1
|
Li H, Deng Y, Du S, Liu C, Li K, Xue X, Xu H, Zhang Y, Yi T, Gao X. Asymmetric Sulfoxidation of Thioether Catalyzed by Soybean Pod Shell Peroxidase to Form Enantiopure Sulfoxide in Water-in-Oil Microemulsions: A Kinetic Model. Chem Asian J 2021; 16:2075-2086. [PMID: 34121354 DOI: 10.1002/asia.202100467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/27/2021] [Indexed: 11/08/2022]
Abstract
Esomeprazole with chiral sulfoxides structure is used to treat gastric ulcer disease. Soybean pod shell peroxidase (SPSP) is a peroxidase extracted from soybean pods shells which are one of the most abundant natural resources in the world. In the production of chiral sulfoxides catalyzed by SPSP, it is very important to establish the reaction kinetic model and explore the reaction mechanism for the development of the process, however, there is no report on the establishment of the model. Asymmetric sulfoxidation reactions catalyzed by SPSP in water-in-oil microemulsions were carried out, and the King-Altman approach was used to establish a kinetic model. A yield of 91% and e.e. value of 96% for esomeprazole were obtained at the activity of SPSP of 3200 U ml-1 and 50 °C for 5 h. The mechanism with a two-electron reduction of SPSP-I is accompanied with a single-electron transfer to SPSP-I and nonenzymatic reactions, indicating that three concomitant sub-mechanisms contribute to the asymmetric oxidation involving five enzymatic and two nonenzymatic reactions, which can represent the asymmetric sulfoxidation of organic sulfides to form enantiopure sulfoxides. With 5.44% of the average relative deviation, a kinetic model fitting experimental data was developed. The enzymatic reactions may follow ping-pong mechanism with substrate inhibition of H2 O2 and product inhibition of esomeprazole, while nonenzymatic reactions follow a power law. Those results indicate that SPSP with a lower cost and higher thermal stability may be used as an effective substitute for horseradish peroxidase.
Collapse
Affiliation(s)
- Huiling Li
- State Key Laboratory Base for Eco-Chemical Engineering in College of Chemical Engineering, Qingdao University of Science and Technology, Mailbox 70, 53 Zhengzhou Road, Qingdao, 266042, P. R. China
| | - Yashan Deng
- Department of Pharmaceutical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Mailbox 70, 53 Zhengzhou Road, Qingdao, 266042, P. R. China
| | - ShanShan Du
- Department of Pharmaceutical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Mailbox 70, 53 Zhengzhou Road, Qingdao, 266042, P. R. China
| | - Cui Liu
- Department of Pharmaceutical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Mailbox 70, 53 Zhengzhou Road, Qingdao, 266042, P. R. China
| | - Kaiyuan Li
- Department of Pharmaceutical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Mailbox 70, 53 Zhengzhou Road, Qingdao, 266042, P. R. China
| | - Xiao Xue
- Department of Pharmaceutical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Mailbox 70, 53 Zhengzhou Road, Qingdao, 266042, P. R. China
| | - Hui Xu
- Department of Pharmaceutical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Mailbox 70, 53 Zhengzhou Road, Qingdao, 266042, P. R. China
| | - Yuanyuan Zhang
- State Key Laboratory Base for Eco-Chemical Engineering in College of Chemical Engineering, Qingdao University of Science and Technology, Mailbox 70, 53 Zhengzhou Road, Qingdao, 266042, P. R. China
- William G. Lowrie Department of Chemical and Biomolecular Engineering, Ohio State University, 151 West Woodruff Avenue, Columbus, Ohio, 43210, USA
| | - Tingting Yi
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong St, Tai'an, Shandong, 271018, P. R. China
| | - Xin Gao
- Department of Pharmaceutical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Mailbox 70, 53 Zhengzhou Road, Qingdao, 266042, P. R. China
- Kekulé-Institut für Organische Chemie und Biochemieder Rheinischen, Friedrich-Wilhelms-Universität Bonn, Gerhard-Domagk-Str. 1, 53121, Bonn, Germany
| |
Collapse
|
2
|
Chiral Imidazolium Prolinate Salts as Efficient Synzymatic Organocatalysts for the Asymmetric Aldol Reaction. Molecules 2021; 26:molecules26144190. [PMID: 34299464 PMCID: PMC8303523 DOI: 10.3390/molecules26144190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 06/30/2021] [Accepted: 07/07/2021] [Indexed: 11/20/2022] Open
Abstract
Chiral imidazolium l-prolinate salts, providing a complex network of supramolecular interaction in a chiral environment, have been studied as synzymatic catalytic systems. They are demonstrated to be green and efficient chiral organocatalysts for direct asymmetric aldol reactions at room temperature. The corresponding aldol products were obtained with moderate to good enantioselectivities. The influence of the presence of chirality in both the imidazolium cation and the prolinate anion on the transfer of chirality from the organocatalyst to the aldol product has been studied. Moreover, interesting match/mismatch situations have been observed regarding configuration of chirality of the two components through the analysis of results for organocatalysts derived from both enantiomers of prolinate (R/S) and the trans/cis isomers for the chiral fragment of the cation. This is associated with differences in the corresponding reaction rates but also to the different tendencies for the formation of aggregates, as evidenced by nonlinear effects studies (NLE). Excellent activities, selectivities, and enantioselectivities could be achieved by an appropriate selection of the structural elements at the cation and anion.
Collapse
|
3
|
Huddleston JP, Thoden JB, Dopkins BJ, Narindoshvili T, Fose BJ, Holden HM, Raushel FM. Structural and Functional Characterization of YdjI, an Aldolase of Unknown Specificity in Escherichia coli K12. Biochemistry 2019; 58:3340-3353. [PMID: 31322866 DOI: 10.1021/acs.biochem.9b00326] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The ydj gene cluster is found in 80% of sequenced Escherichia coli genomes and other closely related species in the human microbiome. On the basis of the annotations of the enzymes located in this cluster, it is expected that together they catalyze the catabolism of an unknown carbohydrate. The focus of this investigation is on YdjI, which is in the ydj gene cluster of E. coli K-12. It is predicted to be a class II aldolase of unknown function. Here we describe a structural and functional characterization of this enzyme. YdjI catalyzes the hydrogen/deuterium exchange of the pro-S hydrogen at C3 of dihydroxyacetone phosphate (DHAP). In the presence of DHAP, YdjI catalyzes an aldol condensation with a variety of aldo sugars. YdjI shows a strong preference for higher-order (seven-, eight-, and nine-carbon) monosaccharides with specific hydroxyl stereochemistries and a negatively charged terminus (carboxylate or phosphate). The best substrate is l-arabinuronic acid with an apparent kcat of 3.0 s-1. The product, l-glycero-l-galacto-octuluronate-1-phosphate, has a kcat/Km value of 2.1 × 103 M-1 s-1 in the retro-aldol reaction with YdjI. This is the first recorded synthesis of l-glycero-l-galacto-octuluronate-1-phosphate and six similar carbohydrates. The crystal structure of YdjI, determined to a nominal resolution of 1.75 Å (Protein Data Bank entry 6OFU ), reveals unusual positions for two arginine residues located near the active site. Computational docking was utilized to distinguish preferable binding orientations for l-glycero-l-galacto-octuluronate-1-phosphate. These results indicate a possible alternative binding orientation for l-glycero-l-galacto-octuluronate-1-phosphate compared to that observed in other class II aldolases, which utilize shorter carbohydrate molecules.
Collapse
Affiliation(s)
- Jamison P Huddleston
- Department of Chemistry , Texas A&M University , College Station , Texas 77843 , United States
| | - James B Thoden
- Department of Biochemistry , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States
| | - Brandon J Dopkins
- Department of Biochemistry , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States
| | - Tamari Narindoshvili
- Department of Chemistry , Texas A&M University , College Station , Texas 77843 , United States
| | - Blair J Fose
- Department of Chemistry , Texas A&M University , College Station , Texas 77843 , United States
| | - Hazel M Holden
- Department of Biochemistry , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States
| | - Frank M Raushel
- Department of Chemistry , Texas A&M University , College Station , Texas 77843 , United States
| |
Collapse
|
4
|
Bathellier C, Tcherkez G, Lorimer GH, Farquhar GD. Rubisco is not really so bad. PLANT, CELL & ENVIRONMENT 2018; 41:705-716. [PMID: 29359811 DOI: 10.1111/pce.13149] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 01/09/2018] [Accepted: 01/09/2018] [Indexed: 05/19/2023]
Abstract
Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) is the most widespread carboxylating enzyme in autotrophic organisms. Its kinetic and structural properties have been intensively studied for more than half a century. Yet important aspects of the catalytic mechanism remain poorly understood, especially the oxygenase reaction. Because of its relatively modest turnover rate (a few catalytic events per second) and the competitive inhibition by oxygen, Rubisco is often viewed as an inefficient catalyst for CO2 fixation. Considerable efforts have been devoted to improving its catalytic efficiency, so far without success. In this review, we re-examine Rubisco's catalytic performance by comparison with other chemically related enzymes. We find that Rubisco is not especially slow. Furthermore, considering both the nature and the complexity of the chemical reaction, its kinetic properties are unremarkable. Although not unique to Rubisco, oxygenation is not systematically observed in enolate and enamine forming enzymes and cannot be considered as an inevitable consequence of the mechanism. It is more likely the result of a compromise between chemical and metabolic imperatives. We argue that a better description of Rubisco mechanism is still required to better understand the link between CO2 and O2 reactivity and the rationale of Rubisco diversification and evolution.
Collapse
Affiliation(s)
- Camille Bathellier
- Research School of Biology, College of Science, Australian National University, Canberra, 2601, ACT, Australia
| | - Guillaume Tcherkez
- Research School of Biology, College of Science, Australian National University, Canberra, 2601, ACT, Australia
| | - George H Lorimer
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, 27042, USA
| | - Graham D Farquhar
- Research School of Biology, College of Science, Australian National University, Canberra, 2601, ACT, Australia
| |
Collapse
|
5
|
Camps Bres F, Guérard-Hélaine C, Hélaine V, Fernandes C, Sánchez-Moreno I, Traïkia M, García-Junceda E, Lemaire M. l-Rhamnulose-1-phosphate and l-fuculose-1-phosphate aldolase mediated multi-enzyme cascade systems for nitrocyclitol synthesis. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.molcatb.2014.10.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
6
|
Rodríguez-Gimeno A, Cuenca AB, Gil-Tomás J, Medio-Simón M, Olmos A, Asensio G. FeCl3·6H2O-Catalyzed Mukaiyama-Aldol Type Reactions of Enolizable Aldehydes and Acetals. J Org Chem 2014; 79:8263-70. [DOI: 10.1021/jo501498a] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Alejandra Rodríguez-Gimeno
- Departamento
de Química Orgánica, Universidad de Valencia, Avda. Vicente Andrés
Estellés, s/n 46100 Burjassot, Valencia, Spain
| | - Ana B. Cuenca
- Departamento
de Química Orgánica, Universidad de Valencia, Avda. Vicente Andrés
Estellés, s/n 46100 Burjassot, Valencia, Spain
| | - Jesús Gil-Tomás
- Departamento
de Química Orgánica, Universidad de Valencia, Avda. Vicente Andrés
Estellés, s/n 46100 Burjassot, Valencia, Spain
| | - Mercedes Medio-Simón
- Departamento
de Química Orgánica, Universidad de Valencia, Avda. Vicente Andrés
Estellés, s/n 46100 Burjassot, Valencia, Spain
| | - Andrea Olmos
- Laboratorio
de Catálisis Homogénea, Unidad Asociada al CSIC, CIQSO-Centro
de Investigación en Química Sostenible, Universidad de Huelva, Campus El Carmen, 21007 Huelva, Spain
| | - Gregorio Asensio
- Departamento
de Química Orgánica, Universidad de Valencia, Avda. Vicente Andrés
Estellés, s/n 46100 Burjassot, Valencia, Spain
| |
Collapse
|
7
|
Baker P, Seah SYK. Rational Design of Stereoselectivity in the Class II Pyruvate Aldolase BphI. J Am Chem Soc 2011; 134:507-13. [DOI: 10.1021/ja208754r] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Perrin Baker
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | - Stephen Y. K. Seah
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| |
Collapse
|
8
|
Behrens GA, Hummel A, Padhi SK, Schätzle S, Bornscheuer UT. Discovery and Protein Engineering of Biocatalysts for Organic Synthesis. Adv Synth Catal 2011. [DOI: 10.1002/adsc.201100446] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
9
|
Labbé G, de Groot S, Rasmusson T, Milojevic G, Dmitrienko GI, Guillemette JG. Evaluation of four microbial Class II fructose 1,6-bisphosphate aldolase enzymes for use as biocatalysts. Protein Expr Purif 2011; 80:224-33. [PMID: 21763425 DOI: 10.1016/j.pep.2011.06.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Revised: 06/28/2011] [Accepted: 06/29/2011] [Indexed: 12/01/2022]
Abstract
Fructose 1,6-bisphosphate (FBP) aldolase has been used as biocatalyst in the synthesis of several pharmaceutical compounds such as monosaccharides and analogs. Is has been suggested that microbial metal-dependant Class II aldolases could be better industrial catalysts than mammalian Class I enzyme because of their greater stability. The Class II aldolases from four microbes were subcloned into the Escherichia coli vector pT7-7, expressed and purified to near homogeneity. The kinetic parameters, temperature stability, pH profile, and tolerance to organic solvents of the Class II enzymes were determined, and compared with the properties of the Class I aldolase from rabbit muscle. Contrary to results obtained previously with the E. coli Class II aldolase, which was reported to be more stable than the mammalian enzyme, other recombinant Class II aldolases were found to be generally less stable than the Class I enzyme, especially in the presence of organic solvents. Class II aldolase from Bacillus cereus showed higher temperature stability than the other enzymes tested, but only the Mycobacterium tuberculosis Class II aldolase had a stability comparable to the Class I mammalian enzyme under assay conditions. The turnover number of the recombinant M. tuberculosis and Magnaporthe grisea Class II type A aldolases was comparable or higher than that of the Class I enzyme. The recombinant B. cereus and Pseudomonas aeruginosa Class II type B aldolases had very low turnover numbers and low metal content, indicating that the E. coli overexpression system may not be suitable for the Class II type B aldolases from these microorganisms.
Collapse
Affiliation(s)
- Geneviève Labbé
- Department of Chemistry, University of Waterloo, 200 University Ave. W, Waterloo, ON N2L3G1, Canada
| | | | | | | | | | | |
Collapse
|
10
|
Iturrate L, Sánchez-Moreno I, Oroz-Guinea I, Pérez-Gil J, García-Junceda E. Preparation and Characterization of a Bifunctional Aldolase/Kinase Enzyme: A More Efficient Biocatalyst for CC Bond Formation. Chemistry 2010; 16:4018-30. [DOI: 10.1002/chem.200903096] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
11
|
Fryszkowska A, Toogood H, Sakuma M, Gardiner JM, Stephens GM, Scrutton NS. Asymmetric Reduction of Activated Alkenes by Pentaerythritol Tetranitrate Reductase: Specificity and Control of Stereochemical Outcome by Reaction Optimisation. Adv Synth Catal 2009; 351:2976-2990. [PMID: 20396613 PMCID: PMC2854813 DOI: 10.1002/adsc.200900603] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We show that pentaerythritol tetranitrate reductase (PETNR), a member of the 'ene' reductase old yellow enzyme family, catalyses the asymmetric reduction of a variety of industrially relevant activated alpha,beta-unsaturated alkenes including enones, enals, maleimides and nitroalkenes. We have rationalised the broad substrate specificity and stereochemical outcome of these reductions by reference to molecular models of enzyme-substrate complexes based on the crystal complex of the PETNR with 2-cyclohexenone 4a. The optical purity of products is variable (49-99% ee), depending on the substrate type and nature of substituents. Generally, high enantioselectivity was observed for reaction products with stereogenic centres at Cbeta (>99% ee). However, for the substrates existing in two isomeric forms (e.g., citral 11a or nitroalkenes 18-19a), an enantiodivergent course of the reduction of E/Z-forms may lead to lower enantiopurities of the products. We also demonstrate that the poor optical purity obtained for products with stereogenic centres at Calpha is due to non-enzymatic racemisation. In reactions with ketoisophorone 3a we show that product racemisation is prevented through reaction optimisation, specifically by shortening reaction time and through control of solution pH. We suggest this as a general strategy for improved recovery of optically pure products with other biocatalytic conversions where there is potential for product racemisation.
Collapse
Affiliation(s)
- Anna Fryszkowska
- Manchester Interdisciplinary Biocentre, The School of Chemistry, The University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K
| | - Helen Toogood
- Manchester Interdisciplinary Biocentre, Faculty of Life Sciences, The University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K
| | - Michiyo Sakuma
- Manchester Interdisciplinary Biocentre, Faculty of Life Sciences, The University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K
| | - John M. Gardiner
- Manchester Interdisciplinary Biocentre, The School of Chemistry, The University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K
| | - Gill M. Stephens
- Manchester Interdisciplinary Biocentre, The School of Chemical Engineering and Analytical Science, The University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K
| | - Nigel S. Scrutton
- Manchester Interdisciplinary Biocentre, Faculty of Life Sciences, The University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K
| |
Collapse
|
12
|
Iturrate L, Sánchez-Moreno I, Doyagüez EG, García-Junceda E. Substrate channelling in an engineered bifunctional aldolase/kinase enzyme confers catalytic advantage for C-C bond formation. Chem Commun (Camb) 2009:1721-3. [PMID: 19294274 DOI: 10.1039/b822345a] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new bifunctional enzyme that displays both aldolase and kinase activities has been designed and successfully used in the synthesis of aldol adducts, employing DHA as initial donor, with an increase in the reaction rate of 20-fold over the parent enzymes, which can be interpreted in terms of substrate channelling.
Collapse
Affiliation(s)
- Laura Iturrate
- Departamento de Química Orgánica Biológica, Instituto de Química Orgánica General, CSIC, Madrid 28006, Spain
| | | | | | | |
Collapse
|
13
|
Suau T, Álvaro G, Benaiges MD, López-Santín J. Kinetic modelling of aldolase-catalyzed addition between dihydroxyacetone phosphate and (S)-alaninal. Biochem Eng J 2008. [DOI: 10.1016/j.bej.2008.04.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
14
|
Schümperli M, Pellaux R, Panke S. Chemical and enzymatic routes to dihydroxyacetone phosphate. Appl Microbiol Biotechnol 2007; 75:33-45. [PMID: 17318530 DOI: 10.1007/s00253-007-0882-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2006] [Revised: 02/03/2007] [Accepted: 02/04/2007] [Indexed: 10/23/2022]
Abstract
Stereoselective carbon-carbon bond formation with aldolases has become an indispensable tool in preparative synthetic chemistry. In particular, the dihydroxyacetone phosphate (DHAP)-dependent aldolases are attractive because four different types are available that allow access to a complete set of diastereomers of vicinal diols from achiral aldehyde acceptors and the DHAP donor substrate. While the substrate specificity for the acceptor is rather relaxed, these enzymes show only very limited tolerance for substituting the donor. Therefore, access to DHAP is instrumental for the preparative exploitation of these enzymes, and several routes for its synthesis have become available. DHAP is unstable, so chemical synthetic routes have concentrated on producing a storable precursor that can easily be converted to DHAP immediately before its use. Enzymatic routes have concentrated on integrating the DHAP formation with upstream or downstream catalytic steps, leading to multi-enzyme arrangements with up to seven enzymes operating simultaneously. While the various chemical routes suffer from either low yields, complicated work-up, or toxic reagents or catalysts, the enzymatic routes suffer from complex product mixtures and the need to assemble multiple enzymes into one reaction scheme. Both types of routes will require further improvement to serve as a basis for a scalable route to DHAP.
Collapse
Affiliation(s)
- Michael Schümperli
- Bioprocess Laboratory, ETH Zurich, Universitätsstrasse 6, Zurich, Switzerland.
| | | | | |
Collapse
|
15
|
Samland AK, Sprenger GA. Microbial aldolases as C-C bonding enzymes--unknown treasures and new developments. Appl Microbiol Biotechnol 2006; 71:253-64. [PMID: 16614860 DOI: 10.1007/s00253-006-0422-6] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2006] [Revised: 03/10/2006] [Accepted: 03/10/2006] [Indexed: 11/26/2022]
Abstract
Aldolases are a specific group of lyases that catalyze the reversible stereoselective addition of a donor compound (nucleophile) onto an acceptor compound (electrophile). Whereas most aldolases are specific for their donor compound in the aldolization reaction, they often tolerate a wide range of aldehydes as acceptor compounds. C-C bonding by aldolases creates stereocenters in the resulting aldol products. This makes aldolases interesting tools for asymmetric syntheses of rare sugars or sugar-derived compounds as iminocyclitols, statins, epothilones, and sialic acids. Besides the well-known fructose 1,6-bisphosphate aldolase, other aldolases of microbial origin have attracted the interest of synthetic bio-organic chemists in recent years. These are either other dihydroxyacetone phosphate aldolases or aldolases depending on pyruvate/phosphoenolpyruvate, glycine, or acetaldehyde as donor substrate. Recently, an aldolase that accepts dihydroxyacetone or hydroxyacetone as a donor was described. A further enlargement of the arsenal of available chemoenzymatic tools can be achieved through screening for novel aldolase activities and directed evolution of existing aldolases to alter their substrate- or stereospecifities. We give an update of work on aldolases, with an emphasis on microbial aldolases.
Collapse
Affiliation(s)
- Anne K Samland
- Institut für Mikrobiologie, Universität Stuttgart, Germany
| | | |
Collapse
|
16
|
Fessner WD, Helaine V. Biocatalytic synthesis of hydroxylated natural products using aldolases and related enzymes. Curr Opin Biotechnol 2001; 12:574-86. [PMID: 11849940 DOI: 10.1016/s0958-1669(01)00265-8] [Citation(s) in RCA: 128] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Synthetic building blocks bearing hydroxylated chiral centers are important targets for biocatalysis. Many C-C bond forming enzymes have recently been investigated for new applications and new strategies towards the synthesis of natural products and related oxygenated compounds. Several old catalysts have been studied to increase our functional knowledge of natural aldolase-type enzymes, and new mutated catalysts or catalytic antibodies have been tested for their synthetic utility.
Collapse
Affiliation(s)
- W D Fessner
- Department of Organic Chemistry, Darmstadt University of Technology, Petersenstrasse 22, D-64287 Darmstadt, Germany
| | | |
Collapse
|
17
|
Schoevaart R, van Rantwijk F, Sheldon RA. Facile enzymatic aldol reactions with dihydroxyacetone in the presence of arsenate. J Org Chem 2001; 66:4559-62. [PMID: 11421774 DOI: 10.1021/jo001766k] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Aldol reactions of in situ formed dihydroxyacetone arsenate with different aldehydes were catalyzed by bacterial D-fructose-1,6-bisphosphate aldolase (FruA). Aldolases from bacteria were found to be much more stable and active than FruA from rabbit muscle. Arsenate acts as a phosphate mimic and can, in principle, be used in catalytic amounts. The use of inorganic arsenate and dihydroxyacetone afforded high yields with hydrophobic aldehydes. Cosolvents increased the solubility of hydrophobic aldehydes and afforded higher reaction rates and enzyme stability. Insight is given, for the first time, in the influence of arsenate on the stereoselectivity of the aldol reaction.
Collapse
Affiliation(s)
- R Schoevaart
- Laboratory of Organic Chemistry and Catalysis, Delft University of Technology, Julianalaan 136, 2628 BL Delft, The Netherlands
| | | | | |
Collapse
|