1
|
Li J, Zhao L, Cheng X, Bai G, Li M, Wu J, Yang Q, Chen X, Yang Z, Zhao J. Molecular cytogenetic characterization of a novel wheat-Psathyrostachys huashanica Keng T3DS-5NsL•5NsS and T5DL-3DS•3DL dual translocation line with powdery mildew resistance. BMC PLANT BIOLOGY 2020; 20:163. [PMID: 32293283 PMCID: PMC7161236 DOI: 10.1186/s12870-020-02366-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 03/26/2020] [Indexed: 05/26/2023]
Abstract
BACKGROUND Psathyrostachys huashanica Keng (2n = 2x = 14, NsNs) carries many outstanding agronomic traits, therefore is a valuable resource for wheat genetic improvement. Wheat-P. huashanica translocation lines are important intermediate materials for wheat breeding and studying the functions of alien chromosomes. However, powdery mildew resistance in these translocation lines has not been reported previously. RESULTS This study developed a novel wheat-P. huashanica translocation line TR77 by selecting a F7 progeny from the cross between heptaploid hybrid H8911 (2n = 7x = 49, AABBDDNs) and durum wheat line Trs-372. Chromosome karyotype of 2n = 42 = 21II was observed in both mitotic and meiotic stages of TR77. Genomic in situ hybridization analysis identified two translocated chromosomes that paired normally at meiosis stage in TR77. Molecular marker analysis showed that part of chromosome 5D was replaced by part of alien chromosome fragment 5Ns. It meant replacement made part 5DL and part 5NsL·5NsS existed in wheat background, and then translocation happened between these chromosomes and wheat 3D chromosome. Fluorescence in situ hybridization demonstrated that TR77 carries dual translocations: T3DS-5NsL·5NsS and T5DL-3DS·3DL. Analysis using a 15 K-wheat-SNP chip confirmed that SNP genotypes on the 5D chromosome of TR77 matched well with these of P. huashanica, but poorly with common wheat line 7182. The translocation was physically located between 202.3 and 213.1 Mb in 5D. TR77 showed longer spikes, more kernels per spike, and much better powdery mildew resistance than its wheat parents: common wheat line 7182 and durum wheat line Trs-372. CONCLUSIONS TR77 is a novel stable wheat-P. huashanica T3DS-5NsL·5NsS and T5DL-3DS·3DL dual translocation line and showed significant improved spike traits and resistance to powdery mildew compared to its parents, thus, it can be an useful germplasm for breeding disease resistance and studying the genetic mechanism of dual translocations.
Collapse
Affiliation(s)
- Jiachuang Li
- Shaanxi Key Laboratory of Plant Genetic Engineering Breeding, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Li Zhao
- Shaanxi Key Laboratory of Plant Genetic Engineering Breeding, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xueni Cheng
- College of Life Science, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Guihua Bai
- USDA, Hard Winter Wheat Genetics Research Unit, 4008 Throckmorton Hall, Manhattan, KS, 66506, USA
| | - Mao Li
- Shaanxi Key Laboratory of Plant Genetic Engineering Breeding, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jun Wu
- Shaanxi Key Laboratory of Plant Genetic Engineering Breeding, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Qunhui Yang
- Shaanxi Key Laboratory of Plant Genetic Engineering Breeding, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xinhong Chen
- Shaanxi Key Laboratory of Plant Genetic Engineering Breeding, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Zujun Yang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, China
| | - Jixin Zhao
- Shaanxi Key Laboratory of Plant Genetic Engineering Breeding, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
2
|
Zheng X, Tang C, Han R, Zhao J, Qiao L, Zhang S, Qiao L, Ge C, Zheng J, Liu C. Identification, Characterization, and Evaluation of Novel Stripe Rust-Resistant Wheat- Thinopyrum intermedium Chromosome Translocation Lines. PLANT DISEASE 2020; 104:875-881. [PMID: 31935342 DOI: 10.1094/pdis-01-19-0001-re] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Stripe rust is an important disease in wheat, and development of genetic resistance in cultivars is an effective approach to control the disease. Wild species of wheat, such as Thinopyrum intermedium, are an excellent gene source for wheat improvement. In this study, two stripe rust-resistant wheat-Th. intermedium chromosome translocation lines, CH4131 and CH4132, were characterized by cytogenetic and pathological methods. The introgressed chromosome fragment was tagged using amplified fragment-length polymorphism-derived sequence-characterized amplified region (SCAR) markers and intron targeting markers, indicating that CH4131 and CH4132 both possess a homologous group 3 chromatin of Th. intermedium. Genomic in situ hybridization results suggested that a very small Th. intermedium chromosome segment was translocated to the terminal region of wheat 1BS for both lines, forming a configuration of T3Ai-1BS.1BL. The two translocation lines were resistant to stripe rust, and the resistance gene, temporarily designated YrCH-1BS, was likely derived from Th. intermedium. The translocated chromosome fragments have no genetic linkage drag to agronomic performance. The grain quality indexes of these two translocations were higher than local wheat varieties. Therefore, CH4131 and CH4132 could be used as potential gene sources in wheat improvement programs. The SCAR markers are useful to select stripe rust resistance from Th. intermedium.
Collapse
Affiliation(s)
- Xingwei Zheng
- Institute of Wheat Research, Shanxi Agricultural University, Linfen 041000, China
| | - Caiguo Tang
- Institute of Wheat Research, Shanxi Agricultural University, Linfen 041000, China
| | - Ran Han
- Crop Research Institute, Shandong Academy of Agricultural Sciences/Key Laboratory of Wheat Biology and Genetic Improvement in the North Yellow & Huai River Valley, Ministry of Agriculture/National Engineering Laboratory for Wheat & Maize, Jinan 250100, China
| | - Jiajia Zhao
- Institute of Wheat Research, Shanxi Agricultural University, Linfen 041000, China
| | - Ling Qiao
- Institute of Wheat Research, Shanxi Agricultural University, Linfen 041000, China
| | - Shuwei Zhang
- Institute of Crop Science, Shanxi Agricultural University, Taiyuan 030031, China
| | - Linyi Qiao
- Institute of Crop Science, Shanxi Agricultural University, Taiyuan 030031, China
| | - Chuan Ge
- Institute of Crop Science, Shanxi Agricultural University, Taiyuan 030031, China
| | - Jun Zheng
- Institute of Wheat Research, Shanxi Agricultural University, Linfen 041000, China
| | - Cheng Liu
- Crop Research Institute, Shandong Academy of Agricultural Sciences/Key Laboratory of Wheat Biology and Genetic Improvement in the North Yellow & Huai River Valley, Ministry of Agriculture/National Engineering Laboratory for Wheat & Maize, Jinan 250100, China
| |
Collapse
|
3
|
González-García M, Cuacos M, González-Sánchez M, Puertas MJ, Vega JM. Painting the rye genome with genome-specific sequences. Genome 2011; 54:555-64. [PMID: 21751868 DOI: 10.1139/g11-003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We used rye-specific repetitive DNA sequences in fluorescence in situ hybridization (FISH) to paint the rye genome and to identify rye DNA in a wheat background. A 592 bp fragment from the rye-specific dispersed repetitive family R173 (named UCM600) was cloned and used as a FISH probe. UCM600 is dispersed over the seven rye chromosomes, being absent from the pericentromeric and subtelomeric regions. A similar pattern of distribution was also observed on the rye B chromosomes, but with weaker signals. The FISH hybridization patterns using UCM600 as probe were comparable with those obtained with the genomic in situ hybridization (GISH) procedure. There were, however, sharper signals and less background with FISH. UCM600 was combined with the rye-specific sequences Bilby and pSc200 to obtain a more complete painting. With these probes, the rye chromosomes were labeled with distinctive patterns; thus, allowing the rye cultivar 'Imperial' to be karyotyped. It was also possible to distinguish rye chromosomes in triticale and alien rye chromatin in wheat-rye addition and translocation lines. The distribution of UCM600 was similar in cultivated rye and in the wild Secale species Secale vavilovii Grossh., Secale sylvestre Host, and Secale africanum Stapf. Thus, UCM600 can be used to detect Secale DNA introgressed from wild species in a wheat background.
Collapse
|
4
|
Current awareness in phytochemical analysis. PHYTOCHEMICAL ANALYSIS : PCA 2001; 12:144-151. [PMID: 11708302 DOI: 10.1002/pca.554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
|