramatic consequences for oocyte quality and female fertility. Indeed, while oocytes are typically endowed with a comprehensive suite of molecular mechanisms to moderate oxidative damage and thus ensure the fidelity of the germline, there is increasing recognition that the efficacy of such protective mechanisms undergoes an age-related decline. For instance, impaired reactive oxygen species metabolism, decreased DNA repair, reduced sensitivity of the spindle assembly checkpoint, and decreased capacity for protein repair and degradation collectively render the aged oocyte acutely vulnerable to OS and limits their capacity to recover from exposure to such insults. We also highlight the inadequacies of our current armoury of assisted reproductive technologies to combat age-related female infertility, emphasising the need for further research into mechanisms underpinning the functional deterioration of the ageing oocyte.
Collapse
|
19
|
Ottas A, Fishman D, Okas TL, Kingo K, Soomets U. The metabolic analysis of psoriasis identifies the associated metabolites while providing computational models for the monitoring of the disease. Arch Dermatol Res 2017; 309:519-528. [PMID: 28695330 PMCID: PMC5577063 DOI: 10.1007/s00403-017-1760-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 03/13/2017] [Accepted: 07/03/2017] [Indexed: 11/25/2022]
Abstract
The majority of studies on psoriasis have focused on explaining the genetic background and its associations with the immune system’s response. The aim of this study was to identify the low-molecular weight compounds contributing to the metabolomic profile of psoriasis and to provide computational models that help with the classification and monitoring of the severity of the disease. We compared the results from targeted and untargeted analyses of patients’ serums with plaque psoriasis to controls. The main differences were found in the concentrations of acylcarnitines, phosphatidylcholines, amino acids, urea, phytol, and 1,11-undecanedicarboxylic acid. The data from the targeted analysis were used to build classification models for psoriasis. The results from this study provide an overview of the metabolomic serum profile of psoriasis along with promising statistical models for the monitoring of the disease.
Collapse
Affiliation(s)
- Aigar Ottas
- Department of Biochemistry, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 14b, 50411, Tartu, Estonia.
- Centre of Excellence for Genomics and Translational Medicine, University of Tartu, Tartu, Estonia.
| | - Dmytro Fishman
- Faculty of Science and Technology, Institute of Computer Science, University of Tartu, Tartu, Estonia
- Quretec OÜ, Tartu, Estonia
| | | | - Külli Kingo
- Department of Dermatology, University of Tartu, Tartu, Estonia
- Clinic of Dermatology, Tartu University Hospital, Tartu, Estonia
| | - Ursel Soomets
- Department of Biochemistry, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 14b, 50411, Tartu, Estonia
- Centre of Excellence for Genomics and Translational Medicine, University of Tartu, Tartu, Estonia
| |
Collapse
|
20
|
Jean N, Dumont E, Herzi F, Balliau T, Laabir M, Masseret E, Mounier S. Modifications of the soluble proteome of a mediterranean strain of the invasive neurotoxic dinoflagellate Alexandrium catenella under metal stress conditions. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 188:80-91. [PMID: 28472730 DOI: 10.1016/j.aquatox.2017.04.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Revised: 04/06/2017] [Accepted: 04/15/2017] [Indexed: 06/07/2023]
Abstract
The soluble proteome of the mediterranean strain ACT03 of the invasive neurotoxic dinoflagellate Alexandrium catenella exposed to lead or zinc at 6, 12 or 18μM (total concentrations), or under control conditions, was characterized by two-dimensional gel electrophoresis (2-DE). Zinc reduced (P<0.05) the total number of protein spots (-41%, -52% and -60%, at 6, 12 or 18μM, respectively). Besides, most of the proteins constituting the soluble proteome were down-regulated in response to lead or zinc stresses. These proteins were involved mainly in photosynthesis (20-37% for lead; 36-50% for zinc) (ribulose-1,5-bisphosphate carboxylase/oxygenase: RUBISCO; ferredoxin-NADP+ reductase: FNR; peridinin-chlorophyll a-protein: PCP), and in the oxidative stress response (29-34% for lead; 17-36% for zinc) (superoxide dismutase: SOD; proteasome α/β subunits). These negative effects could be partly compensated by the up-regulation of specific proteins such as ATP-synthase β subunit (+16.3 fold after exposure to lead at 12μM). Indeed, an increase in the abundance of ATP-synthase could enrich the ATP pool and provide more energy available for the cells to survive under metal stress, and make the ATP-synthase transport of metal cations out of the cells more efficient. Finally, this study shows that exposure to lead or zinc have a harmful effect on the soluble proteome of A. catenella ACT03, but also suggests the existence of an adaptative proteomic response to metal stresses, which could contribute to maintaining the development of this dinoflagellate in trace metal-contaminated ecosystems.
Collapse
Affiliation(s)
- Natacha Jean
- Université de Toulon, PROTEE, EA 3819, 83957 La Garde, France.
| | - Estelle Dumont
- Université de Toulon, PROTEE, EA 3819, 83957 La Garde, France.
| | - Faouzi Herzi
- Université de Toulon, PROTEE, EA 3819, 83957 La Garde, France.
| | - Thierry Balliau
- PAPPSO-GQE-Le Moulon, INRA, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, 91190, Gif-sur-Yvette, France.
| | - Mohamed Laabir
- MARBEC UMR 9190 IRD-Ifremer-CNRS-Université de Montpellier, Place Eugène Bataillon, Case 093, 34095 Montpellier Cedex 5, France.
| | - Estelle Masseret
- MARBEC UMR 9190 IRD-Ifremer-CNRS-Université de Montpellier, Place Eugène Bataillon, Case 093, 34095 Montpellier Cedex 5, France.
| | | |
Collapse
|
21
|
Feng PH, Huang YL, Chuang KJ, Chen KY, Lee KY, Ho SC, Bien MY, Yang YL, Chuang HC. Dysfunction of methionine sulfoxide reductases to repair damaged proteins by nickel nanoparticles. Chem Biol Interact 2015; 236:82-9. [PMID: 25979628 DOI: 10.1016/j.cbi.2015.05.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 04/21/2015] [Accepted: 05/06/2015] [Indexed: 11/26/2022]
Abstract
BACKGROUND Protein oxidation is considered to be one of the main causes of cell death, and methionine is one of the primary targets of reactive oxygen species (ROS). However, the mechanisms by which nickel nanoparticles (NiNPs) cause oxidative damage to proteins remain unclear. OBJECTIVES The objective of this study is to investigate the effects of NiNPs on the methionine sulfoxide reductases (MSR) protein repairing system. METHODS Two physically similar nickel-based nanoparticles, NiNPs and carbon-coated NiNP (C-NiNPs; control particles), were exposed to human epithelial A549 cells. Cell viability, benzo(a)pyrene diolepoxide (BPDE) protein adducts, methionine oxidation, MSRA and B3, microtubule-associated protein 1A/1B-light chain 3 (LC3) and extracellular signal-regulated kinase (ERK) phosphorylation were investigated. RESULTS Exposure to NiNPs led to a dose-dependent reduction in cell viability and increased BPDE protein adduct production and methionine oxidation. The methionine repairing enzymatic MSRA and MSRB3 production were suppressed in response to NiNP exposure, suggesting the oxidation of methionine to MetO by NiNP was not reversed back to methionine. Additionally, LC3, an autophagy marker, was down-regulated by NiNPs. Both NiNP and C-NiNP caused ERK phosphorylation. LC3 was positively correlated with MSRA (r = 0.929, p < 0.05) and MSRB3 (r = 0.893, p < 0.05). CONCLUSIONS MSR was made aberrant by NiNP, which could lead to the dysfunction of autophagy and ERK phosphorylation. The toxicological consequences may be dependent on the chemical characteristics of the nanoparticles.
Collapse
Affiliation(s)
- Po-Hao Feng
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan; Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| | - Ya-Li Huang
- Department of Public Health, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; School of Public Health, College of Public Health and Nutrition, Taipei Medical University, Taipei, Taiwan.
| | - Kai-Jen Chuang
- Department of Public Health, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; School of Public Health, College of Public Health and Nutrition, Taipei Medical University, Taipei, Taiwan.
| | - Kuan-Yuan Chen
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan; Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| | - Kang-Yun Lee
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan; Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| | - Shu-Chuan Ho
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan; School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| | - Mauo-Ying Bien
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan; Division of Pulmonary Medicine, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, Taiwan.
| | - You-Lan Yang
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| | - Hsiao-Chi Chuang
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan; School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| | | |
Collapse
|
22
|
The paradoxical role of thioredoxin on oxidative stress and aging. Arch Biochem Biophys 2015; 576:32-8. [PMID: 25726727 DOI: 10.1016/j.abb.2015.02.025] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 02/17/2015] [Accepted: 02/19/2015] [Indexed: 11/22/2022]
Abstract
In spite of intensive study, there is still controversy about the free radical or oxidative stress theory of aging, particularly in mammals. Our laboratory has conducted the first detailed studies on the role of thioredoxin (Trx) in the cytosol (Trx1) and in mitochondria (Trx2) on oxidative stress and aging using unique mouse models either overexpressing or down-regulating Trx1 or Trx2. The results generated from our lab and others indicate that: (1) oxidative stress and subsequent changes in signaling pathways could have different pathophysiological impacts at different stages of life; (2) changes in redox-sensitive signaling controlled by levels of oxidative stress and redox state could play more important roles in pathophysiology than accumulation of oxidative damage; (3) changes in oxidative stress and redox state in different cellular compartments (cytosol, mitochondria, or nucleus) could play different roles in pathophysiology during aging, and their combined effects show more impact on aging than changes in either oxidative stress or redox state alone; and (4) the roles of oxidative stress and redox state could have different pathophysiological consequences in different organs/tissues/cells or pathophysiological conditions. To critically test the role of oxidative stress on aging and investigate changes in redox-sensitive signaling pathways, further study is required.
Collapse
|
23
|
Vandermarliere E, Ghesquière B, Jonckheere V, Gevaert K, Martens L. Unraveling the specificities of the different human methionine sulfoxide reductases. Proteomics 2014; 14:1990-8. [PMID: 24737740 DOI: 10.1002/pmic.201300357] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 02/04/2014] [Accepted: 04/08/2014] [Indexed: 01/11/2023]
Abstract
The oxidation of free and protein-bound methionine into methionine sulfoxide is a frequently occurring modification caused by ROS. Most organisms express methionine sulfoxide reductases (MSR enzymes) to repair this potentially damaging modification. Humans express three different MSRB enzymes which reside in different cellular compartments. In this study, we have explored the specificity of the human MSRB enzymes both by in silico modeling and by experiments on oxidized peptides. We found that MSRB1 is the least specific MSRB enzyme, which is in agreement with the observation that MSRB1 is the only MSRB enzyme found in the cytosol and the nucleus, and therefore requires a broad specificity to reduce all possible substrates. MSRB2 and MSRB3, which are both found in mitochondria, are more specific but because of their co-occurrence they can likely repair all possible substrates.
Collapse
Affiliation(s)
- Elien Vandermarliere
- Department of Medical Protein Research, VIB, Ghent, Belgium; Department of Biochemistry, Ghent University, Ghent, Belgium
| | | | | | | | | |
Collapse
|
24
|
Ugarte N, Ladouce R, Radjei S, Gareil M, Friguet B, Petropoulos I. Proteome alteration in oxidative stress-sensitive methionine sulfoxide reductase-silenced HEK293 cells. Free Radic Biol Med 2013; 65:1023-1036. [PMID: 23988788 DOI: 10.1016/j.freeradbiomed.2013.08.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 07/18/2013] [Accepted: 08/08/2013] [Indexed: 12/29/2022]
Abstract
Methionine sulfoxide reductases (Msr's) are key enzymes proficient in catalyzing the reduction of oxidized methionines. This reductive trait is essential to maintaining cellular redox homeostasis from bacteria to mammals and is also regarded as a potential mechanism to regulate protein activities and signaling pathways, considering the inactivating effects that can be induced by methionine oxidation. In this study, we have generated stable human embryonic kidney HEK293 clones with an altered Msr system by silencing the expression of the main Msr elements-MsrA, MsrB1, or MsrB2. The isolated clones--the single mutants MsrA, MsrB1, and MsrB2 and double mutant MsrA/B1-show a reduced Msr activity and an exacerbated sensitivity toward oxidative stress. A two-dimensional difference in-gel electrophoresis analysis was performed on the Msr-silenced cells grown under basal conditions or submitted to oxidative stress. This proteomic analysis revealed that the disruption of the Msr system mainly affects proteins with redox, cytoskeletal or protein synthesis, and maintenance roles. Interestingly, most of the proteins found altered in the Msr mutants were also identified as potential Msr substrates and have been associated with redox or aging processes in previous studies. This study, through an extensive analysis of Msr-inhibited mutants, offers valuable input on the cellular network of a crucial maintenance system such as methionine sulfoxide reductases.
Collapse
Affiliation(s)
- Nicolas Ugarte
- Laboratoire de Biologie Cellulaire du Vieillissement, UR4, IFR83, Université Pierre et Marie Curie-Paris 6, 75005 Paris, France.
| | - Romain Ladouce
- Laboratoire de Biologie Cellulaire du Vieillissement, UR4, IFR83, Université Pierre et Marie Curie-Paris 6, 75005 Paris, France
| | - Sabrina Radjei
- Laboratoire de Biologie Cellulaire du Vieillissement, UR4, IFR83, Université Pierre et Marie Curie-Paris 6, 75005 Paris, France
| | - Monique Gareil
- Laboratoire de Biologie Cellulaire du Vieillissement, UR4, IFR83, Université Pierre et Marie Curie-Paris 6, 75005 Paris, France
| | - Bertrand Friguet
- Laboratoire de Biologie Cellulaire du Vieillissement, UR4, IFR83, Université Pierre et Marie Curie-Paris 6, 75005 Paris, France
| | - Isabelle Petropoulos
- Laboratoire de Biologie Cellulaire du Vieillissement, UR4, IFR83, Université Pierre et Marie Curie-Paris 6, 75005 Paris, France.
| |
Collapse
|
25
|
Denkel LA, Rhen M, Bange FC. Biotin sulfoxide reductase contributes to oxidative stress tolerance and virulence in Salmonella enterica serovar Typhimurium. MICROBIOLOGY-SGM 2013; 159:1447-1458. [PMID: 23657680 DOI: 10.1099/mic.0.067256-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Oxidative stress converts sulfur residues of molecules like biotin and methionine into their oxidized forms. Here we show that the biotin sulfoxide reductase BisC of Salmonella enterica serovar Typhimurium (S. Typhimurium) repairs both oxidized biotin and oxidized methionine. Exposure to H2O2 in vitro reduced survival of a S. Typhimurium ΔbisC mutant. Furthermore, replication of the ΔbisC mutant inside IFN-γ activated macrophages was reduced. In vitro tolerance of the mutant to H2O2 was restored by plasmids carrying either bisC or msrA; the latter encodes a methioinine sulfoxide reductase. In contrast, the proliferation defect inside IFN-γ activated macrophages was rescued by bisC but not by msrA. Thus growth of the ΔbisC mutant in IFN-γ activated macrophages required repair of oxidized biotin. Both the ΔbisC and a biotin auxotrophic (ΔbioB) mutant were attenuated in mice, suggesting that besides biotin biosynthesis, biotin repair was essential for virulence of S. Typhimurium in vivo. Attenuation of the ΔbisC mutant was more pronounced in 129 mice that produce a stronger oxidative response. These results show that BisC is essential for full virulence of Salmonella by contributing to the defence of S. Typhimurium against host-derived stress, and provides an attractive drug target since it is not present in mammals.
Collapse
Affiliation(s)
- Luisa A Denkel
- Dept. of Medical Microbiology and Hospital Epidemiology, Medical School Hannover, 30625 Hannover, Germany
| | - Mikael Rhen
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, 17177 Stockholm, Sweden
| | - Franz-Christoph Bange
- Dept. of Medical Microbiology and Hospital Epidemiology, Medical School Hannover, 30625 Hannover, Germany
| |
Collapse
|
26
|
Kumar S, Rai AK, Mishra MN, Shukla M, Singh PK, Tripathi AK. RpoH2 sigma factor controls the photooxidative stress response in a non-photosynthetic rhizobacterium, Azospirillum brasilense Sp7. MICROBIOLOGY-SGM 2012; 158:2891-2902. [PMID: 23023973 DOI: 10.1099/mic.0.062380-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Bacteria belonging to the Alphaproteobacteria normally harbour multiple copies of the heat shock sigma factor (known as σ(32), σ(H) or RpoH). Azospirillum brasilense, a non-photosynthetic rhizobacterium, harbours five copies of rpoH genes, one of which is an rpoH2 homologue. The genes around the rpoH2 locus in A. brasilense show synteny with that found in rhizobia. The rpoH2 of A. brasilense was able to complement the temperature-sensitive phenotype of the Escherichia coli rpoH mutant. Inactivation of rpoH2 in A. brasilense results in increased sensitivity to methylene blue and to triphenyl tetrazolium chloride (TTC). Exposure of A. brasilense to TTC and the singlet oxygen-generating agent methylene blue induced several-fold higher expression of rpoH2. Comparison of the proteome of A. brasilense with its rpoH2 deletion mutant and with an A. brasilense strain overexpressing rpoH2 revealed chaperone GroEL, elongation factors (Ef-Tu and EF-G), peptidyl prolyl isomerase, and peptide methionine sulfoxide reductase as the major proteins whose expression was controlled by RpoH2. Here, we show that the RpoH2 sigma factor-controlled photooxidative stress response in A. brasilense is similar to that in the photosynthetic bacterium Rhodobacter sphaeroides, but that RpoH2 is not involved in the detoxification of methylglyoxal in A. brasilense.
Collapse
Affiliation(s)
- Santosh Kumar
- Laboratory of Bacterial Genetics, School of Biotechnology, Faculty of Science, Banaras Hindu University, Varanasi-221005, India
| | - Ashutosh Kumar Rai
- Laboratory of Bacterial Genetics, School of Biotechnology, Faculty of Science, Banaras Hindu University, Varanasi-221005, India
| | - Mukti Nath Mishra
- Laboratory of Bacterial Genetics, School of Biotechnology, Faculty of Science, Banaras Hindu University, Varanasi-221005, India
| | - Mansi Shukla
- Laboratory of Bacterial Genetics, School of Biotechnology, Faculty of Science, Banaras Hindu University, Varanasi-221005, India
| | | | - Anil Kumar Tripathi
- Laboratory of Bacterial Genetics, School of Biotechnology, Faculty of Science, Banaras Hindu University, Varanasi-221005, India
| |
Collapse
|
27
|
Thioredoxin, oxidative stress, cancer and aging. LONGEVITY & HEALTHSPAN 2012; 1:4. [PMID: 24764510 PMCID: PMC3886257 DOI: 10.1186/2046-2395-1-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Accepted: 06/20/2012] [Indexed: 11/30/2022]
Abstract
The Free Radical or Oxidative Stress Theory of Aging is one of the most popular theories in aging research and has been extensively studied over the past several decades. However, recent evidence using transgenic/knockout mice that overexpress or down-regulate antioxidant enzymes challenge the veracity of this theory since the animals show no increase or decrease in lifespan. These results seriously call into question the role of oxidative damage/stress in the aging process in mammals. Therefore, the theory requires significant modifications if we are to understand the relationship between aging and the regulation of oxidative stress. Our laboratory has been examining the impacts of thioredoxins (Trxs), in the cytosol and mitochondria, on aging and age-related diseases. Our data from mice that are either up-regulating or down-regulating Trx in different cellular compartments, that is, the cytosol or mitochondria, could shed some light on the role of oxidative stress and its pathophysiological effects. The results generated from our lab and others may indicate that: 1) changes in oxidative stress and the redox state in the cytosol, mitochondria or nucleus might play different roles in the aging process; 2) the role of oxidative stress and redox state could have different pathophysiological consequences in different tissues/cells, for example, mitotic vs. post-mitotic; 3) oxidative stress could have different pathophysiological impacts in young and old animals; and 4) the pathophysiological roles of oxidative stress and redox state could be controlled through changes in redox-sensitive signaling, which could have more diverse effects on pathophysiology than the accumulation of oxidative damage to various molecules. To critically test the role of oxidative stress on aging and age-related diseases, further study is required using animal models that regulate oxidative stress levels differently in each cellular compartment, each tissue/organ, and/or at different stages of life (young, middle and old) to change redox sensitive signaling pathways.
Collapse
|
28
|
Joseph P, Suman SP, Rentfrow G, Li S, Beach CM. Proteomics of muscle-specific beef color stability. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:3196-3203. [PMID: 22369190 DOI: 10.1021/jf204188v] [Citation(s) in RCA: 154] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The objective of the present study was to differentiate the sarcoplasmic proteome of color-stable (Longissimus lumborum; LL) and color-labile (Psoas major; PM) beef muscles. LL and PM muscles from seven beef carcasses (24 h post-mortem) were fabricated into 2.54 cm steaks, aerobically packaged, and assigned to refrigerated retail display for 9 days. LL steaks demonstrated greater (P < 0.05) color stability and lower (P < 0.05) lipid oxidation than PM steaks. Proteome analyses identified 16 differentially abundant proteins in LL and PM, including antioxidant proteins and chaperones. Proteins demonstrating positive correlation with redness (aldose reductase, creatine kinase, and β-enolase) and color stability (peroxiredoxin-2, peptide methionine sulfoxide reductase, and heat shock protein-27 kDa) were overabundant in LL, whereas the protein overabundant in PM (mitochondrial aconitase) exhibited negative correlation with redness. The color stability of LL could be attributed to the overabundance of antioxidant proteins and chaperones, and this finding suggests the necessity of developing muscle-specific processing strategies to improve beef color.
Collapse
Affiliation(s)
- Poulson Joseph
- Department of Animal and Food Sciences, University of Kentucky, Lexington, Kentucky 40546, USA
| | | | | | | | | |
Collapse
|
29
|
Sreekumar PG, Hinton DR, Kannan R. Methionine sulfoxide reductase A: Structure, function and role in ocular pathology. World J Biol Chem 2011; 2:184-92. [PMID: 21909460 PMCID: PMC3163237 DOI: 10.4331/wjbc.v2.i8.184] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 07/27/2011] [Accepted: 08/03/2011] [Indexed: 02/05/2023] Open
Abstract
Methionine is a highly susceptible amino acid that can be oxidized to S and R diastereomeric forms of methionine sulfoxide by many of the reactive oxygen species generated in biological systems. Methionine sulfoxide reductases (Msrs) are thioredoxin-linked enzymes involved in the enzymatic conversion of methionine sulfoxide to methionine. Although MsrA and MsrB have the same function of methionine reduction, they differ in substrate specificity, active site composition, subcellular localization, and evolution. MsrA has been localized in different ocular regions and is abundantly expressed in the retina and in retinal pigment epithelial (RPE) cells. MsrA protects cells from oxidative stress. Overexpression of MsrA increases resistance to cell death, while silencing or knocking down MsrA decreases cell survival; events that are mediated by mitochondria. MsrA participates in protein-protein interaction with several other cellular proteins. The interaction of MsrA with α-crystallins is of utmost importance given the known functions of the latter in protein folding, neuroprotection, and cell survival. Oxidation of methionine residues in α-crystallins results in loss of chaperone function and possibly its antiapoptotic properties. Recent work from our laboratory has shown that MsrA is co-localized with αA and αB crystallins in the retinal samples of patients with age-related macular degeneration. We have also found that chemically induced hypoxia regulates the expression of MsrA and MsrB2 in human RPE cells. Thus, MsrA is a critical enzyme that participates in cell and tissue protection, and its interaction with other proteins/growth factors may provide a target for therapeutic strategies to prevent degenerative diseases.
Collapse
Affiliation(s)
- Parameswaran G Sreekumar
- Parameswaran G Sreekumar, David R Hinton, Ram Kannan, Arnold and Mabel Beckman Macular Research Center, Doheny Eye Institute, Los Angeles, CA 90033, United States
| | | | | |
Collapse
|
30
|
Pérez VI, Cortez LA, Lew CM, Rodriguez M, Webb CR, Van Remmen H, Chaudhuri A, Qi W, Lee S, Bokov A, Fok W, Jones D, Richardson A, Yodoi J, Zhang Y, Tominaga K, Hubbard GB, Ikeno Y. Thioredoxin 1 overexpression extends mainly the earlier part of life span in mice. J Gerontol A Biol Sci Med Sci 2011; 66:1286-99. [PMID: 21873593 DOI: 10.1093/gerona/glr125] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
We examined the effects of increased levels of thioredoxin 1 (Trx1) on resistance to oxidative stress and aging in transgenic mice overexpressing Trx1 [Tg(TRX1)(+/0)]. The Tg(TRX1)(+/0) mice showed significantly higher Trx1 protein levels in all the tissues examined compared with the wild-type littermates. Oxidative damage to proteins and levels of lipid peroxidation were significantly lower in the livers of Tg(TRX1)(+/0) mice compared with wild-type littermates. The survival study demonstrated that male Tg(TRX1)(+/0) mice significantly extended the earlier part of life span compared with wild-type littermates, but no significant life extension was observed in females. Neither male nor female Tg(TRX1)(+/0) mice showed changes in maximum life span. Our findings suggested that the increased levels of Trx1 in the Tg(TRX1)(+/0) mice were correlated to increased resistance to oxidative stress, which could be beneficial in the earlier part of life span but not the maximum life span in the C57BL/6 mice.
Collapse
Affiliation(s)
- Viviana I Pérez
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, 15355 Lambda Drive, San Antonio, TX 78245-3207, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Liu X, Vederas JC, Whittal RM, Zheng J, Stiles ME, Carlson D, Franz CMAP, McMullen LM, van Belkum MJ. Identification of an N-terminal formylated, two-peptide bacteriocin from Enterococcus faecalis 710C. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:5602-5608. [PMID: 21469734 DOI: 10.1021/jf104751v] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Enterococcus faecalis 710C, isolated from beef product, has a broad antimicrobial activity spectrum against foodborne pathogens. Two bacteriocins, enterocin 7A (Ent7A) and enterocin 7B (Ent7B), were purified from the culture supernatant of E. faecalis 710C and characterized using matrix-assisted laser desorption ionization-time-of-flight mass spectrometry and electrospray infusion tandem mass spectrometry analyses. These data and subsequent genetic analysis showed that Ent7A and Ent7B are produced without N-terminal leader sequences and have amino acid sequences that are identical to those of enterocins MR10A and MR10B, respectively. However, the observed masses for Ent7A and Ent7B are 5200.80 and 5206.65 Da (monoisotopic mass), respectively, which are higher than the theoretical molecular masses of MR10A and MR10B, respectively. This study provides evidence that both Ent7A and Ent7B are formylated on the N-terminal methionine residue. Purified Ent7A and Ent7B are active against spoilage microorganisms and foodborne pathogens, including Clostridium sporogenes , Listeria monocytogenes , and Staphylococcus aureus as well as Brevundimonas diminuta , which has been associated with infections among immune-suppressed cancer patients.
Collapse
Affiliation(s)
- Xiaoji Liu
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Khor HK, Jacoby ME, Squier TC, Chu GC, Chelius D. Identification of methionine sulfoxide diastereomers in immunoglobulin gamma antibodies using methionine sulfoxide reductase enzymes. MAbs 2010; 2:299-308. [PMID: 20404551 PMCID: PMC2881256 DOI: 10.4161/mabs.2.3.11755] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Accepted: 03/11/2010] [Indexed: 11/19/2022] Open
Abstract
Light-induced formation of singlet oxygen selectively oxidizes methionines in the heavy chain of IgG2 antibodies. Peptide mapping has indicated the following sensitivities to oxidation: M252 > M428 > M397. Irrespective of the light source, formulating proteins with the free amino acid methionine limits oxidative damage. Conventional peptide mapping cannot distinguish between the S- and R-diastereomers of methionine sulfoxide (Met[O]) formed in the photo-oxidized protein because of their identical polarities and masses. We have developed a method for identification and quantification of these diastereomers by taking advantage of the complementary stereospecificities of the methionine sulfoxide reductase (Msr) enzymes MsrA and MsrB, which promote the selective reduction of S- and R-diastereomers of Met(O), respectively. In addition, an MsrBA fusion protein that contains both Msr enzyme activities permitted the quantitative reduction of all Met(O) diastereomers. Using these Msr enzymes in combination with peptide mapping, we were able to detect and differentiate diastereomers of methionine sulfoxide within the highly conserved heavy chain of an IgG2 that had been photo-oxidized, as well as those in an IgG1 oxidized with peroxide. The rapid identification of the stereospecificity of methionine oxidation by Msr enzymes not only definitively differentiates Met(O) diastereomers, which previously has been indistinguishable using traditional techniques, but also provides an important tool that may contribute to understanding of the mechanisms of protein oxidation and development of new formulation strategies to stabilize protein therapeutics.
Collapse
Affiliation(s)
- Hui K Khor
- Department of Pharmaceutics, Amgen, Inc.; One Amgen Center Drive; Thousand Oaks, CA USA
| | - Michael E Jacoby
- Division of Biological Sciences; Pacific Northwest National Laboratory; Richland, WA USA
| | - Thomas C Squier
- Division of Biological Sciences; Pacific Northwest National Laboratory; Richland, WA USA
| | - Grace C Chu
- Department of Pharmaceutics, Amgen, Inc.; One Amgen Center Drive; Thousand Oaks, CA USA
| | - Dirk Chelius
- Department of Pharmaceutics, Amgen, Inc.; One Amgen Center Drive; Thousand Oaks, CA USA
| |
Collapse
|
33
|
Overlapping alternative sigma factor regulons in the response to singlet oxygen in Rhodobacter sphaeroides. J Bacteriol 2010; 192:2613-23. [PMID: 20304993 DOI: 10.1128/jb.01605-09] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Organisms performing photosynthesis in the presence of oxygen have to cope with the formation of highly reactive singlet oxygen ((1)O(2)) and need to mount an adaptive response to photooxidative stress. Here we show that the alternative sigma factors RpoH(I) and RpoH(II) are both involved in the (1)O(2) response and in the heat stress response in Rhodobacter sphaeroides. We propose RpoH(II) to be the major player in the (1)O(2) response, whereas RpoH(I) is more important for the heat stress response. Mapping of the 5' ends of RpoH(II)- and also RpoH(I)/RpoH(II)-dependent transcripts revealed clear differences in the -10 regions of the putative promoter sequences. By using bioinformatic tools, we extended the RpoH(II) regulon, which includes genes induced by (1)O(2) exposure. These genes encode proteins which are, e.g., involved in methionine sulfoxide reduction and in maintaining the quinone pool. Furthermore, we identified small RNAs which depend on RpoH(I) and RpoH(II) and are likely to contribute to the defense against photooxidative stress and heat stress.
Collapse
|
34
|
Guo X, Wu Y, Wang Y, Chen Y, Chu C. OsMSRA4.1 and OsMSRB1.1, two rice plastidial methionine sulfoxide reductases, are involved in abiotic stress responses. PLANTA 2009; 230:227-238. [PMID: 19415325 DOI: 10.1007/s00425-009-0934-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2008] [Accepted: 04/11/2009] [Indexed: 05/27/2023]
Abstract
In proteins, methionine residues are especially sensitive to oxidation, leading to the formation of S- and R-methionine sulfoxide diastereoisomers, and these two methionine sulfoxides can be specifically reversed by two types of methionine sulfoxide reductases (MSRs), MSRA and MSRB. Previously, we have identified a gene encoding a putative MSR from NaCl-treated roots of Brazilian upland rice (Oryza sativa L. cv. IAPAR 9) via subtractive suppression hybridization (Wu et al. in Plant Sci 168:847-853, 2005). Blast database analysis indicated that at least four MSRA and three MSRB orthologs exist in rice, and two of them, OsMSRA4.1 and OsMSRB1.1, were selected for further functional analysis. Expression analysis showed that both OsMSRA4.1 and OsMSRB1.1 are constitutively expressed in all organs and can be induced by various stress conditions. Subcellular localization and in vitro activity assay revealed that both OsMSR proteins are targeted to the chloroplast and have MSR activity. Overexpression of either OsMSRA4.1 or OsMSRB1.1 in yeast enhanced cellular resistance to oxidative stress. In addition, OsMSRA4.1-overexpressing transgenic rice plants also showed enhanced viability under salt treatment. Our results provide genetic evidence of the involvement of OsMSRs in the plant stress responses.
Collapse
Affiliation(s)
- Xiaoli Guo
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences (CAS), 100101 Beijing, China
| | | | | | | | | |
Collapse
|
35
|
Shchedrina VA, Vorbrüggen G, Lee BC, Kim HY, Kabil H, Harshman LG, Gladyshev VN. Overexpression of methionine-R-sulfoxide reductases has no influence on fruit fly aging. Mech Ageing Dev 2009; 130:429-43. [PMID: 19409408 DOI: 10.1016/j.mad.2009.04.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2008] [Revised: 04/01/2009] [Accepted: 04/22/2009] [Indexed: 01/06/2023]
Abstract
Methionine sulfoxide reductases (Msrs) are enzymes that repair oxidized methionine residues in proteins. This function implicated Msrs in antioxidant defense and the regulation of aging. There are two known Msr types in animals: MsrA specific for the reduction of methionine-S-sulfoxide, and MsrB that catalyzes the reduction of methionine-R-sulfoxide. In a previous study, overexpression of MsrA in the nervous system of Drosophila was found to extend lifespan by 70%. Overexpression of MsrA in yeast also extended lifespan, whereas MsrB overexpression did so only under calorie restriction conditions. The effect of MsrB overexpression on lifespan has not yet been characterized in animal model systems. Here, the GAL4-UAS binary system was used to drive overexpression of cytosolic Drosophila MsrB and mitochondrial mouse MsrB2 in whole body, fatbody, and the nervous system of flies. In contrast to MsrA, MsrB overexpression had no consistent effect on the lifespan of fruit flies on either corn meal or sugar yeast diets. Physical activity, fecundity, and stress resistance were also similar in MsrB-overexpressing and control flies. Thus, MsrA and MsrB, the two proteins with similar function in antioxidant protein repair, have different effects on aging in fruit flies.
Collapse
Affiliation(s)
- Valentina A Shchedrina
- Department of Biochemistry and Redox Biology Center, University of Nebraska, Lincoln, NE 68588, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Ge C, Ding Y, Wang Z, Wan D, Wang Y, Shang Q, Luo S. Responses of wheat seedlings to cadmium, mercury and trichlorobenzene stresses. J Environ Sci (China) 2009; 21:806-813. [PMID: 19803087 DOI: 10.1016/s1001-0742(08)62345-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The molecular response of wheat (Triticum aestivum L., cv. Yangmai 13) seedlings to heavy metal (Cd, Hg) and 1,2,4-trichlorobenzene (TCB) stresses were examined by two-dimensional gel electrophoresis, image analysis, and peptide mass fingerprinting. The results showed inhibitions of root and shoot growth by Cd, Hg, and TCB. These stresses led to water deficit and lipid phosphorylation in the seedling which also promoted protein phophorylation in the leaves. Hg stress inhibited protein synthesis while Cd and TCB stresses induced or up-regulated more proteins in the leaves. Most of these induced proteins played important roles in the biochemical reactions involved in tolerance of wheat to Cd and TCB stresses. The primary functions of Cd- and TCB-induced proteins included methionine metabolism, Rubisco modification, protein phosphorylation regulation, protein configuration protection, H+ transmembrane transportation and also the synthesis of ethylene, defense substances and cell wall compounds.
Collapse
Affiliation(s)
- Cailin Ge
- Jiangsu Provencial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China.
| | | | | | | | | | | | | |
Collapse
|
37
|
Atack JM, Kelly DJ. Contribution of the stereospecific methionine sulphoxide reductases MsrA and MsrB to oxidative and nitrosative stress resistance in the food-borne pathogen Campylobacter jejuni. MICROBIOLOGY-SGM 2008; 154:2219-2230. [PMID: 18667555 DOI: 10.1099/mic.0.2008/019711-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The microaerophilic food-borne pathogen Campylobacter jejuni is exposed to highly variable oxygen concentrations during its life cycle and employs a variety of protection mechanisms to resist oxidative stress. However, not all of the enzymes that mediate such protection have yet been identified. Two genes in strain NCTC 11168, Cj0637c and Cj1112c, are predicted to encode unrelated methionine sulphoxide reductases, which may repair oxidized methionine residues in proteins and thus contribute to oxidative stress defence. Cj0637 and Cj1112 were overexpressed, purified and shown by a coupled thioredoxin-thioredoxin reductase-NADPH assay to catalyse the stereospecific reduction of the S and R diastereoisomers, respectively, of the model compound methyl p-tolyl sulphoxide. Cj0637 is thus identified as MsrA and Cj1112 as MsrB. The contribution of these enzymes to oxidative and nitrosative stress resistance in C. jejuni was assessed by phenotypic analysis of a set of isogenic msrA, msrB and msrA/B insertion mutants. As RT-PCR data suggested a polar effect on Cj1111c in the msrB mutant, an msrB/msrB(+) merodiploid complementation strain was also constructed. The msrA/B strain was severely growth inhibited under standard microaerobic conditions, whereas the msrA and msrB strains grew normally. Agar plate disc diffusion assays showed that all mutants displayed increased sensitivity to hydrogen peroxide, organic peroxide, superoxide, and nitrosative and disulphide stress, but quantitative cell viability assays showed that the msrA/B double mutant was markedly more sensitive to both oxidative and nitrosative stress. All of the stress-sensitivity phenotypes observed for the msrB mutant were restored to wild-type in the msrB/msrB(+) merodiploid. It is concluded that MsrA and MsrB make a significant contribution to the protection of C. jejuni against oxidative and nitrosative stress.
Collapse
Affiliation(s)
- John M Atack
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | - David J Kelly
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| |
Collapse
|
38
|
Ralf Paus L, Berneburg M, Trelles M, Friguet B, Ogden S, Esrefoglu M, Kaya G, Goldberg DJ, Mordon S, Calderhead RG, Griffiths CEM, Saurat JH, Thappa DM. How best to halt and/or revert UV-induced skin ageing: strategies, facts and fiction. Exp Dermatol 2008. [DOI: 10.1111/j.1600-0625.2007.00665.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
39
|
Friguet B. Viewpoint 4. Exp Dermatol 2008. [DOI: 10.1111/j.1600-0625.2007.00665_4.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
40
|
Boschi-Muller S, Gand A, Branlant G. The methionine sulfoxide reductases: Catalysis and substrate specificities. Arch Biochem Biophys 2008; 474:266-73. [PMID: 18302927 DOI: 10.1016/j.abb.2008.02.007] [Citation(s) in RCA: 138] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2007] [Revised: 02/05/2008] [Accepted: 02/05/2008] [Indexed: 02/01/2023]
Abstract
Oxidation of Met residues in proteins leads to the formation of methionine sulfoxides (MetSO). Methionine sulfoxide reductases (Msr) are ubiquitous enzymes, which catalyze the reduction of the sulfoxide function of the oxidized methionine residues. In vivo, the role of Msrs is described as essential in protecting cells against oxidative damages and to play a role in infection of cells by pathogenic bacteria. There exist two structurally-unrelated classes of Msrs, called MsrA and MsrB, with opposite stereoselectivity towards the S and R isomers of the sulfoxide function, respectively. Both Msrs present a similar three-step catalytic mechanism. The first step, called the reductase step, leads to the formation of a sulfenic acid on the catalytic Cys with the concomitant release of Met. In recent years, significant efforts have been made to characterize structural and molecular factors involved in the catalysis, in particular of the reductase step, and in structural specificities.
Collapse
Affiliation(s)
- Sandrine Boschi-Muller
- UMR 7567 CNRS-UHP--Maturation des ARN et Enzymologie Moléculaire, Nancy Université, BP 239, 54506 Vandoeuvre-lès-Nancy, France.
| | | | | |
Collapse
|
41
|
Lin Z, Johnson LC, Weissbach H, Brot N, Lively MO, Lowther WT. Free methionine-(R)-sulfoxide reductase from Escherichia coli reveals a new GAF domain function. Proc Natl Acad Sci U S A 2007; 104:9597-602. [PMID: 17535911 PMCID: PMC1887594 DOI: 10.1073/pnas.0703774104] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The reduction of methionine sulfoxide (MetO) is mediated by methionine sulfoxide reductases (Msr). The MsrA and MsrB families can reduce free MetO and MetO within a peptide or protein context. This process is stereospecific with the S- and R-forms of MetO repaired by MsrA and MsrB, respectively. Cell extracts from an MsrA(-)B(-) knockout of Escherichia coli have several remaining Msr activities. This study has identified an enzyme specific for the free form of Met-(R)-O, fRMsr, through proteomic analysis. The recombinant enzyme exhibits the same substrate specificity and is as active as MsrA family members. E. coli fRMsr is, however, 100- to 1,000-fold more active than non-selenocysteine-containing MsrB enzymes for free Met-(R)-O. The crystal structure of E. coli fRMsr was previously determined, but no known function was assigned. Thus, the function of this protein has now been determined. The structural similarity of the E. coli and yeast proteins suggests that most fRMsrs use three cysteine residues for catalysis and the formation of a disulfide bond to enclose a small active site cavity. This latter feature is most likely a key determinant of substrate specificity. Moreover, E. coli fRMsr is the first GAF domain family member to show enzymatic activity. Other GAF domain proteins substitute the Cys residues and others to specifically bind cyclic nucleotides, chromophores, and many other ligands for signal potentiation. Therefore, Met-(R)-O may represent a signaling molecule in response to oxidative stress and nutrients via the TOR pathway in some organisms.
Collapse
Affiliation(s)
- Zhidong Lin
- *Center for Structural Biology, Department of Biochemistry, Wake Forest University School of Medicine, Winston–Salem, NC 27157
| | - Lynnette C. Johnson
- *Center for Structural Biology, Department of Biochemistry, Wake Forest University School of Medicine, Winston–Salem, NC 27157
| | - Herbert Weissbach
- Center for Molecular Biology and Biotechnology, Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431; and
- To whom correspondence should be addressed. E-mail:
| | - Nathan Brot
- Hospital for Special Surgery, Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY 10021
| | - Mark O. Lively
- *Center for Structural Biology, Department of Biochemistry, Wake Forest University School of Medicine, Winston–Salem, NC 27157
| | - W. Todd Lowther
- *Center for Structural Biology, Department of Biochemistry, Wake Forest University School of Medicine, Winston–Salem, NC 27157
| |
Collapse
|
42
|
Petropoulos I, Friguet B. Maintenance of proteins and aging: the role of oxidized protein repair. Free Radic Res 2007; 40:1269-76. [PMID: 17090416 DOI: 10.1080/10715760600917144] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
According to the free radical theory of aging proposed by Denham Harman (Journal of Gerontology 1956, 11, pp. 298-300), the continuous oxidative damage to cellular components over an organism's life span is a causal factor of the aging process. The age-related build-up of oxidized protein is therefore resulting from increased protein oxidative damage and/or decreased elimination of oxidized proteins. In this mini-review, we will address the fate, during aging, of the protein maintenance systems that are involved in the degradation of irreversibly oxidized proteins and in the repair of reversible protein oxidative damage with a special focus on the methionine sulfoxide reductases system. Since these protein degradation and repair systems have been found to be impaired with age, it is proposed that not only failure of redox homeostasis but, as importantly, failure of protein maintenance are critical factors in the aging process.
Collapse
Affiliation(s)
- Isabelle Petropoulos
- Laboratoire de Biologie et Biochimie Cellulaire du Vieillissement, EA 3106/IFR 117, Université Denis Diderot-Paris 7, CC 7128, 2 Place Jussieu, Paris Cedex, France
| | | |
Collapse
|
43
|
Oien DB, Moskovitz J. Substrates of the methionine sulfoxide reductase system and their physiological relevance. Curr Top Dev Biol 2007; 80:93-133. [PMID: 17950373 DOI: 10.1016/s0070-2153(07)80003-2] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Posttranslational modifications can change a protein's structure, function, and solubility. One specific modification caused by reactive oxygen species is the oxidation of the sulfur atom in the methionine (Met) side chain. This modified amino acid is denoted as methionine sulfoxide (MetO). MetOs in proteins are of considerable interest as they are involved in early posttranslational modification events. Thus, various organisms produce specific enzymes that can reverse these modifications. MetO reductases, known collectively as the methionine sulfoxide reductase (Msr) system, are the only known enzymes that can reduce MetOs. The current research field of Met redox cycles is consumed with elucidating its role in regulation, redox homeostasis, prevention of irreversible modifications, pathogenesis, and the aging process. Substrates of the Msr system can be loosely classified by the overall effect of the MetO on the protein. Regulated substrates utilize Met as a molecular switch to modulate activation; scavenging substrates use Mets to detoxify oxidants and protect important regions of the protein; and modified substrates are altered by Met oxidation resulting in various changes in their properties, including function, activity, structure, and degradation resistance.
Collapse
Affiliation(s)
- Derek B Oien
- Department of Pharmacology & Toxicology, School of Pharmacy University of Kansas, Lawrence, Kansas 66045, USA
| | | |
Collapse
|
44
|
Alamuri P, Maier RJ. Methionine sulfoxide reductase in Helicobacter pylori: interaction with methionine-rich proteins and stress-induced expression. J Bacteriol 2006; 188:5839-50. [PMID: 16885452 PMCID: PMC1540062 DOI: 10.1128/jb.00430-06] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The reductive repair of oxidized methionine residues performed by methionine sulfoxide reductase is important for the gastric pathogen Helicobacter pylori to maintain persistent stomach colonization. Methionine-containing proteins that are targeted for repair by Msr were identified from whole-cell extracts (after cells were exposed to O(2) stress) by using a coimmunoprecipitation approach. Proteins identified as Msr-interacting included catalase, GroEL, thioredoxin-1 (Trx1), and site-specific recombinase; with one exception (Trx1, the reductant for Msr) all these proteins have approximately twofold higher methionine (Met) content than other proteins. These Met-rich proteins were purified and were shown to individually form a cross-linked adduct with Msr. Catalase-specific activity in an msr strain was one-half that of the parent strain; this difference was only observed under oxidative stress conditions, and the activity was restored to nearly wild-type levels by adding Msr plus dithiothreitol to msr strain extracts. In agreement with the cross-linking study, pure Msr used Trx1 but not Trx2 as a reductant. Comparative structure modeling classified the H. pylori Msr in class II within the MsrB family, like the Neisseria enzymes. Pure H. pylori enzyme reduced only the R isomer of methyl p-tolyl-sulfoxide with an apparent K(m) of 4.1 mM for the substrate. Stress conditions (peroxide, peroxynitrite, and iron starvation) all caused approximately 3- to 3.5-fold transcriptional up-regulation of msr. Neither the O(2) level during growth nor the use of background regulatory mutants had a significant effect on msr transcription. Late log and stationary phase cultures had the highest Msr protein levels and specific activity.
Collapse
Affiliation(s)
- Praveen Alamuri
- Department of Microbiology, The University of Georgia, Biological Sciences Bldg., 527, 1000 Cedar Street, Athens, GA 30602, USA
| | | |
Collapse
|
45
|
Friguet B. Oxidized protein degradation and repair in ageing and oxidative stress. FEBS Lett 2006; 580:2910-6. [PMID: 16574110 DOI: 10.1016/j.febslet.2006.03.028] [Citation(s) in RCA: 163] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2006] [Accepted: 03/06/2006] [Indexed: 12/23/2022]
Abstract
Cellular ageing is characterized by the accumulation of oxidatively modified proteins which may be due to increased protein damage and/or decreased elimination of oxidized protein. Since the proteasome is in charge of protein turnover and removal of oxidized protein, its fate during ageing and upon oxidative stress has received special attention, and evidence has been provided for an age-related impairment of proteasome function. However, proteins when oxidized at the level of sulfur-containing amino acids can also be repaired. Therefore, the fate of the methionine sulfoxide reductase system during ageing has also been addressed as well as its role in protection against oxidative stress.
Collapse
Affiliation(s)
- Bertrand Friguet
- Laboratoire de Biologie et Biochimie Cellulaire du Vieillissement (EA 3106/IFR 117), Université Denis Diderot, Paris 7, 2 Place Jussieu, 75005 Paris, France.
| |
Collapse
|
46
|
Farout L, Friguet B. Proteasome function in aging and oxidative stress: implications in protein maintenance failure. Antioxid Redox Signal 2006; 8:205-16. [PMID: 16487054 DOI: 10.1089/ars.2006.8.205] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Damage to cellular components by reactive oxygen species is believed to be an important factor contributing to the aging process. Likewise, the progressive failure of maintenance and repair is believed to be a major cause of biological aging. Cellular aging is characterized by the accumulation of oxidatively modified proteins, a process that results, at least in part, from impaired protein turnover. Indeed, oxidized protein buildup with age may be due to increased protein damage, decreased elimination of oxidized protein (i.e., repair and degradation), or a combination of both mechanisms. Since the proteasome has been implicated in both general protein turnover and the removal of oxidized protein, the fate of the proteasome during aging has recently received considerable attention, and evidence has been provided for impaired proteasome function with age in different cellular systems. The present review will mainly address age-related changes in proteasome structure and function in relation to the impact of oxidative stress on the proteasome and the accumulation of oxidized protein. Knowledge of molecular mechanisms involved in the decline of proteasome function during aging and in oxidative stress is expected to provide new insight that will be useful in defining antiaging strategies aimed at preserving this critical function.
Collapse
Affiliation(s)
- Luc Farout
- Laboratoire de Biologie et Biochimie Cellulaire du Vieillissement, Université Denis Diderot-Paris 7, Paris, France
| | | |
Collapse
|
47
|
Joseph T, Lee TL, Ning C, Nishiuchi Y, Kimura T, Jikuya H, Ou K, Chin YC, Tachibana S. Identification of mature nocistatin and nociceptin in human brain and cerebrospinal fluid by mass spectrometry combined with affinity chromatography and HPLC. Peptides 2006; 27:122-30. [PMID: 16043263 DOI: 10.1016/j.peptides.2005.06.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2005] [Revised: 06/15/2005] [Accepted: 06/16/2005] [Indexed: 10/25/2022]
Abstract
Nocistatin (NST) and nociceptin/orphanin FQ (NCP) are two important bio-peptides derived from the precursor protein prepronociceptin (ppNCP), involved in several central nervous system (CNS) functions including pain transmission. Since the actual form of human NST in CNS is not fully characterized, we studied the structure of NST from human brain tissue and cerebrospinal fluid (CSF) samples. NST and NCP were isolated from human brain and CSF samples by affinity chromatography combined with HPLC. Mass spectrometry was used for the identification and characterization of the peptides. The total NST immunoreactivity was detected as 11.5+/-2.3 pmol/g tissue for the brain and 0.44 pmol/ml for the pooled CSF sample after the HPLC purification by radioimmunoassay. The presence of two different forms of mature nocistatin (NST-17 and NST-30) and a possible N-terminal methionine cleaved NST-29 were confirmed by both radioimmunoassay and mass spectrometry. Affinity chromatography, HPLC and mass spectrometry methods used in this study were highly sensitive and suitable for identification of actual chemical structures and quantification of very small amounts of peptides in biological samples. The present findings may help further for search for new treatment of neuropathic pain, which is often poorly managed by current therapies.
Collapse
Affiliation(s)
- Tessy Joseph
- Department of Anaesthesia, Faculty of Medicine, National University of Singapore, 5 Lower Kent Ridge Road, Singapore 119074, Singapore
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Walter J, Chagnaud P, Tannock GW, Loach DM, Dal Bello F, Jenkinson HF, Hammes WP, Hertel C. A high-molecular-mass surface protein (Lsp) and methionine sulfoxide reductase B (MsrB) contribute to the ecological performance of Lactobacillus reuteri in the murine gut. Appl Environ Microbiol 2005; 71:979-86. [PMID: 15691956 PMCID: PMC546760 DOI: 10.1128/aem.71.2.979-986.2005] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Members of the genus Lactobacillus are common inhabitants of the gut, yet little is known about the traits that contribute to their ecological performance in gastrointestinal ecosystems. Lactobacillus reuteri 100-23 persists in the gut of the reconstituted Lactobacillus-free mouse after a single oral inoculation. Recently, three genes of this strain that were specifically induced (in vivo induced) in the murine gut were identified (38). We report here the detection of a gene of L. reuteri 100-23 that encodes a high-molecular-mass surface protein (Lsp) that shows homology to proteins involved in the adherence of other bacteria to epithelial cells and in biofilm formation. The three in vivo-induced genes and lsp of L. reuteri 100-23 were inactivated by insertional mutagenesis in order to study their biological importance in the murine gastrointestinal tract. Competition experiments showed that mutation of lsp and a gene encoding methionine sulfoxide reductase (MsrB) reduced ecological performance. Mutation of lsp impaired the adherence of the bacteria to the epithelium of the mouse forestomach and altered colonization dynamics. Homologues of lsp and msrB are present in the genomes of several strains of Lactobacillus and may play an important role in the maintenance of these bacteria in gut ecosystems.
Collapse
Affiliation(s)
- Jens Walter
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin, New Zealand.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Hansel A, Heinemann SH, Hoshi T. Heterogeneity and function of mammalian MSRs: enzymes for repair, protection and regulation. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2005; 1703:239-47. [PMID: 15680232 DOI: 10.1016/j.bbapap.2004.09.010] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2004] [Revised: 09/10/2004] [Accepted: 09/13/2004] [Indexed: 01/15/2023]
Abstract
Methionine sulfoxide, the physiologically relevant oxidation product of methionine, is enzymatically reduced by peptide methionine sulfoxide reductases (MSRs). Two distinct classes of these enzymes, MSRA and MSRB, which selectively reduce the two methionine sulfoxide epimers, methionine-S-sulfoxide and methionine-R-sulfoxide, respectively, are found in virtually all organisms. Mammals typically possess only one gene encoding MSRA, but at least three genes encoding MSRBs. These MSRs show distinct tissue- and subcellular expression patterns and may play specific functional roles. Susceptibility of some ion channels to reversible methionine oxidation suggests that MSRs have a regulatory role in cellular excitability. Some--if not all--MSRs protect cells and organisms against a variety of oxidative stress episodes, including those by hypoxia and reperfusion, and play a modulatory role in lifespan determination. More MSR-dependent physiological phenomena await to be discovered.
Collapse
Affiliation(s)
- Alfred Hansel
- Molecular and Cellular Biophysics, Medical Faculty of the Friedrich Schiller University Jena, Drackendorfer Strasse 1, D-07747 Jena, Germany
| | | | | |
Collapse
|
50
|
Abstract
The cellular stress response is a universal mechanism of extraordinary physiological/pathophysiological significance. It represents a defense reaction of cells to damage that environmental forces inflict on macromolecules. Many aspects of the cellular stress response are not stressor specific because cells monitor stress based on macromolecular damage without regard to the type of stress that causes such damage. Cellular mechanisms activated by DNA damage and protein damage are interconnected and share common elements. Other cellular responses directed at re-establishing homeostasis are stressor specific and often activated in parallel to the cellular stress response. All organisms have stress proteins, and universally conserved stress proteins can be regarded as the minimal stress proteome. Functional analysis of the minimal stress proteome yields information about key aspects of the cellular stress response, including physiological mechanisms of sensing membrane lipid, protein, and DNA damage; redox sensing and regulation; cell cycle control; macromolecular stabilization/repair; and control of energy metabolism. In addition, cells can quantify stress and activate a death program (apoptosis) when tolerance limits are exceeded.
Collapse
Affiliation(s)
- Dietmar Kültz
- Physiological Genomics Group, Department of Animal Sciences, University of California, Davis, California 95616, USA.
| |
Collapse
|